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HEAT KERNELS ON COVERING SPACES
AND TOPOLOGICAL INVARIANTS

JOHN LOTT

I. Introduction

It is well known that there are relationships between the heat flow, acting
on differential forms on a closed oriented manifold M, and the topology
of M. From Hodge theory, one can recover the Betti numbers of M from
the heat flow. Furthermore, Ray and Singer [42] defined an analytic tor-
sion, a smooth invariant of acyclic flat bundles on M, and conjectured that
it equals the classical Reidemeister torsion. This conjecture was proved to
be true independently by Cheeger [7] and Muller [40]. The analytic torsion
is nonzero only on odd-dimensional manifolds, and behaves in some ways
as an odd-dimensional counterpart of the Euler characteristic [20].

If M is not simply-connected, then there is a covering space analog of
the Betti numbers. Using the heat flow on the universal cover M, one
can define the L2-Betti numbers of M [1] by taking the trace of the heat
kernel not in the ordinary sense, but as an element of a certain type II
von Neumann algebra. More concretely, this amounts to integrating the
local trace of the heat kernel over a fundamental domain in M. In §11,
we summarize this theory.

We consider the covering space analog of the analytic torsion. This
iΛanalytic torsion has the same relation to the iΛcohomology as the
ordinary analytic torsion bears to de Rham cohomology. In §111 we define
the iΛanalytic torsion <9^(M), under a technical assumption which we

discuss later, and prove its basic properties. We show that &^(M) is
a smooth invariant of manifolds whose L2-Betti numbers vanish. The
proof is similar to that of the analogous statement for the ordinary analytic
torsion, but requires some care because of the possible slow decay of the
heat kernels for large time.

In order to know if there are interesting examples of &^(M), we com-
pute it in the case where M admits a hyperbolic metric. It is clear that

is proportionate to the volume of the hyperbolic metric, which is
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a topological invariant by Mostow rigidity. The question is whether the
constant of proportionality is nonzero. In §IV we show that the constant
is nonzero for three-dimensional hyperbolic manifolds. Another invariant
of M which gives the hyperbolic volume is the simplicial volume | |M||
of Gromov [25]. The relationship between ||AΓ|| and ^(M) is not clear.

Also, <9^(M) presumably equals the L2-Reidemeister torsion defined in
[6] and [31], although we do not prove this.

The technical condition needed to define 3γ{M) is that the type II
traces of the heat kernels approach the L2-Betti numbers sufficiently
quickly for large time. For example, a power-law decay is sufficient. It
was shown by Novikov and Shubin that in addition to the L -Betti num-
ber b^(M), the exponent a (M) involved in the power-law decay of the
trace on p-forms is a smooth invariant of M [41]. In §V we show that
ocp(M) is defined for all closed oriented topological manifolds M and is
a homeomorphism invariant. This is done by putting a Lipschitz struc-
ture on M [47] and carrying out the heat kernel analysis on the Lipschitz
manifold ([48], [28]).

In order to obtain some understanding of the invariant a AM), in §VI
we look at the case of Abelian fundamental group. One can then use
Fourier analysis and the perturbation theory of operators to get some con-
crete results. We show that in this case a (M) is determined by higher
order cohomology products. We give examples where ap(M) is arbitrarily
close to 0.

In §VII we collect some information on aAM) in the case of locally
symmetric spaces. We also consider the case of manifolds covered by
Heisenberg groups and obtain upper bounds on a (M). For the three-
dimensional Heisenberg group we show that these bounds are exact^This is
done by explicit calculation of the heat kernel on the diagonal of M x M.

II. Type II traces of heat kernels

We give a summary of the theory of type II traces of heat kernels. For
more details, see [1], [8], [14].

Let Γ be a discrete group. There is an action L: Γ —• B(12(Γ)) of Γ

on /2(Γ) induced from the action of Γ on Γ of left multiplication. Put

(1) JT = {Te B(12(Γ)): L(g)T = TL(g) for all g e Γ}.

Jί is a von Neumann algebra generated by the right multiplication oper-
ators R(g). There is a finite trace Trπ on Jί, continuous in the weak
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operator topology, given by Ύτu(Rg) = δg e , which makes Jί into a type
II j von Neumann algebra.

Let M be^a closed oriented smooth Riemannian manifold of dimension
n and let M be its universal cover. Let AP(M) denote the Hubert space
of L2 /7-forms on M. The Laplacian Άp = dd* +d*d, initially defined
on smooth forms of compact support, has a unique selfadjoint extension,
with domain the Sobolev space of /?-forms H2(M) and image contained in

AP(M). For T > 0, the operator e~~TAp defined by the spectral theorem

has a Schwartz kernel given by a smooth form on M x M ^
The group Γ = πχ(M) acts by deck transformations on M . If &

is a fundamental domain for this action, then AP{M) = /2(Γ) <g> Ap(^),
and the space of bounded operators on AP(M) which commute with the Γ
action can be identified with ^<S>B(AP(^)). There is a (possibly infinite)
trace TrΓ on Jί <g> B(AP(^)), constructed from Trπ and the ordinary
trace on B{AP(^)), which makes Jt <g> B(AP(^)) into a type 11^ von
Neumann algebra.

In particular, for T > 0, e~TAp is a bounded Γ-invariant operator on

AP(M) and ΎrΓe~TAp is finite. More explicitly,

(2) Tr Γ e" Γ Δ ' = ί tv(e-TAp(x,x))dvol(x),

where tr denotes the (finite-dimensional) trace on End(Λp(x)). The L2-
Betti numbers are given by

(3) ^ 2 ) Γ Δ

III. iΛanalytic torsion

First, recall the definition of the usual analytic torsion [42]. Let AP(M)
denote the Hubert space of L2 p-forms on M and put Λ*(Af) =
®AP(M). Let Δ denote the Laplacian on A*(M), a densely defined
selfadjoint operator. Let Δr denote the Laplacian acting on (KerΔ) x .
Let F: A*(Af) -• Λ*(Af) be the operator which is multiplication by p on
AP(M).

Definition 1. We set

5=0
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The integral, which exists for Res > n/2, is extended analytically to a
meromorphic function in s, so that one is differentiating a holomorphic
function at s - 0.

We now form the iΛanalog of &". Let Δ' denote the Laplacian acting
on (KerΔ) x .

Definition 2.

(5) ~" s=l

^-fεr-lΎτΓ(-l)FFe-T~A'dT
•1 \s) Jods

+ Γ Γ"1 ΎτΓ(-lf Fe~TA> dT.
Jε

— TΛ1

Note 3. 1. We are assuming that for all p , as T —• oo, Ύτγe
 p is

O{T~apl2) for some a > 0. Then the second integral in (5) makes sense.

This asymptotic condition is independent of the Riemannian metric (see

§V). We do not know if it is always fulfilled.

2. We will see below that the first integral in (5) can be extended ana-

lytically in s from Res > n/2.
3. 9γ is independent of the choice of the positive number ε in the

definition.
4. We use zeta-function regularization on [0, ε]. This is in order to

ensure that ^ has a simple dependence on the Riemannian metric.
5. We do not extend the zeta-function regularization to large time. This

is because ΎrΓ(-l)FFe~TA may have a slow decay for large Γ, which
could mean that the integrand of an expression analogous to (4) would not
be integrable for any value of s.

6. One could make the same definition for a normal cover of M with
group of deck transformations Γ.

In order to study the small- T behavior of ΎτΓe~TAp, one can use a

parametrix P on M which is pulled back from a parametric P on M . It

follows that TrΓe~TAp and Ύτe~TAp have the same small- T asymptotics.
More precisely, we have

Lemma 4. Let d be the length of the shortest closed geodesic on M
which is in a nontrivial free homotopy class. Put N = [n/4] + 1. Then

for any integer k > 0 and any ε > 0, | T r Γ Δ ^ ~ Γ Δ * - T r Δ ^ ~ Γ ^ | is

Proof Let ε be arbitrarily small. For x, y e M, put R = d{x,y)-ε .

If d(x, y) > ε, the finite propagation speed method of [11, §1] gives
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|Δ>-ΓΔ'(x, y)\ < const. £ / \f {2k+2i\s)\ ds,
;_Λ * R

475

where f(s) = π 1 / 2 Γ xlle 5 / 4 Γ . (We are not concerned with the geometric
dependence of the constants, which is the main point of [11].) Now

(7)
f (27)/_x _ τ - ( 7 + l / 2 ) p / S \ -s2/4T

for some polynomial P. of degree 7 , and so

Γ\f{2J\s)\ds
JR

< const. ΓT-
U+im

IR

< const

•Γ
JR

•Γ
Jo

"-(7+1/2) 1 +

< const.T
-C/+1/2)

1 +

\ T )

({R + xY

V τ

+ T/R)2)

? 2 V 1 / 2

-R2μτ

Thus

(9)
\Ape

/n2\-l/2

< const. I — I [R

πlkrr-
K 1

-2k-4N

Ό2k+4NrΓ-2k-4N1 -R2/4T

Let a: Γ —• Diff(M) denote the action of Γ on M by deck transfor-
mations. Put

(10) -rk -ΓΔ for x,yeM.

To see that the sum in (10) converges absolutely, put N(r) = #{{a(g)y}geΓ

Π Br(x)}. If the sectional curvatures of M are > -K1, then N{r) <

com\.e{n~ι)Kr [37]. Thus (9) gives



476 JOHN LOTT

TApa(g)*)(x,y)\

< const.(Γ)

= const. (Γ)

(11) = const. (T)

Jo

,2k+4N-l -(r-if/AT

[ ΛCX) Γ

1 + / - 4N -
β 2λ:+4ΛΠ

Λ/4Γ (
x e e dR\ < oo.

We claim

To see this, by construction we have (a(g{)*Fa(g2)*)(T) = F(Γ) for all
gx, g2 G Γ , and SO

(13) F(T) = π*G(T)

for some smooth form G on M x M. Also

which implies

(15)

As distributions on M x M,

(16)
k _-

so limj ^Q G(T) = Ap . By the uniqueness of solutions to the heat equation
on M, we have

(17)
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Now

π(x), π{x)) -

-TA

, x)

For any Λ > 0, let us divide this sum into the contribution of {g:
d(x, a(g)x) < Λ + ε} and the contribution of {g: d(x, a{g)x) > Λ + ε} .
The second contribution is bounded by

r
J Λ

const. [R-2k + R~2k-4N + R2kT-2k

x e~
Rl/4T d(N(R + ε) - ΛΓ(A + e))

const.
dR

, D2λ;+4ΛΓτ,-2λ:-4JV, -
e(n-ι)KRdR

(19)

const.Γ-1/2 fl + ̂  [i?-2fe-2

+ R2k-2T-2k +

< const.e-A2/4Te{n-l)KA Γ

x [(A + + (Λ + xf-2T-2k
'-2 + (Λ + x)- 2 f c -

+ (Λ + xf+™-iτ-*-™]e-^l*τe(n-Vκ* d χ

By taking Λ large enough, we can ensure that the result is o(e~ιood / Γ ) as

T -* 0 uniformly with respect to x e M .

We are left with the contribution of the finite set {g: d(x9 a(g)x) <

Λ + ε}. By (9), this is 0(T-*-™+M)e-«i-')2/T) a s Γ ̂  0, uniformly

with respect to x. Integrating (18) over a fundamental domain thus gives

the lemma.
Corollary 5.

(20)

' T-\Tττ(-l)FFe~TA -ττ(-l)FFe~TA

-Θ(T -ε)(cΓ-c))dT- (Inε
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where θ is the Heaviside step function, ε is an arbitrary positive num-

ber, γ is the Euler-Mascheroni constant, cΓ = Σ(-l)PPb^ > and c =

Σ(-l)ppbp . (The point is that there is no need for zeta-function regular-

ization in Z^- ZΓ.)

Proof We have

—
ds s=0

-cΓ-Tr(-l)FFe~TA

T~\Trr(-l)FFe~TA - cτ - Ίr(-l)FFe~TA + c]dT.
_

By Lemma 4, ^Ts~ι(ΊτΓ(-l)FFe~TA-Ύr(-l)FFe~TA)dT is holomor-
phic in s, and so

9^-Γ= Γτ~l[ττJ-l)FFe'TA-Ύτ(-l)F

Jo

(22)

Fe~TA]dT

d_

ds
ΛOO

/

O O '"*•'

T~l[ΎτΓ(-l)FFe~TA - Ίτ(-l)FFe~TA - {cΓ - c)]dT,
from which the corollary follows.

Proposition 6. If M is even dimensional, then «5 (̂Λf) = 0.
Proof This follows from the Hodge duality, as in the usual case [42].
Proposition 7. Suppose that M is odd dimensional. If g(u) = gou +

gχ(\-ύ) is a one-parameter family ofRiemannian metrics, let *(M) denote

the Hodge duality operator for the metric g(u), and put V = ( ^ l ^ o * ) * " 1

Then

(23)
d_

du M=0
'KerΔ'

Proof We will think of V as an operator on both A*(M) and Λ*(M).
By the known formula for •fc&'{u) [42], it is enough to show

««» ί u=0
IKerΔ*
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Define

/•Λ ~

( ^ - Γ)(u, Λ) = / T'l[ΎτΓ(-l)FFe~TA-Tτ(-l)FFe~TA

(25)
-

Then

(26) ( ^ - .

We will show that

(lne + y)(cΓ-c).

T){u)= l i m ( ^ -
Λ—» oo

-θ(T-ε)(cΓ-c)]dT

Γ){u,Λ).

(27) ^ ( ^ - ^ ) ( M , Λ) = T r r ( - l ) F + 1 F < r M - Trί-

so that

(^S) , / TrΓψ. ( j^-M^-iYZA rj,^ ΛλΓ^Y^^-l\l±Λ, v ^

Using the assumed large-time decay of TrΓ e
 Γ Δ , it will follow that

Lemma 8. B(u, T) = ΎτΓ(-l)FFe~τ& - Tr(-l)FFe~TA is differen-
tiable in u, with

(30) ίg = T±{TtT{-\)™Ve-Tl-Tx{-l)™Ve-T\

Proof. By DuhameΓs principle, we have

T r r ( - l ) f F e -

Because ||(M-1(Δ(M)-Δ(0))-£|u=0Δ(M))e- ί/2Δ(0) | | is O{u) as M^0,the



480 JOHN LOTT

limit as u -> 0 of (31) exists, and we can write

d_
du w=0

- TrΓ(-l)
f

P e -

(32)

As in

A.
du

(33)

[9], we have

= -(T-2ε)Ί

= TrΓ

+ T

TrΓ

W=0

{-iff

rΓ(-lf

du

(-\du

Fe-*2

π

w=0

(0) I

d

e~Tl{0\

-εΔ(w)\ -(Γ-ε)Δ(O)

/

U

-(Γ-e)Δ(M)

M=0

and therefore

(34) limTrΓ(-l)Vf-^-
V ' ε̂ O Γ V ' \du

It follows that

u=0

( 3 5 ) T-
«=0 du

-TA(0)

u=0

From this point on, the arguments are the same as for the ordinary analytic
torsion [7]. q.e.d.

Using the method of proof of Lemma 4 in the case k = 1, we have

that ^f[Ίrτ{-\)FVe~τ^-Ίr{-\)FVe~τ^] is uniformly bounded for 0 <
T < A and 0 < u < 1. Then (27) follows. In order to take the limit
Λ —• oo in (28), because V is uniformly bounded in v, it suffices to

know that T r r ^ " ^ - TrΓ (projection onto KerΔp) is 0(Λ~α*/2) for
some ap, uniformly in υ e [0, u]. By assumption, this is true for any
fixed υ e [0, u]. Lemma 25 and the proof of Proposition 32 will show
that it is true uniformly on [0, u].

Corollary 9. If M is L2-acyclic, then Tγ is a smooth invariant of M.

Note 10. Some examples of odd-dimensional iΛacyclic manifolds are
given by nonpositively-curved locally symmetric spaces, manifolds whose
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sectional curvature is sufficiently closely pinched around - 1 [17], and
K(π, 1) manifolds with π amenable [10].

Proposition 11.

(36) ^ ( M , x M2) =

Proof. We have

(37) λ(M\ x'M2)=

and so

= Trr(-l)f'+V,

(38)

Now ΎτΓ(-lf*e~Tίi{Mΐ) is independent of T andequals

[8], which equals χ(M2) by Atiyah's L2 index theorem [1]. Thus

) f F e - ^ 1 ^Tr Γ (- l )

Subtracting the T —> oo limit of (39) gives

from which the proposition then follows.
Proposition 12. ^ is multiplicative under finite coverings.

Proof. This follows from the multiplicativity of T r Γ e ~ Γ Δ p .
Lemma 13. For any a > 0,

* i / τs-{τ-a/2dτ+ I
dS s=0 Γ(S) Jo Jε

Proof. The left-hand side equals

f=0Γ(j)j-(α/2) α/2 "

Because l/Γ(s) = s + O(s2), we thus obtain the lemma.

Corollary 14. If M is finitely covered by Sι x N for some closed ori-
ented N, then tt(M) = 0.
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Proof. By Lemma 13 and the explicit heat kernel on R, we have
1 = 0. The corollary then follows from Propositions 11 and 12.

IV. Torsion of hyperbolic manifolds

If ¥ is a locally homogeneous space, and h(x, y) is the Schwartz

kernel of the projection onto KerΔ, then

1 f£ T*-1

 t Γ(-l)FF[e~T A{x, x) - h{x, JC)]dT

oo

Vol(M) ds
(42)
V ' /*OO ~

+ / T~ιtτ{-l)FF{e'TA(x,x)-h(x,x))dT
Jε

for any x £ M. Thus if M is a manifold which is L2-acyclic and admits

a locally homogeneous metric, then <9^(M), a smooth invariant of M, is

proportionate to the volume of the locally homogeneous space (after the

curvature has been appropriately normalized). The constant of proportion-

ality depends only on the geometry of M, and the question is whether it

is nonzero. If M admits the structure of an irreducible locally symmetric

space of nonpositive curvature, then it follows from [39, Proposition 2.1]

that ^{M) vanishes unless M = SO(/?, q)/S{O{p) x O(q)) with p and

q odd, or M = SL(3, R)/ SO(3).

We will compute ^(Af) in the special case

M = Hd = SO(d, l)/S(O(rf) x 0(1))

with d odd. Note that Hd is iΛacyclic for d odd [16]. Using the Hodge
decomposition, we can rewrite 5f/ Vol(M) in this case as

Vol(M) " ds Γ(J) Jo

/
Jε

5=0

°°T-ιM-l)F+ιe-τ2(x,x)]dT,

where Δ is now the Laplacian acting on coclosed forms. Thus to compute
TΓ it suffices to know

(44) j

the local trace of the heat kernel on coclosed y'-forms.
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Proposition 15. For Hd with d odd,

\~dl2 1

This is a consequence of the more general results of Miatello [36]. For
our special case, let us put d = 2n+1 and define the groups G = SO(d, 1),
K = SO{d), and M = SO(d - 1). (For this proof, M will always re-
fer to this group, for which the notation seems to be standard.) Then
H = G/K, and a homogeneous vector bundle over Hd is given by a
finite-dimensional representation τ of K. Because d is odd, there is no
discrete series contribution to the heat kernel, and only the induced se-
ries contribution, which is specified by the restriction of T to M . In our
case the coclosed 7-forms correspond to the representation σj of M on

Λ7(R - 1 ) [19]. As G is of rank one, the corresponding induced series is

labelled by a real number v , and the representation of the Casimir of ^

on the v representation is v2 + (n - j)2 [19]. Thus

(45)

Fj{T) = (4π)-' / 2

F ^) f/) / J e x p ( "" Γ ( l / 2 + {n " -fl2)))^/")dv'

where Pσ (v)dv is the Plancherel measure. In the notation of [35], the

highest weight of the representation σy is Λσ = Σ"=2 siεi > ^ ^ S2 ~

Pσ{(46) PJu) = a I TT(AV + k*) ) ̂ 2pl + (n - ̂ )2)"

for some constants a and β [35]. The constants a and β are in prin-
ciple given in [35], but because of the many normalizations we prefer to
compute them directly. This can be done using the small-time heat kernel
asymptotics. First, we have

(47) Fj(T)
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2nso aβ2n = 1. Second, because β is independent of j , we can use the
expansion

F0(T) ~ (4πT)-d/2e-Tn2 (l + \n{n - 1)/Γ 2 r)
(48) ^

rf/

With constant sectional curvature - 1 , R = -d(d - 1) and so β = 1.
q.e.d.

It is now straightforward to compute ^ for hyperbolic 3-manifolds.

Proposition 16. // M3 is hyperbolic, then ^(M 3 )/Vol(M 3 ) =

Proof. Putting d = 3, we get

(49) F0(T) = ( 4 π Γ ) - 3 / V Γ , F , ( Γ ) = 2 ( 1 + ^ , F2(T) = F0(T).

(This agrees with [50].) By Lemma 13, F{(T) does not contribute to ^ .
We are left with

(50) =-2±

1 fε -1 -3/2 -T
I l (4πT) e dT

=o I \s) Jo

-2 Γ T~ι{4πT)~y2e~TdT
Jε

1 /*OO

= - - / Ts~ι(4πTfV2e'TdT
=o ι (s) Jo

-3/2Γ(J-3/2)

ds ( 4 π ) "
a S 5=0

Analogously, one can compute ^ for any odd-dimensional hyperbolic
space. We find

(51)
= =

Vol(M5) 2 π 2 ' Vol(M7) 2π 3 '

We do not know if ^(M2n+ι)/ V O 1 ( M 2 Λ + 1 ) is nonzero for all n > 0.

Note 17. If we assume that the L2 analytic torsion ^(M) is the
same as the L2 Reidemeister torsion ^f(M), then it follows that
vanishes for any Seifert 3-manifold with infinite πχ . One way to see this
is to note that the Seifert 3-manifolds all admit a locally homogeneous
metric [44], and so it suffices to check the statement for one example of a
Seifert 3-manifold for each of the five relevant homogeneous geometries.
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Suppose that F -> M —> B is a fiber bundle and let —• π{(F) Λ

π{(M) Λ πj(5) be the exact homotopy sequence. Let Ff be the normal
covering of F with covering group Γ = i(π{(F)). Suppose that F is Γ-
acyclic. Then M is iΛacyclic and the L2 Reidemeister torsion of M is
T£(F)χ(B) [31]. It now suffices to take a circle bundle as the example of a
Seifert 3-manifold for each of the five relevant homogeneous geometries,
as <9^c(Sι) = 0. The same argument shows that a 3-manifold based on
the Sol geometry has vanishing L2 torsion.

Remark 18. For three-dimensional hyperbolic manifolds, one can
think of the eta invariant as the imaginary part of a complex function
whose real part is the volume ([52] and references therein). Also, when
one computes the regularized determinant of a first-order selfadjoint el-
liptic operator, one can think of the phase of the determinant as given by
the eta function of the operator [30]. We wish to point out that these two
facts are related.

Consider the partition function Z of a quantum field theory whose
action is the Chern-Simons invariant of a U(l) gauge theory on a closed
3-manifold M. Formally,

(52) Z = -ln ίe-^

1where AeA1 (M). This expression is formally computed [46] as

(53) Z = \ lndet(Γ) - lndetΔ0,

where T is the operator on Aι(M) θΛ3(M) given by

ί (rf*-*d)(ω) if ωeAι(M),
(54) T(ω) = \ v Λ ' 3

V ;

1 -(d*-*d)(ω) ifωeA\M).
We can interpret Relndet(Γ) as

(55) Relndet(Γ) = ^lndet(Γ2) = ^(lndet^) + lndet(Δ3)),

so

(56) ReZ = - | l n d e t Δ 0 + ̂

The imaginary part of In det(T) can be interpreted as meaning \ iπ/η(M).
Thus we interpret Z as

(57) Z = ~^+l
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If we were to carry out the above reasoning in an L2 setting, we would

obtain

(58) Z ( 2 ) = -\ττ + l^ηΓ(M) = -\TY + ^η{M) + l^(ηΓ(M) - η(M)).

Furthermore, ηΓ(M) - η(M) is metric-independent [9].
For a hyperbolic 3-manifold, from Proposition 16 we have

(59) _ _ ^ + _η{τ) = __Λ_^ + -η(M).

This is exactly the combination of Vol(Λf) and η(M) which enters in
[52]. More precisely, [52] defines an analytic function f(u) on the de-
formation space of a finite volume hyperbolic 3-manifold N with cusps.
The deformed 3-manifold Nu is incomplete. When the deformation is
such that Nu can be completed to a closed smooth hyperbolic 3-manifold
Mu by adding geodesic loops, then f{u) = %[Vol(Mu)/(l2π) + fη(Mu)]+
correction terms.

This numerology suggests that it may be possible to define ^(Nu) and
ηΓ(Nu) for the incomplete manifolds Nu so that the analytic function
f(u) equals ^[-\^γ H- ι-fnγ{N

u)], up to a constant. (Note that if M is a
closed hyperbolic manifold, then ηΓ(M) = 0 because of the orientation-
reversing Cartan involution on M.)

V. Large-time decay of heat kernels

Definition 19. The /7th Novikov-Shubin invariant of M is

(60) ap{M) = sup{j9p: TrΓ6>~ΓΔ^ is O(T~β'/2) as T -> oo}.

It was shown in [41], [18] that a is a smooth invariant of M. (We use
a different normalization than [41], [18].)

We will show that ap is defined for all closed oriented topological mani-
folds M and is a homeomorphism invariant, a (M) is defined by putting
a Lipschitz structure on M and forming the corresponding heat kernel
[48], [28]. The invariance will follow along the lines of [41], [18].

A Lipschitz structure on M is a maximal collection of coordinate charts

{Va, φa} such that the transition functions φβ o φ~ι: Va —• Vβ are Lip-

schitz functions on the domains Va c RΛ . If dimAf Φ 4, a topological
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manifold M admits a Lipschitz structure^which is unique up to a home-
omorphism isotopic to the identity [47]. M inherits a Lipschitz structure
from M.

Because the partial derivatives of a Lipschitzjunction are in L°° , there
is a well-defined measure class on M (and M), and it makes sense to
talk of the space Λ*oc(M) of locally L2 differential forms. It also makes
sense to talk of a Riemannian metric g on M, given in a coordinate chart
by a matrix of measurable functions which is uniformly bounded above
and below almost everywhere. We will also denote by g the lift of the
Riemannian metric to M. Therejs an associated volume form d vol and
Hodge duality operator *: Λ*oc(M) -> Λ*oc(M). Define the Hubert space
of L2 differential forms

(61) Λ*(Λ/) = jω<EΛ*0C(M): fωΛ*ω<oo\.

As a topological vector space, this is independent of g.
Let Λ^(Af) be the dense linear subspace of Λ*(Af) given by

(62) Λ*(M) = {ωe Λ*(M): the current dω is in Λ*(Af)}.

That is, ω e Λ* (M) iff 3// e Λ*(M) such that J~ ωΛdφ = ±feηΛφ for
all φ which are smooth forms of compact support with respect to some
coordinate chart (Va, φa) of M . Then the operator d: Λ*(M) —• Λ*(M)
is densely-defined on A^(Af), closed, and d2 = 0.

It follows from Lemma 4.3 of [28] that d + d* is a densely-defined
selfadjoint operator on Λ*(M), and Λ*(M) = (Kerrf n Kerrf*) Θ Imέ/ Θ
Im ί/*. Although it is not strictly necessary, let us say explicitly what d*
is. ^

Definition 20. For ω e A*(M), let | |ω| | denote the norm of ω , an

L 2 function on M defined by ωΛ *ω = | |ω| | 2ίίvol.

Lemma 21. There is a sequence of functions fn £ A*d(M) such that

1. fn has compact support,

2. llĴ Hoo is uniformly bounded in n,
3. for almost all x e M, as n -> oo, fn(x) -»> 1,
4. as A2-+OC, | | d / J o o - > 0 .

Proί?/ Take a finite covering {[/J of M by coordinate charts and

let {Ua, φj be the lifts of {Ua,φJ to M. Let J α be the Euclidean
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distance on φ~ι(Ua) c M. For x , y e M, define [32]

x. )'. x = JC x = y x and x

are both in a coordinate neighborhood

p " 1 ^ ) for all 1 <i<n- 1 I .

Then one can check that dx(-) = d(x, -) is a Lipschitz function on M,

Hί/έ/JI is in L°° , and dx(y) > 0 if x ^ y . Because (M, J) is a complete

length space in the sense of [23], dx: M -> R is proper.

Fix x € M . Let p be a smooth bump function on R with supp ?> c
[ - 1 , 1 ] , φ(χ) = 1 for -\ < x < \ , and put /π(y) = φ(^dχ{y)). Then

(dfn)(y) = \φ (j

and the lemma follows.
Note 22. If one wants to consider a more general class of noncompact

manifolds, let X be a topological manifold with a uniform Lipschitz struc-
ture, meaning that there is a maximal atlas of coordinate charts {φa, Va}
such that the transition functions Ψβ°φ~l are ^-Lipschitz for all a and
β , for some constant K. With a fixed covering of X by coordinate charts,
define the metric d(x, y) as above. Let us assume that X is complete
with respect to d this is independent of the covering chosen. Given a
Riemannian metric g on X which is uniformly bounded above and be-
low with respect to the Euclidean norms on the charts almost everywhere,
one can prove the lemma in the same way. Alternatively, one can use the
metric on X defined intrinsically by g ([13], [29]).

Proposition 23. D o m ( 0 = *Dom(</) and d* = *d * (-l)nF+n+ι.
Proof. Given the cutoff functions {fn} , the proof is the same as in the

smooth case. Let us first show *Dom(d) c Dom(ίΓ). Suppose *η e
Όom(d). We have to show that for all ω e Όom(d), (ω, *d * η) =
±(dω,jj). Let {τ'} be a local measurable orthonormal basis of sections
of Γ*Λ/. Then

(64) (ω, *d*η) = ± ω Λd *η = ± y

with an obvious notation. Because ω and *J*« are L2 forms,
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ΣIωI(*d*n)Idγo\ is integrable. By Dominated Convergence, we have

(65)
(ω, *d*η) = lim ± / fnωΛd*η

= lim (±dfnΛωΛ*η± I fn dω Λ *η ] .

Since ω and *η are L2 forms, the first term has limit 0. For the second
term, because dω and *η are L2 forms, the Dominated Convergence
again implies that the limit is

(66) ± / dω Λ *// = ±(dω, η).

To show Dom(ί/*) c *Dom(J), suppose that there exist L forms η
and σ such that {dω, η) = (ω, σ) for all ω e Όom(d). We have to
show *η e Όom(d). Now

(67) / dω Λ *η = (dω, η) = (ω, σ) = / ω Λ *cr.

Letting ω range over smooth forms with compact support with respect to
a coordinate chart, we see that the distributional exterior derivative d *η
is L2 and is given by ±*cr. Thus *η e Όom(d) and σ = d*η = ±*d*η .
q.e.d. _

Using the spectral theorem, one can define e — e y ] , a

bounded selfadjoint operator on A*(A/). In order to show that e~TA is

in the von Neumann algebra J( ® J5 (A* (<!?")), or more generally that /(Δ)

is in Λf ® B{tC{£F)) for any bounded Borel function / : (0, oo) -• R, it

is enough to show that d + d* is affiliated with Jf <g> B(A*(^)) in the

sense that

(68) B(d + d*) = (d + d*)B for all B e (Jt ® B(A*(&)))' [14].

Lemma 24. d + af* w affiliated with JK Θ 5(Λ*(^)) .
Proo/ If ^ E πj(Af), then clearly α(g)* preserves Dom(rf + rf*) and

(69) αU)*(rf + rf*) = (rf + * *

Let 5Z be a sequence of finite sums B. = Σ ^ ^ ( ^ ; ) * I f {#;} converges
to an operator B in the weak operator topology, then for all x, y e

((d + d*)x, ΰy) = lim((rf + d*)x, ^ .

( 7 0 ) lim(jc, Bt(d + d*)y) = (x, B(d + d*)y).
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Thus By e Όom(d + d*)* = Όom(d + <Γ) and (d + d*)By =
B(d + d*)y. Because (Jt <8> 5(Λ*(^))) ' is the von Neumann algebra
generated by {a{g)*}geπ ( M ) , the lemma follows.

Lemma 25 [28]. Let g and g be Lίpschitz Riemann metrics on M,
and let d + d*(g) and d + d*(gf) be the corresponding selfadjoint oper-
ators on A*(M, g) and A*(A/, g1). Then there is an invertible bounded
operator B: Λ*(Af, g) -> A*(M, g) such that

(71) B*dB = d and B*d*{g')B = d*{g).

Proof. We refer to [28]. For completeness, letjis give the operator B.
Let / and / be the identity operators /: A* (A/, g) —• Λ*(AΓ, g') and
/ : A*(M9 g1) -> Λ*(Af, # ) . Let p , ^ , and r be the orthogonal projec-
tions on Im<ί*, Ivcίd, and Kerrf Π Kerrf* in A*(Aί, g ), and similarly
for //, # ' , and r ; . Then B = pip + qJ*q + / / r .

Definition26. Ep(λ, g) = Xl0tλ](Ap{g)) and Np(λ, g) = TτΓEp(λ, g).

Lemma 27. iVp(||5||4λ, g) > Np(λ, g1).
Proof. We will not assume that B is invertible for the proof. For

simplicity we will drop the index p. By the generalization of Glazman's
lemma ([18], [45]) we have

N(λ, g) = sup{TrΓP: P is a projection in Λf <8> B(A*{9')),

I m P c Dom(Δ(*)) and P(Δ(g) - λ)P < 0}.

Let P be the projection onto the preimage under B of I m / [ 0 λ](A(g')).

By Lemma 25, I m P c Dom(Δ(g)). Thus

(x, P(λ(g) - \\B\\*λ)Px) = \dPx\2 + |rf

= \B*dBPx\2 + \B*d*(g')BPx\2 -

0.

From T r Γ P > N(λ, g) [10] hence follows the lemma.

Corollary 28. jy | |* | | 4λ, g) > Np(λ, g')^ Np{\\B'ι\\'% g).

Corollary 29. The condition 0 e Spec(Δ^(g)) is independent of the
metric g.

Proof 0 i Spec(Δ^(g)) iff Np(λ9 g) is locally constant near 0.

Note 30. In the case p = 0, we know that 0 e Spec(Δ0(^)) iff π{(M)
is amenable [4]. The easy part of Brooks' theorem extends to the case
of general p. Namely, if HP(M, R) ψ 0 and πΛM) is amenable, then
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0 € Spec{Ap(g)). This can be seen by taking a harmonic /?-form ω on

M, a sequence of functions fE on M as defined in [4], and computing the

Rayleigh quotients for the test forms fEπ*(ω). If in addition bjf\λf) =

0,then OeSpec(Δ^(#)).
Definition 31. If g is a Lipschitz Riemannian metric on M, then

(74) ap(M, g) = sup{£p: ΎτΓe~TA'p is O(T~^β) as T -> oo}.

(It follows from the finite speed of propagation on Lipschitz manifolds, as

proved in [29], that Ίrγe~τ^ is finite for all T > 0.)
Proposition 32 [18], [41]). ap(M, g) < ap(M, gf).
Proof. We will not assume that B is invertible for the proof. We have

TrΓ<ΓΓ Δ ' ( ί ) = Γe-τλd(N(λ, g) - N(0+, g))
Jo

= T Γe~Tλ(N(λ,g)-N(O+,g))dλ
Jo

= \\B\\*T Γe-TWl4\N(\\B\\4λ, g)-N(O+,g))dλ
Jo

[,g')-N(O+,g'))dλ> T\\B\\4 Γ
Jo

- T r . - | I * I | 4 Γ Δ V )

- i r Γ e

Corollary 33. ap(M, g) = ap(M, g').
Note 34. Proposition 32 holds in great generality. All that one needs

is two Hubert spaces Ko and K1, closely densely defined operators d0

and dx with d\ = rfj2 = 0, and maps /: AΓ0 ^ AΓj and / : Kγ -> AΓ0 such
that dQ = Jdχl. In particular, if Λ/ is smooth, take AΓ0 to be the L2

simplicial cochains of a triangulation of M pulled back from a smooth
triangulation of M, Λ^ to be the Sobolev space of differential forms on
M as used in [15], d0 and d{ to be the coboundary maps, / to be the
Whitney map of [15], and / to be the de Rham map. Then it follows that
the combinatorial invariant ac

p(M) satisfies ac

p(M) < ap(M, g).
Definition 35. If M is a closed oriented topological manifold with

dim M Φ 4, put a Lipschitz structure 2? on M [47] and define

(75) ap(M,&) = ap(M9&,g)

for some Lipschitz Riemannian metric g. If dim M = 4, put a Lipschitz
structure Sf on M x S6 and define

(76) p ^

for some Lipschitz Riemannian metric g on M x S6.
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Proposition 36. ap(M, -2*) is independent of 3* and is a homeomor-
phism invariant of M.

Proof First, suppose dimAf / 4. If (M, .2J) and (AT, -2£) are two
Lipschitz structures on M, let σ: (M, Jz^) —• (Af, Jz^) be a Lipschitz
homeomorphism, which exists by [47]. Let gχ and g2 be Lipschitz Rie-
mannian metrics for (Af,-2J) and (Af,-2^) respectively. Then

Thus α (Λf) = a (M, Jΐ?) is well defined. The same argument shows that
a is a homeomorphism invariant. The case of dim M = 4 is similar.

Note 37. If Af is smooth, it is possible to give a more classical inter-
pretation of the condition a (M) > 2. Namely, if α (Aί) > 2 then, for
any ε > 0,

(78) Γ [ tτe~TAp(x,x)dvol(x)dT = Γ Ίτγe~TAp dT < oo.
Jε JF Jε

In the case p = 0, this means that Brownian motion on M is transient.
Similarly, if αp(Aί) > 4 then

/* I POO ~t

i~\ί e~TAP{x

/ OO /»OO /• ^ /

/ / tre-(5+Γ)Δ"(x,x)rfvol(x

so Δ ^ " 1 ^ " ^ has a kernel given by f™ e~TAp(x, y)dT which is in

x M)/T).

VI. Abelian fundamental group

Let V be the vector bundle over Af whose fiber over m e M is

I2(π~ι(m)) = /2(Γ). K is the vector bundle associated to the principal

bundle Γ -• M -• M J>y the left regular representation /?: Γ ^ 5(/ 2(Γ)).

We can identify L2(M) with L 2 sections of V, and one can think of

^ as an invariant for the flat Hubert bundle V. If nx(M) is abelian,

then the left regular representation is a direct integral of one-dimensional
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representations, and V decomposes as an integral of flat unitary line bun-
dles over M. This decomposition will allow us to make more precise
statements about the Novikov-Shubin invariants.

Let M be a smooth closed connected oriented manifold with π{(M)
— TΛ ;

the extension of an abelian group by a finite group. Because TrΓ e
is multiplicative under finite coverings, ap(M) is invariant under finite

coverings, and we may as well assume πχ(M) = Zι for some /. For a

unitary representation pθ: Z
ι —• U(l) given by pe{n) = eιθn , let Eθ be

the associated flat line bundle on M, with Laplacian Aθ . Let Tι denote

the /-torus.

Proposition 38. Ίττe~TA> = JτιΎτe~TA^θ dιθ/(2π)1 .^

Proof. Let a(n) denote the action of n e πχ(M) on M. Then

Tr Γ e~ Γ Δ = f Ύre~TA(x,x)dvol(x)

(80) = / Σ /",/>,(*)tr(e~ΓΔα(a)Φ)(*, x)d'θ/(2π)1 dvol(x)
Jr , Jτι

The change of summations and integrations can be justified by the esti-
mates of the proof of Lemma 4.

We claim

(81) Tr<ΓΓΔ» = / Σpθ{n)\r{e-TAa{n)*)(x, x)dvol(x).

Then the proposition will follow. To see (81), we can identify the twisted

L2 forms Λ*(M, Eθ) with {ω: ω is a locally L2 differential form on M

and pθ(n)a(n)*ω = ω for all n e πχ(M)}. The inner product becomes

(ω, η) = f^-(ω(x), η(x))dvol(x). Δ^ is represented by ω —• Δω. Put

(82) K(T,x,y) =
n

Then K(T, x, y) defines an integral operator K(T) on A*(M,EΘ) which

satisfies (d/dT + ΔΘ)K(T) = 0, limΓ_^0 K(T) = I. By uniqueness of the

heat kernel, it follows that K(T) = e~TAθ, and so

Ίτe~TAθ = ί tr(e~TAθ)(x,x)dγol(x)

(83) J M

= ί tr{K{T,x,x))dγol(x). q.e.d.
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It will be convenient to write all of the operators Δ^ as acting on the

same Hubert space. This can be done by choosing a basis {V}z=1 of

harmonic 1-forms on M such that if γ is a loop representing a class n e

πχ (M, * ) , then f γ τ = n. Let dΘ denote the operator d + / YJj=x θje(τJ).

Then Aθ is unitarily equivalent to the selfadjoint operator d*θdθ + dθdβ ,

(which we will also denote by Δθ), acting on the Sobolev space H2(M).

Because Δθ is quadratic in θ, it is easy to see that {Δθ}θeTι is an
analytic family of type (A) in the sense of [43]. By Theorem XII. 13 of
[43], the eigenvalues λ^θ) of Δ^ form a sequence of analytic functions
locally in θ they do not necessarily form a sequence of analytic functions
on Tι, but do form a sequence of multivalued functions on Tι. It follows
that for any ε > 0, {(θ, λ^θ)): λ^θ) < ε} can be written as a union of
graphs of a finite number of locally defined analytic functions on Tι. By
taking a sufficiently fine finite covering {Ua}

s

a=χ of {θ: λt{θ) < ε for some
/} , and subordinate partition of unity {paYa=i, we can write

(84) TrΓ6>~ΓΔ* = Σ Σ / Pa(θ)e~Tfa>β(θ)dlθ/(2π)1 + O(e~εT)
α=l β=\^Ua

for some nonnegative analytic functions {fa β}
n

β

a

=χ defined on Ua. If

faβis zero in an open subset of Ua , then it must correspond to an eigen-

value λ^θ) which vanishes identically on Tι. This gives a contribution

to Tr Γ e~ p which is Γ-independent, and so is part of b . Thus

(85) TrΓe-ΓΔ'=ί/2) Σ Σ /

where the analytic functions {ga β}™={ are nonnegative and not identi-
cally vanishing. If the functions {ga p}^ are all bounded away from
zero, then a (M) = oo. Otherwise, by the theory of asymptotic integrals
[33],

(86) T r Γ ^ " Γ ^ = bf + O(Γ~α'/2(log T)k)

for some rational number ap > 0 and some integer k. (Malgrange [33]
studies the case of imaginary T, but the asymptotics are the same in our
case.) Hence we have shown

Proposition 39. If πχ(M) is abelian, then a (M) is positive and ratio-
nal.
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If- nχ(M) = Z we can say more. If λ(θ) is a nonnegative nonvanishing

analytic function on U c S1 with an isolated zero at ΘQ e U and p{θ0) Φ

0,then fue~τλ{θ)p(θ)dθ is O(T~l/{2n)), where « is the smallest integer

such that λ{2n)(θ0) φ 0. Thus we have
Proposition 40. If πχ(M) = Z, then ap(M) = l/n for some nonneg-

ative integers np.

We can give conditions for λ(2)(0o) to be nonzero using perturbation
theory.

Proposition 41. Suppose that for θ e U, ψ(θ) is an analytic fam-
ily of eigenvectors of Ap θ with eigenvalue λ(θ), and λ(θQ) = 0. Let
[ψ(θ0)] denote the class of ψ{θ0) in HP(M, Eθ , R), and let [τ] denote

the class of τ in HX(M, R). Then λ{2\θ0) = 0 iff [τ] U [ψ(θ0)] = 0 in

HP+\M, EΘQ , R) and [τ] U [*ψ(θ0)] = 0 in Hn~p+ι{M, EΘQ , R).

Proof We°have dτ = d*τ = dθ ψ(θ0) = d* ψ(θ0) = 0. Then

dθ2

1=θa

(87)

dθ

= 2
d_

dθ
dθψ(θ)

β=βn

d_
dθ θ=βn

d*θΨ{θ)

= 2[\dθj + ie(τ)ψ\2 + \d*θoψ - ii{τ)ψ\\

By first-order perturbation theory [43], we have

(88)
d_

dθ
ψ = iG(dθi(τ) - d*e{τ))ψ,

where G is the Green's operator for Aθ - λ(θQ). Hereafter we will drop

the ΘQ subscripts. Now

dψ + ie{τ)ψ = 0 & e(τ)ψ = Gdd*e(τ)ψ

& e(τ)ψ = G(dd* + d*d)e(τ)ψ(89)

Because de(τ)ψ = 0, e(τ)ψ can be written as η + dp for some η e

1 > , , peAp(M9Eθ).Ίhea
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e(τ)ψ _L KerΔp + 1 θ <& η = 0 «Φ e(τ)ψ e Imd

(90) <*[e(τ)ψ] = 0 in Hp+l(M, EΘQ , R)

The same arguments, applied to *ψ instead of ψ, give

(91) d*ψ-i{τ)ψ = 0<*[τ]\J[*ψ] = Q in Hn~p+l(M, EΘQ , R). q.e.d.

Using higher order perturbation theory, one can show that given Λ,(2)(0O)

= 0, one has λ(4)(0o) = 0 iff the Massey products ([τ], [ψ], [τ]) and

([τ], [*ψ], [τ]) vanish, that is, there is a p-form ψ{ι) such that τ Λ ψ =

dψ{ι) and [τ Λ ^ ( 1 ) ] = 0 (mod[τ]), and similarly for *ψ. By redefining

ψ^ , the vanishing of ([τ], [ψ], [τ]) is equivalent to the existence of in-

forms ψ^ and ψ^ such that τ Λψ = dψ^ and τ Λψ^ = dψ^K One

can see the pattern that, in general, λ{2\θ0) = λ{4\θ0) = = λ{2r)(θ0) = 0

iff

3/?-forms ψ{X), ψ{2), , ψ{r) such that

^ ( 1 ) , τ Λ ψ{X) = dψ{2), , τ Λ ψ{r-l) = dψ{r),

and similarly for *ψ. The condition (*) can be re-expressed in a way
independent of choices as

, 3/?-forms ψ{ι), ψ{2), , ^ ( r ) such that τ Aψ = dψ{X),

TΛ ψ{x) = dψ{2\moάτ), , τ Λ ψ{r~ι) = J^ ( r ) (mod^).

Example 42. Let M be the total space of a nontrivial SU(2) bundle
over B = Sι x S3. We will show that α3(Af) = 1/2. By the Gysin
sequence for twisted cohomology,

/ / ( * , ^ , , R) - //"(M, π*Eθ,R) - / / " + 1 - 3 ( ^ , £ , , R)

Γ + 1

/ί (M, π * ^ , R) is nonzero only for 0 = 0. By the Hirsch lemma, the

minimal model of M has a generator x in degree 1 and generators yχ and

y2 in degree 3, with the relations dx = 0, rf^j = 0, and dy2 = xy{ [22].

Taking [τ] = [x] and [ψ] = [yχ], we have [*^] = [xy2] Then [τ]U|>] =

0 in H4(M, R) and [τ] U [*ψ] = 0 in #5(ΛΓ, R), so Λ(2)(0O) = 0. On

the other hand, taking ψ{ι) = y2 , we have [τ Λ ψ{ι)] φ 0 in 7/4(M, R),
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so λ{4\θQ) φ 0. Thus α3(Af) = 1/2. This example shows that ap{M)

can be noninteger. Also, by comparing with a3(Sι x S3 x S3) = 1 and

a3(Sι x S6) = oo, it is clear that for general p , ap(M) depends on more

than just the dimension and fundamental group of M. Repeatedly form-

ing SU(2) principal bundles, we can construct a manifold M3r+i whose

minimal model has a generator x in degree 1 and generators y{, ,yr

in degree 3, with the relations dx = 0, dyχ = 0, dy2 = xyλ, , dyr =
χyr-\ Then α 3 (M 3 r + 1 ) = 1/r. This shows that ap(M) can be arbitrarily

close to 0.

If πχ(M) = τl and HP(M, EQ , R) ^ 0, one can use perturbation

theory to determine the asymptotics of λ(θ) around θ = θ0. However,

since the procedure to obtain the asymptotics of Jv e~τλ^p(θ) dθ is non-

constructive and involves blowing up singularities, it does not seem to

be much use in determining ap(M) explicitly. In the special case when

λ(θ) is asymptotically a positive definite quadratic function around ΘQ,

fue~τλ{θ)p{θ)dθ is asymptotically O(T~ι/2). By the same arguments

as for Proposition 41, this will be the case iff for all [τ] e Hι(M, R),

[τ] U [ψ] = [τ] U [*ψ] = 0 implies [τ] = 0.

Proposition 43. // πχ (AT) = Z7, then ao = a{=l.

Proof. The only value of θ where //ό(Λ/\ EQ, R) or Hι(M, EQ, R)
is nonzero is 0 = 0. For p = 0, we have [ψ] = [1] e H°(M, R), and
so for [τ] eHι{M,R), [τ] U [ψ] = 0 implies [τ] = 0. For p = 1, take
a nonzero [y] e Hι(M, R) and suppose that for some [τ] e Hι(M, R),
[τ] U | y ] = [τ] U [*y] = 0. From [τ] U [ψ] = 0, [τ] must be proportionate
to [ψ], but then by Poincare duality [τ] U [*ψ] = 0 implies [τ] = 0.

Note 44. That aQ is / is part of a more general result (see the next
section).

Note 45. The arguments in this section also work for an arbitrary in-
finite normal Abelian cover of a closed oriented manifold M. When
applied to the L2 analytic torsion of a manifold with infinite Abelian
fundamental group, they give

(93) ^T(M)= f T(θ)dlθ/(2π)1,

where T{θ) is the ordinary analytic torsion of the flat line bundle specified
by θ. In particular, the results of [38] and the identity

(94) ί ln\a-eW\dθ/2π = ln\a\θ(\a\-l)
Jsι
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give that if / is a diffeomorphism ofN,N simply-connected, and M
is the mapping cylinder, then up to a constant,

(95) ^r(M) = J^lnflvl. e v e n | ) - ^ l n ( | A / o d d | ) ,

where {A/even} are the eigenvalues of the action of H*(f) on Hevea(N)
of norm greater than one, and similarly for {λt o d d} .

VII. Examples of ap

A. p=0. Varopoulos [49] has shown α 0 = oo unless nχ{M) has poly-
nomial growth (i.e., n{(M) is almost nilpotent [24]), in which case a0 is
the growth rate of nχ{M).

B. Locally symmetric spaces. We collect some properties of the spec-
trum of the Laplacian on differential forms on irreducible noncompact
Riemannian symmetric spaces M = G/K.

M can have harmonic p-forms only for p = dim(Λ/)/2 [3, II, 5.4].
These correspond to discrete series representations of G, and so can only
occur for rankG = rank AT. Furthermore, if rankG = rank K, then
χ(M) Φ 0 [5], and so by the L2 index theorem [1], such harmonic p-
forms do occur.

To convert to the notation of [3], the Laplacian Ap acting on the smooth

vectors in AP(M) is equivalent to Δ acting on Cp(β, /, H), where H

is the unitary (^, /)-module of smooth vectors in L2(G). By Kuga's

Lemma, the action of Δ on Cp{#, /, H) is given by the representation

of the Casimir C of p on H.
In order to know when ap(M) can possibly be finite, one can ignore the

discrete spectrum of Δ^ , as its contribution to t r e " 7 ^ * ' ^ will either be
constant in T or decrease exponentially in T. Then a necessary condition
for a (M) to be finite is that the continuous spectrum of Δ extend down
to 0. The continuous spectrum corresponds to the part of the regular rep-
resentation of G induced from cuspidal parabolic subgroups, and so the
question is whether an induced representation V can give a vanishing rep-
resentation of the Casimir operator. We can assume that the induced repre-
sentation is irreducible, upon which having vanishing Casimir is equivalent
to Cp{#, /, V) consisting of harmonic cochains, which is equivalent to
Hp(^, / , V) being nonzero [3, II, 3.1]. By [3, III, 5.1], for the tempered
representations V which are of interest to us, Hp{#, / , V) = 0 if p £
[dim(Λ/)/2-(rank((?)-rank(A:))/2, dim(M)/2 + (rank(G)-rank(A:))/2].
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Thus ap(M) = oo for such p. Furthermore, Hp(f, J, V) = 0 if V is
not a fundamental series representation. Thus if rank(G) = rank(ίΓ), then
ap(M) = oo for all p .

Precise information on the representations V with nonvanishing
(y, /)-cohomology is given in [51], to which we refer for details. In
particular, it follows from [51] that the continuous spectrum of Δ does

extend down to 0 if p e [dim(M)/2-(rank(G)-rank(A'))/2, dim(M)/2+
(rank(G) - rank(^))/2], due to the existence of a unique fundamental se-
ries representation V. Then α (Af) will be finite and independent of p
in this range, and can be computed using the Plancherel formula. We will
only give the result for the simplest case.

Proposition 46. If M is a real hyperbolic manifold of odd dimension

d, then ap(M) = oo if pφ{d ±l)/2 and ap(M) = 1 if p = {d ± l ) / 2 .

Proof By the above discussion, or Proposition 15, if j Φ (d - l)/2,
then the spectrum of Δ on L2 coclosed 7-forms is bounded away from
zero, and Fj(T) has exponential decay. For j = (d - l)/2,

( 7 V + . 2) 4.
(96)

Hence the proposition follows, q.e.d.
A generalization of the above results, when applied to Hermitian or

quaternionic noncompact symmetric spaces, is given by the following pro-
positions.

Definition 47 [26]. A closed Kahler manifold M is Kahler hyperbolic
if the Kahler form ω on M can be written as ω = dη for some bounded
1-form η on M.

Proposition 48 [26]. If M is a Kahler hyperbolic manifold, then the
spectrum of *Δ on (KerΔ)"1 is bounded away from zero.

Definition 49. Suppose that M is a closed quaternionic-Kahler mani-
fold. M is quaternionic-Kahler hyperbolic if the canonical 4-form ω on
M can be written as ω = dη for some bounded 3-form i j o n M .

Proposition 50. If M is quaternionic-Kahler hyperbolic, then the spec-
trum of Δ on (KerΔJ"1 is bounded away from zero for p even and

M)

Proof Using the Lefschetz isomorphism on a quaternionic-Kahler
manifold [2], the proof is the same as that of [26].
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C. Heisenberg groups. Suppose that one has a Lie group G with a
left-invariant orthonormal basis of the tangent space. Then there is a
left-invariant orthonormal basis of A*(G), and in terms of this basis the
Laplacian becomes a matrix of differential operators on G. One can hope
to compute heat kernels using harmonic analysis on G. In particular, on
the Heisenberg groups the analysis simplifies because of the CR structure.
The author wishes to thank Mike Christ for much help with the results of
this section.

Let M2m+ι be a closed oriented manifold which is homeomorphic to a

quotient G/T of the Heisenberg group by a discrete subgroup. The Heisen-

berg group G can be identified with R 2 m + 1 , with coordinates {{xJ'}tJLl9

{yJ}™=ι 9 w} . A basis of left-invariant vector fields is given by

^ ' j x j ^ w9 j y^ / ^ ' p w

for any c e R - {0} . We will consider the left-invariant metric on G given
by requiring that {Xj, Y., W} be an orthonormal basis. It is convenient
to complexify and put

(98) Z = (x — iY) Z- = ——(X + iY)

Then a Hermitian basis for T*G<8>C is given by

(99) /

V J J

The differentials of the basis elements are

(100) dτJ = dτΊ = 0, dτw = -ic Vs τj Λ τ 7.

Using the global orthonormal basis of A*G®C, we write differential op-
erators on A*G (8> C as matrices of differential operators on C°°(G) ® C.

In particular, e(τj), e(τJ), e(τw), i{Z.)9 i(Zj), and i(W) are repre-
sented as matrices of zeros and ones. One can compute that the covariant
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derivatives V: TG® Λ*(<?) ® C -• A*(G) <8>C are given by

Vz. = Z, - \ice{τ?)i{W) + \ice(τw)i(Zj),

(101) *Zj = ZJ + i/cίί^Jiί^) - \ice{τw)i{ZΊ),

Proposition 51. Let S?p denote the G-invariant subspace of AP(TG) ®
C defined by

S?p = {ω e AP(TG) ® C: 0 = i(W)ω = i(Zj)ω

= Zjcofor all j = 1, , m}.

5^p w an invariant subspace for the Laplacian, and Δ = - W1 +

Proof We have

(103) rfω - Y)fiiJγiZi + e(τJ)Vz_ + e(τw)Vw]τw)

and

(104) rf*ω = -£[ i (Zy)V Z / + /(Z.)VZ_

on Λ*(G)(8>C, and

i{W)e(τw)Wω=Wω,
k

( 1 0 5 ) V z ω = Z/ω

Vz_ω = 0 and V^ω = Wω + £/
j

on ^ p . Then on S*p ,

dω = Σ[e(τJ)Zjω - ϊ

Ίice{τw)e{τi)i{Zj)ώ\ + e(τw)Wω + x

Ίicpe(τw)ω
j

j

and

(107) d*ω = ~Σi(Zj)Zjω- i(W)Wω- \icpi{W)ω = 0.
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So for ω e / ,

Δω = d*dω = - Σ i(Zk)
e(χi)ZkZjω

+ Σ^ici(Zτ)e(τk)i(W)e(τw)Wω

(108) *
- \ici{Zk)e{τ)i{W)e{τw)Wω

- ±ici(W)e(τk)i(Zk)e(τw)Wω]

- i(W)e(τw)W2ω.

Using (105), we obtain

Δω = -IV2ω - Σ i{Zk)e{τi)ZkZjω

(109) =-W2ω-ΣKZk)e(τ')[Zτ,Zj]ω

= -W2ω + Σ ici{Zk)e{τk)V/ω = -W2ω + ic{m-p)Wω.
k

Proposition 52.

n + l, p = m, m+ 1.

' A, this inequality is exact for p - 0, 2m + 1.)

f. We can assume p <m. Because S?p is invariant under Δ,

(110) ΎτΓe~TA" > T r Γ e ~ Γ Δ p | ^ = yόl(M)tre\p(-Tλ'p\s>φ)(x, x).

Define

(111) / = {ίoe L2(G): Zjω = 0 for j = 1, , m}.

Then S?p = %? <s> C^p' and

( 1 1 2 ) fm\ 2
= ί )(exp(-T(-W + ic(m-p)W)\τ))(x, x).

If P denotes the Szegό projection, the orthogonal projection from L2(G)
to %?, then

[exp(-Γ(-W2 + ic(m -p)W)\jr)](x, x)

(113) = [(exp(-T(-W1 + ic(m -p)W)))P]{x, x)

= ί [exp(-T(-W2 + ic(m -p)W))](x, y)P(y, x)dvol(y).
JG
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It is convenient to take the Fourier transform in the w direction, giving

(114) f e-T{k2/c2+{m-p)k)P(x, x, k)dk/(2πc),
JR

where x e R2m .

Now P(x, x, k) is proportionate to kmθ(k). This can be seen by

writing e 2 Γ Σ , z , z 7 as e-
τ^κ-icmW) a n ( j taking the T -* oo limit of the

expression for e~TAχ in [21], where Δ^ = - Σ^Z.Z-. + Z-jZj). Thus we

have something proportionate to /0°° kme~τ{^^Hm~p)k) dk. If m-p>

0, the large-T asymptotics is given by /0°° kme~τ{m~p)k dk = O(T~m-1).

If m - p = 0, the large-T asymptotics is given by /0°° kme~τk /c dk =
( l ) / 2

Proposition 53. If m = 1, Le., M is a three-dimensional Nil manifold,
then ao(M) = 4 and a{(M) = 2.

Proof By part A, the assertion for α 0 is true, and we only have to
consider p = 1. A computation gives that in the orthonormal basis of
Aι(G) <S> C given by {τz, τz, τw} , the Laplacian takes the form

(115)
-2ZZ-W2 0 -icZ

0 -2ZZ - W2 _ JcZ
-icZ icZ -{ZZ + ZZ) + c2 -W1

and the subspace S"p of Proposition 51 is the space of vectors

with Zf/ = 0 .
In order to compute the spectral decomposition of A{, let us first con-

sider the Laplacian

(116) A0 =

acting on L2{G) ® C. By taking a Fourier transform in the w direction,
we can reduce to the study of the operators

(117) A0(k) = -(ZZ + ZZ) + (k/c)2

acting on L2(R2)(g)C, where [ Z , Z ] = k. For k > 0 , define the operators

(118) α = /fc" 1 / 2Z and a* = ik~ι/2Z.
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Then a and a are adjoint operators and satisfy the CCR (canonical
commutation relation) [a, a*] = 1, and Δ0(A:) = k(2a*a + 1) + (k/c) .
From the representation theory of the CCR we know that L2(R2)ΘC is the
direct sum of Fock spaces built up on the vacuum Ker(α) = Ker(Z). That
is, if {vι ĵ̂ Q is an orthonormal basis for Ker(Z), and we define ψmlk =

*s a n orthonormal basis for L2(R2) ®C,

with

(119) \(k)ψmlk = [(2m + 1)* + (k/c)2]ψmlk.

In turn, Ker(Z) is also a Fock space. This can be seen by writing

(120) Z = y/2e'kxΊIAδ/zΊI\

so that Ker(Z) is the space of functions f{z)e~kzz/4 in L2(R2, \dz K
d~z)<8)C, or equivalently the Bargmann space © of holomorphic functions
f(z) in L2(R2, \e~kzΊI1 dz AdT)®C. Define the operators

(121) b* = (k/2)ι/2z and b = (k/2)~1/2dz.

Then b* and b are adjoint operators on <8 and satisfy the CCR. Thus an
orthonormal basis for 55 is given by (b*)ly/k/2π/y/ΐϊ, and an orthonor-
mal basis for Ker(Z) is given by

J-kzz/4(122) vlk = Jk/(2πl\)(yfk/2z)le

In conclusion, an orthonormal basis of L2(R2) 0 C is given by

(2πl\)

Similarly, if k < 0, define

(124) a=i\k\~x/2Z and a = i\k\~ι/2Z.

Thus A0(k) = \k\(2a*a+l)+(k/c)2, and an orthonormal basis of L2(R2)®
C is given by

/

(125) ψ ,. = — \^H- (d-+ — Π \/5Γ I t/Sy I e-ι*i"/4

m/* Λ/W! V V ^ V Z 4 ) j V 2π/! V̂ 2 y

with
(126) Δ,,^) VM,it = [(2m + 1)|*| + (fc/c)2]^m/fc.
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(127) e
dk

e
-Γ[|A:|(2m+l)+A:2/c2]l

/,m=0

One can see that

( 1 2 8 ) Ψm

and so

(129) e~τ\0,0)= Γ^-±e-τk^(Si

In particular, changing variables to u = Tk, we have

(130)
°(0,0) =

= O(T ) as Γ - o o ,

showing that ao(M) = 4.
In order to analyze Δ,, let us take the Fourier transform in the w

direction and define

(131)

0

0

-icZ

-icZ

icZ

\

icZ -ZZ -

acting on (L2(R2) <g> C3). Considering first the case k > 0, we can write
Δj(A ) in terms of creation and annihilation operators as

(132) \(k) =

0

2kaa

-ckι/2a*

ckx'2a

\ -ckι/2a ckι/2a*C

Using the basis of L2(R2)<8>C given by (123), we have a basis of (L 2(R 2)®
C)3 given by ( V m / f c , 0 , 0 ) , (0, ψm l k , 0 ) , and (0,0,ψ l k ) . From
the structure of Δ, (fc), it is clear that any (normalized) eigenvector of
Δi(fc) must be of the form (amkiψ{m+m, amlc2ψ(m_ι)lk , amk3ψmlk) for

some amkι, amk2, amki G C, with \amkι\
2 + \amk2\

2 + \amk3\
2 = 1 and
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m = -1, 0, . Let us denote the corresponding eigenvalue by λ(m, k).
For fixed m, Δ, (k) takes the form

For m > 0, one eigenvalue of Aχ(m, k) is given by λQ(m, k) =

(2m +\)k + k2/c2, with eigenvector

= [(2m +l)k + k2/c2Γl/2(kl/2(m + 1)1 / 2, kl/2ml/2, k/c].

This is in the image under d of A°(G) <g> C in Λ^G) <8> C. The other
eigenvalues turn out to be

λl2(m, k) = (2m + \)k + A:2/c2 + c 2/2 ± c((2m + l)fc + &2/c2 + ̂ 2 /4) 1 / 2

their eigenvectors will not be needed.
For m = - 1 , because ψ<m_xyk and ^m / A : do not exist, there is only

one eigenvalue, A(-/, k) = fc2/c2 . For m = 0, ^ ( m _ 1 ) / A : does not exist,

and there are two eigenvalues, λo(O, fc) = k + k2/c2 (which is in the image

of d) and λx(09 k) = 2k + c2 + k2/c2 .

We can now compute the k > 0 part of tre~Γ Δ l(0, 0). As we already
know e~TA°(0, 0), it is enough to just consider the heat kernel of Δχ

acting on coclosed 1-forms; this is

dk k T-* -Tλ(m,k)

[°° dk k
m

-Tλ(m,k)

m
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Substituting the expressions for the eigenvalues, we obtain

(135) ±c\J{2m + l)k + k2/c2 + c2/4 1 λ

One can check that the k < 0 part is the same.
For the large T asymptotics, the contributions of the last two terms of

(135) are

which is that of the subspace S?p of Proposition 51, and

Also

(138) 2 | ^ ^
m=\

+c\J(2m + \)k + k2/c2 + c2/4 1 ] = o ( Γ " 1 ) ,

and so it only remains to look at

(139) 2/ S : ^ E e χ P " Γ (2m+l)A: + fcV + c2/2

-c\J(2m + l)k + k2/c2 + c2/4 1 ̂  .

able to M = ^/(2w + l)
(139) equals
Changing variable to M = ^/(2w + l)fc + A:2/c2 + c2/4 - c/2, we find that

u + c/2 ~ \/u2 + cu + c2{m + ̂ )2 - c(m + |
(140) -1-Γdu— ^

2 π J o I U m=l \IVΓ + CU

Expanding in a Taylor's series yields that

~ Ju2 + cu + c2(m + l/2)2 - c(m + 1/2)

(141) Σ~ ^ -

m=i \Ju2 + cu + c2{m+ 1/2)2

so that (140) is O(Γ~') as Γ -+ oo.
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Note. Some of the results of §§III and IV have been independently
obtained by V. Mathai [34]. M. Gromov and M. Shubin have shown that
ap(M) is a homotopy invariant [27].
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