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MODULI OF RANK-2 VECTOR BUNDLES,
THETA DIVISORS, AND THE GEOMETRY

OF CURVES IN PROJECTIVE SPACE

AARON BERTRAM

0. Introduction

Let C be a fixed curve (smooth, irreducible, projective) of genus g de-
fined over the complex numbers, let ωc denote the canonical line bundle
of one-forms on C, and let L be a fixed line bundle. If E is a vector
bundle of rank n on C, define det(£) = Λ"E , deg(£) = deg(det(£)),
and μ(E) = deg(E)/n. We say E is stable (resp. semistable) if for all
quotient vector bundles E -» F -> 0, μ(E) < μ(F) (resp. μ(E) < μ(F)).

Let J(n L be the moduli space of semistable vector bundles on C of
rank n and determinant L. Narasimhan and Seshadri [12] showed that
Jίn L can be given the structure of a projective variety, with an open subset

^ s t ^ c J(n L corresponding to the stable bundles, and the complement
corresponding to certain equivalence classes of semistable bundles. More
recently, Drezet and Narasimhan [5] have shown that Pic(^#n L) = Z
and further, that there are geometrically defined Cartier divisors θn L c
Jtn L generating P i φ # n L). For example, when deg(L) = n(g- 1), then

χ(E) = 0 for all E e JnL and θn L = {E e VΊc(J?n ̂ L)\h°(E) > 0} is
naturally such a divisor.

There has been considerable interest recently in the space of sections
H°(^n L, tf(kθ)). For example, these spaces arise in the theory of geo-
metric quantization, and have been used by Witten to recover the Jones
polynomials [13].

The primary goal of this paper is to use the (rational) "extension maps"
φL: P L := P(Ext1(L, ^f)*) -» ^#2 L to study Jί2 # . The idea of using
extension classes to study vector bundles dates back to the famous theorem
of Grothendieck that all vector bundles on P 1 split as a direct sum of line
bundles. Atiyah [2] used extensions to analyze vector bundles on an elliptic
curve, and Newstead [9] used them to analyze ^ ^ in the case g = 2.
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Finally, if deg(L) = 2g - 1, then the birationality of the extension map is
the standard proof that Jt2 L is a rational variety if deg(L) is odd.

The first observation about φL is that it is not everywhere defined.
Indeed, given an extension class (*): 0 — • ^ > - + £ ' — > L - » 0 , then
E may have a quotient line bundle of any positive degree. However, if
E -> M —• 0 is such a quotient and deg(M) < deg(L), then M must have
a section. In particular, the "maximally unstable" such E are those with
quotient line bundles M = <9{p), p G C. It follows from the definitions
that if (*) gives rise to such an E, then in fact (*) e C, where C is
embedded in P L via the natural map. More generally, (*) lies in the
linear span Z) of D in P L if and only if (*) gives rise to an E with
quotient isomorphic to (9{p). This observation suggests the following
theorem, whose proof will occupy the first three sections.

Theorem 1. A natural sequence σ of blow-ups along smooth centers
(commencing with the blow-up of P L along C) resolves the extension map
φL into a morphism

Further, we can number the exceptional divisors as Eo, ,

with the following properties:

(1) Ek dominates the secant variety Sec^(C) := Udeg(/>)=it+i(̂ ) *

(2) If x G D is not in the span of any proper subdivisor of D, then

there is a natural isomorphism σ~ι(x) = PLr_2D\, and when restricted to

σ~ι(x), ΦL coincides with the map

(3) There is a Poincare vector bundle %?L on C x PL realizing the map

Parts (1) and (2) of Theorem 1 can be thought of as an analog of the
classical theory of complete quadrics (see [4] for details).

The main application of Theorem 1 states that, at least in rank 2, the
spaces H°(^2 L , #(kθ)) have a particularly nice description.

Theorem 2. ' Let J^ be the ideal sheaf of C c P L .
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(a) If deg(L) = 2g, then there is a natural identification:

H\jriL, 0{kθ)) a H°(PL, 0(kg) Θ ^ - 1 } ) .

(b) If deg(L) = 2# - 1, then there is a natural identification:

H°(^2L, 0{kβ)) * i/°(PL, <?(k(2g - 1)) ® J ^ ( 2 * " 3 ) ) .

As additional applications, we will give a new and extremely simple
proof that Pic(^f2 L ) = Z if deg(L) is odd; we will similarly get a simple
proof that the class of θ ω in P i c ( ^ ω ) is irreducible, and we will
calculate the canonical divisors on Jf2 # . All these results are already
known ([10], [3]), but the following additional applications seem to be
new.

Proposition 4.9. There are (singular) rational hypersurfaces in p 3 ^ " 2

dominating Jί2 L with degree 2 if deg(L) is even.

Proposition 4.10. If C is not hyperelliptic, then θ c Jt2 L ϊ<s bira-
tionally very ample for odd deg(L).

The author would like to thank Angelo Vistoli, Joe Harris, Mark Green,
David Gieseker, Dan Abramovich, James McKernan, Alexis Kuvidakis,
and especially Rob Lazarsfeld for all their help and helpful advice.

Notation. (1) If V is a vector space, P(F) stands for the projective
space of one-dimensional quotients of V.

(2) E, F will stand for vector bundles, and L, M for line bundles.
If a: L -> F, then Z(a) is the (scheme-theoretic) zero locus of a. If
Z(α) = 0 , we write a: L ̂  F .

(3) (*) and (**) will stand for short exact sequences, or for the exten-
sion class which they represent.

(4) If a morphism C —> P r is understood, then D stands for the linear
span of D, and l /^c f l stands for the open complement of the spans of
all proper subdivisors of D

(5) Ck stands for the kth symmetric power of C..

1. Secant bundles, relative secant bundles,

and the natural maps among them

Definition. We say that M separates k points if M e Pic^C) has

the property that h°(C, M) = h°(C, M(-D)) + k for all DeCk.

Thus M separates one point if and only if M is base point free, and
M separates two points if and only if M is very ample.

Let i ^ + 1 = CxCkc CxCk+ι be the "universal" divisor, embedded via
(p,D)i-+(p9p + D), and let πc: C x Ck+ι -» C and πk+ι: C x Ck+ι ->
Ck+ι be the projections. If M separates k + 1 points, then the sequence
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C% \ > Tjr λ/f >. - > 0 ,

remains exact when pushed down to Ck+ι. Following Schwarzenberger
[11] we define:

Definition. The secant bundle (with respect to M) of /c-planes over

Ck+ι is Bk(M) := P(πck+ι (π*cM <g> ^ )), and the natural map to

V(H°(C9M)) is

^ : 5*(M) - P(π q + i (π^M)) = P(i/°(C, M)) x q + 1 - P(i/°(C, M)).

The image of iϊ*(Af) in P(H°(C,M)) is the usual secant variety
fc of fc-planes through k + 1 points of C.

Note. 1? (M) is well defined for any M, but if M does not separate
/: + 1 points, then βk is only a rational map.

Similarly, let πr,πr , π r be the projections of C x C w , , x Q _ m

to the various factors for m < k, and let π c , πCm+ι, πCfc-m be the projec-

tions to the complement of the indicated factors, so for example, πc: C x

^m+i x ^it-

Abusing

= ( π C w + 1 ) ~
check that

tti wι-\-\ k—ΪYΪ

notation, we define

X(r&k-m) ' a Π d ^kΛ
as divisors, 3f χ

Finally, define the addition map rk+ι

divisors 2ίm j :

- (I r Yι\

= (πCk~m

j , and

Then it is

3k.

easy
r
k—m

to
is

transverse, so we get an exact sequence of sheaves on C x C w + 1 x Ck_m :

This sequence remains exact when pushed down to C m + 1 x Ck_m re-

gardless of M (because the map πc is finite on 2^k_m), and we define:

Definition. The relative secant bundle (with respect to M) over Cm+ι x

Ck_m is P(π)f (π^Af ®<92 )) = 5 W (M) x C _ , and the natural map

to Bk{M) is

where the first map is the map on projective bundles, and the second is
the lift of rk+{.

We further define the relative secant variety of m-planes in Bk(M) to
be the image of Bm(M) x Ck_m under the map am k .
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It is probably easier to think of this last definition on the level of fibers
over the symmetric products. If we fix E e Cm+ι, F e Ck_m , and D =

E + F, then the fiber of Bk{M) over D is P(H°(C, MD)), and likewise

the fiber of Bm{M) x Ck_m over (E, F) is P(H°{C, ME)) x {F} . The

map am k on the fiber level is simply the inclusion of projective spaces:

V(H°{C, ME)) x {F} c ?(H°(C, MD)) dual to the restriction map MD -+
ME . As an example, Figure 1 shows a{ 2 .

As one can see from this description, the image of α 0 k in B (M) is

the collection of points in each fiber F(H°(C, MD)) corresponding to D
(with suitable multiplicity). The image of a{ k consists of lines through
pairs of these points, etc. Because of this, we call the images of the am k

the relative secant varieties.
The fact that, for all effective divisors F c E c D, the natural inclusion

maps

V(H°(C, ME)) , MD))

commute (i.e., ΦE D° ΦF E = ΦF D and ΦD° ΦED = ΦE) globalizes to
the following "compatibility" lemma.

Lemma 1.1 (Compatibility). For m < I < k, the following diagrams

commute:

(a)

Bm(M) x Ck_
u m , *

Bm(M)
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where πBm,M, is the projection,

Bm(M) x C,_m x q _ , ̂ l ^ l Bl(M) x Ck_t - ^ Bk(M)

>B'"(M)xCk_m

Next, suppose that M separates d points. Then, by definition, an

effective divisor D of degree d spans a P^" 1 in P(H°(C,M)). But this

also means that for effective divisors E = Σe

pP
 a n ^ F = ΣfpP with

e+f = deg(E) + deg(F) < d, Έ and T together span a γe+f~ι~8

 9 where

g = deg(E ΠF). In exactly the same way, if E and F are subeffective

divisors of an effective divisor D, and Έ, ~F together span a j>e+'~l~8

in P(i/°(C, M^)), then g = deg(£ n F) regardless of M .

Let Uk{M) = Bk{M)-ak_lJc{Bk-\M)xC). That is, Uk(M) is the
complement of the "largest" relative secant variety. Then the observations
above yield the following "intersection" lemma.

Lemma 1.2 (Intersection), (a) If M separates 2k + 2 points, then

βm\vm{M): Um(M) -* P(i/°(C,M)) is an injective map of sets for all

m <k, and

βm(Um(M))Πβι(Ul(M))) = 0 ifm<l<k.

(b) For all line bundles M, the map amk: Um(M) x Ck_m -> Bk(M)

is injective on sets for all m < k, and

αm,fc(C / m(M) X Ck-m)) Π al,k(ui(M) X Ck-\)) = 0 ίfm < l < k

Next, we turn to the differentials of the βk and am k maps. Following
the lead of the intersection lemmas, we show that am k is an immersion
on Um(M) x Ck_m , and, if M separates 2k + 2 points, then βk is an im-
mersion on Uk(M). When we projectivize the conormal bundles to these
restricted a and β maps, the resulting varieties are themselves secant
bundles and projective spaces associated to sub-line-bundles of M. Since
the constructions in §§2 and 3 will involve blowing-up, which naturally
introduces the projectivized conormal bundles, the following "Terracini"
lemmas are really the key to understanding the recursive proofs of the next
sections.

Lemma 1.3 (Relative Terracini). Let x e Um(M), and consider am k:

Bm{M) x Ck_m - . Bk(M). Then:

(a) damk\ a*mkT*Bk(M) -> T*{Bm{M) x Ck_m) is surjective when

restricted to Um(M) x Ck_m,
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FIGURE 2. DEPICTION OF LEMMA 1.3 FOR a{ 2

(b)P(iV* (xxCk_m))*Bk-m-\M(-2Dχ)), where N*a (xxCk_m)
m , k

is the restriction of the conormal bundle iV* = keτ(dam k) to xxCk_m c
m, k '

Um{M) x Ck_m, and Dχ is the divisor of degree m + 1 obtained by pro-

jecting x e Bm(M) to C w + 1 .
From Lemma 1.1 (b), we get an induced map μm ι of conormal bundles

on q_m x

Then:
(c) μm { is surjective,

m

h
(d) the following diagram commutes:

Bk~m~ι{M(-2Dχ))

where the vertical identifications are from (b), μ is the map derived from
μm [f and a is the appropriate a-map associated to the line bundle
M(-2Dχ).

Proof From the definition, we saw that am k is a composition of two

maps am k = roi, where /: Bm(M)xCk_m -> r*Bk(M) is the inclusion of

projective bundles, and r: r*Bk(M) -> Bk{M) is the lift of the addition
map. The proof of the lemma accordingly breaks up into three logical
parts:
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(i) An analysis of N* = ker(di),
(ii) an analysis of coker(dr), and

(iii) an analysis of how N* and coker(dr) fit together to produce

Part (i). In general, given an exact sequence of vector bundles on
X: 0 -• E' -• E -• E" -> 0, if we let π: P(Eff) ^ 1 be the projection
and i: P(E") -> P(E) be the inclusion, then N* ** π*Ef 0 ^ p ( ^ } ( - l ) . In
our situation, X = C m + 1 x Ck_m and we are given an exact sequence of
vector bundles on X:

0^HM (_n λ-+HM ^HM ^ 0 ,
mDk_my Um+\) mDk+l Dm+l

where HM = π^(π*cM Θ &2 ), and the others are defined similarly.
Dm+\ m+ι

This notation is meant to be more descriptive. For example,

HM ί-D ) is the bundle with fiber H°(C, M(—Dm+ι) ®#D ) over

the point (Z>m+1, Dk_m) e Cm+ι x Ck_m .

Thus N* = π*HM {_D ) ® ̂ ( - 1 ) . One last remark that will be

useful later is the following: HM , D , is naturally the quotient vector

bundle in the exact sequence

MDm+l(-Dk+l) MDk+i(-Dm+l) MDk_m(-Dm+l)

where the other two vector bundles are defined in the same manner. So
we get the exact sequence

):0-π// ^ ( - i ) ^ π / ί (
Dm+Iy k + χ ) Dk+lK

Part (ii). The map f fits into a fiber square:

P(HM ! *

where the vertical maps are the (smooth) projections. Thus, coker(rfr)
p* coker(dr), so it suffices to analyze coker(dr).
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But TCk+ι = πc ff2 C®fc+i) ( s e e [1' P 172]), so, in our notation,

X Ck-m) = KDmJDm+λ) ® KDk_JDk_m) '

Furthermore, one checks that the map Hi m Λ -> Hi m , in-

duced by dr is the natural one, hence surjective with kernel H*& (D x.

Finally, the cokernel Q = coker(rfr) is the quotient in the sequence

where p* is dual to the pushdown of the line bundle inclusion (

m+1

Note. Q is not a vector bundle. It is a coherent sheaf supported on
the points ( D w + 1 , Dk_m) e Cm+ι x Ck_m , where Dm+ιΠ Dk_m φ 0.

Thus, to answer our original question, coker(rfr) = p*Q is the quotient
in the lift of (**) by p*, which remains exact because p is smooth:

Part (iii). From the commuting diagram

it follows that (**) remains exact after pulling back by poi = π (since π is
smooth), so we have the following sequence of sheaves on Bm(M) x Ck_m :

0 -> α ; ,Γ*J5"(M) -, ΓΓ*P(//M ) - , πQ - 0.

This exact sequence, together with the conormal sequence for i,

0 _> TV* -, /*Γ*P(7/M ) - Γ*(5m(M) x Ck_m) - 0,
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fit into the following diagram:

0

I
0 ker(y)

I I
N; = N*

i l>
k Ά i*T*¥(HM ) -> π*Q ^ 0

Dk+l

V'
m x Ck_m)ϊ

0
An easy diagram chase shows that ker(y) = iV* , and coker(y) =

m, k

coker(ί/αm k). It should be emphasized that these are coherent sheaves
but not vector bundles, since am k is not globally an immersion.

The natural multiplication maps
Mι:H°(C,MD (-Dk+ι))®H°{C,ffiD (Dk+ι)) -»H°(C, MD ) ,

tn+l m+l m+l

M2: H\C, MDJ-Dm+ι))®H°(C, ^ ( f l ^ ) ) - H°(C, MDJ

induce maps of sheaves on Bm(M) x Ck_m = Ί*(HM ):
D\

k

Finally, (*) and (**) fit into the following commuting diagram:

The fact that the left square commutes follows immediately from the
definitions. The commutativity of the right square follows from the ex-
plicit identification of H°(C, @D (Dk+ι)) with the tangent space to Ck+ι

at Dk+ι (see [7, Lecture 22]).
The claims of Lemma 1.3 now follow from this last diagram. In the

first place, mι and m2 are both surjective when restricted to Um(M) x
c a n s e e ^ ^ s ty looking at the Mχ and M2 maps. But if
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m2 is surjective on Um(M) x Ck_m, then γ is also surjective, and since
coker(y) = coker(dam k), we get (a). Next, mχ is an isomorphism when
restricted to Um(M)xCk_m since it is a surjective map of vector bundles
of the same rank, so, on this set, ker(ra2) = ker(y). But m2 factors as
m2 = m o p below:

where p is the natural restriction and m is an isomorphism on Um(M)x
Ck_m just as mχ was. Thus, ker(ra2) = ker(/?).

But ker(p) £ πHM (_in , Θ ^ ( - l ) , so, for x e Um(M),

f(Kmk(x x Ck_m)) a P(ker(y)) - Y{HMj)^_2Dχ)) - Bk-m-χ{M{-2Dχ)).

This is part (b) of the lemma.
The proofs of (c) and (d) are more of the same. The point is that if the

induced map μm k is pulled back through all the various isomorphisms
described above, it becomes the restriction map of bundles on Um{M) x
Cl-m X Ck-l :

which gives the desired results when restricted to x x Cι_m x C w . This
concludes the proof of the lemma, q.e.d.

There is an exact analog of Lemma 1.3 for the map dβm :
Lemma 1.4 (Terracini). If M separates 2m + 2 points, let x € Um(M)

and consider βm: Bm{M) -> P(J/°(C, M)). ΓΛβn:

(a) dβm: β*mT*F{H°{C, M)) -> T*Bm{M) is surjective,

(b) P(iV* (JC)) = P(/ί o (C,M(-2ί) J C ))), wΛere, as usual, N^{x) =
keτ(dβm(x)) is the fiber of the conormal sheaf at x, and Dχ is the projec-
tion of x to C m + 1 .

Furthermore, from Lemma 1.1 (a), we get the induced map

Vm,k'' π*Bm(M)N*βJX>> -* NamJX X Ck-m)

Then:
(c) //m k is surjective.
(d) The following diagram commutes:

um,k
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where the vertical identifications come from (b) of Lemmas 1.3 and 1.4,
and β is the appropriate β-map for M(-2Dχ).

Proof The proof of this lemma follows exactly the same pattern as the
proof of Lemma 1.3, and is left to the reader. In fact, it is easier since,
in this case, βm = π o ιr, where / is an inclusion of projective bundles,
and π: P(H°(C, M)) x Cm+χ -> P(J7°(C, M)) is the projection, hence
smooth (unlike f of the previous lemma).

Corollary. If M separates 2m + 2 points, then Secw(C) is smooth
away from Sec m " 1 (C).

Proof In fact, by Lemma 1.2(a), βm: Um(M) -> P(i/°(C, M)) is in-

jective, with image Secm(C) - Secm~1(C). Further, by the same lemma,

βm(Bm(M) - Um(M)) c Secm'\C). By Lemma 1.5(a), βm is an immer-

sion on Um(M), so Um(M)°*Secm(C)-Secm~\C) and since Um(M) c
Bm(M) is obviously smooth, the corollary follows. (One should note,

though, that Secm(C) is singular at all points of Secm~ι(C).) q.e.d.
Along the same lines, we have:
Corollary 1.6. For any M and integers 0 < m < k, am k(Bm(M) x

Cfc_m) is smooth away from am_{ k(Bm~ι(M) x Ck_m+ι) (i.e., the mth
relative secant variety is smooth away from the (m- l)st).

Proof Exactly as above. By Lemmas 1.2(b) and 1.4, am k: Um(M) x

Ck-m ~^ Bk(M) is an embedding, with the desired image.
Warning. Although we have just shown that the relative secant variety

is smooth away from the smaller secant varieties, one must keep in mind
that the map to C fc+1 is not smooth.

For example, by the corollary, a0 k: C x Ck —• Bk(M) is an embedding.
But the composition with the projection C x Ck -> Ck+ι results in the
addition map rk+χ, which is not smooth.

2. The blow-up constructions

We start this section with a series of definitions which will be needed
in the proof of Theorem 1.

Let X be a projective variety.

Definition. A chain of k + 1 maps to X is a sequence of morphisms

{ft: Xt —• X}i=0 from projective varieties X. with the property that for

each i < j , the induced morphism f. in the fibered square below is
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surjective:

Equivalently, {ft} is a chain of maps is a chain of maps if there are
projective varieties Y. . and morphisms gt .: Y. . -> X. and h. .: Yj. . ->
^ for each i < j so that g. ̂ . is surjective, and f. o g. ̂ . = /\ o A. ̂ ..

In addition, we say that {ft} is a proper chain if the /J above are not
surjective.

Examples. (0) Xo c Xχ C -- C Xk <z X is a chain of maps. It is
proper if all the inclusions are proper.

(1) If M separates fc+1 points, then {βm:Bm(M)^P{H°(C,M))}k

m=0

is a chain of k+1 maps because of the compatibility Lemma 1.1 (a) and the

fact that the projection map is surjective. Moreover, since βm(Bm(M)) c

βt{Bι(M)) is proper for m < I, this is a proper chain.

(2) For arbitrary M, {amJc: Bm(M) x Ck_m -> Bk(M)}k

m~JQ is a chain

of k maps, again by the compatibility Lemma 1.1 (b), and the fact that the

addition map is surjective. It is also a proper chain, as is easily verified.

Notation. The fc+1 chain P{H°(C, M)) will be understood to mean

Example (1). Similarly, the chain Bk(M) will be understood to mean

Example (2). Moreover, if S is any variety, then the chain Bk(M) x S

will signify the chain {(am k, l ) } , ^ , i.e., the collection of maps that are

am k on the first factors and the identity on S. Finally, the m-chain

Bk(M) will signify the chain B (M) truncated after the first m maps.

Suppose {ft: X. -> X}k

i=0 is a proper chain.
(Inductive) Definition. If f0 is injective, we identify Xo with its im-

age, and we define:
blχ{X) := the blow-up of X along XQ ,

blx{Xt) := the blow-up of X. along f~l{X0) , and
Wjiyj) := the (unique) lift of f. to a map bl^XJ -> blx{X).

If bln{X), £/„(*.), and Wn(./;.) are all defined (for all i > n), and bln(fn)
is injective, then we identify bln{Xn) with its image, and define

bln+ι(X) := the blow-up of bln(X) along bln(Xn), etc.

Definition. If {f.: X. -• ΛΓ}f=0 is a proper chain and blk+ι(X) is
d e f i n e d , t h e n w e s a y {f.} i s a c h a i n of k + l c e n t e r s .
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If, in addition, X and bln(Xn) are all smooth, then we say that {f.}
is a chain of smooth centers (and of course it follows that blk+ι(X) is
smooth).

Now, suppose that {f. . X. -> ΛΓ}f=0 and {g.: Yt -> Y}*=0 are two
chains of centers.

Definition. We say that a map φ: X -• Y is a map of chains of centers
if it satisfies:

(0) φ~\Y0) = Xo, so W ^ ) : ^ ( X ) -+ blx(Y) is defined, and

(Λ) for all 0 < n < k, bln{φy\bln(Yn)) = Wn(XJ, so Wn+1(0) is
defined.

We say the map φ is an injective map of chains of centers (or just an
injective map of centers) if, in addition, blk+ι(φ) is injective.

Note. If φ is an injective map of centers, it does not follow that φ is
itself injective!

Before we get to the main propositions of the section, we prove a general
lemma, which guarantees that, under certain conditions, the exceptional
divisor in the blow-up blk+1(X) has normal crossings.

Lemma 2.1. Suppose that X, X., and Xtj are smooth projective va-

rieties for 0 < j < k and 0 < i < j , and that {φji Xj -> X}k

j=Q and, for

each j , {f. ji X. . —• XJ}\IQ are all chains of smooth centers. Suppose

finally that each φ is an injective map of smooth centers.
Let Uj = Xj - fj^jiXj^j) and U = X- φk(Xk). Then there are

natural inclusions U. c blj{Xj) and U c blk+ι(X). If each exceptional
divisor blj(Xj) - Uj has j components and normal crossings, then the ex-
ceptional divisor blk+ι(X)-U has k+l components and normal crossings.

Proof First, recall that if Z c Y is a proper inclusion of projective
varieties and ε: blz(Y) —• Y is the blow-up, then ε is an isomorphism
over the open set Y - Z c Y, so we may consider Y — Z as a subset of
blz(Y). By the definition of a chain of centers, the open subsets C/. and
U are consistently in the complement of the centers of blowings-up, so we
may consider them as open subsets of blj(X.) and blk+ι(X) respectively.

The proof of the normal crossings is by induction on k. If k = 0,
then φQ: XQ -> X is an embedding of smooth projective varieties, and
U c bl{ (X) is the complement of the (smooth, irreducible) exceptional
divisor.

Before we attack the case k > 1, recall the following facts about
blowing-up (which we state here only in the generality we will use).

Fact A (Functoriality). If Y is a smooth projective variety, Z c Y
a smooth projective subvariety, and / : W -• Y a morphism such that



MODULI OF RANK-2 VECTOR BUNDLES 443

f~\Z) is smooth, properly contained in W, then the lift of / to blz(f):

bif-l(z)(w) Ja^n, biz(Y)

I*
W J ) Y

has the property that blz(f) l(Ez) = Ef-\,z), where Ez and Ef-ι(z)

are the exceptional divisors.
Proof of Fact A. blz{f)~\Ez) = blz{fγx °εz

ι(Z) = ^ 1 ( Z ) o f^ ( )

= Ef-l(Z).

Corollary. If blz(f) (though not necessarily f itself) is injective, then

r{) f{yFact B (Transversality). Suppose W c Y in Fact A is an embedding of
smooth, projective varieties, and Z Π W is transverse. Then the diagram
from Fact A:

blznw(W) c blz(Y)

1 I
W c Y

is a fiber square.
Proof of Fact B. This is just a local coordinate computation.
Returning to the lemma, suppose k > 1 and let V = X - φk{Xk_x).

By induction, we may write blk(X) - V = EQ u Eχ U U Ek_{, where the
E are smooth, with transverse intersections. By repeated application of
Facts A and B, if we let blk{Xk) - Uk = EOk u U Ek_χk , then (for a
suitable ordering of the E 's), blk(Xk)Γ\Ej — E k, Hence the intersection
is transverse.

Now, we blow up blk(X) along blk(Xk) to get blk+ι(X). One com-
ponent of the complement of U is therefore the exceptional divisor in
this blow-up, which we call Ek . The others are all derived from the E.,
0 < j < k. In fact, by Fact B, the preimage of Ej in blk+ι(X) is the
blow-up of E. along E. k , which is smooth and irreducible, and is called

To sum up, blk+ι(X) - U = Eo U UEk_χ uEk is a union of smooth,
irreducible components. A similar argument shows that the divisors inter-
sect transversely, q.e.d.

The rest of this section is devoted to the following propositions.
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Proposition 2.2. If M is any line bundle, and 0 < m < k, then
am k: Bm{M) x Ck-m ~^ βk(M) is a n injective map of chains of smooth

centers. {Hence, in particular, bl x(Bk(M)) is smooth.)

Proposition 2.3. // M separates 2k + 2 points, then βk: Bk{M) -•

P(/f°(C, M)) is an injective map of chains of smooth centers. (Hence, in

particular, blk+ι(P(H°(C, M))) is smooth.)

Let Bm(M) = blm(Bm(M)). Recall the definition of Um(M) and in

addition define Uk = P(/7°(C, M)) - βk{Bk(M)) when M separates
2k + 2 points. Then Lemma 2.1 gives the following corollaries to the
propositions.

Corollary 2.4. (a) There is a natural inclusion Uk(M) c Bk(M), and
Bk(M) - Uk(M) is a divisor with k components and normal crossings.

(b) If M separates 2k + 2 points, then there is a natural inclusion
Uk c blk+ι{F(H°(C, M))), and blM(P(H°(C, M))) - Uk is a divisor
with k + 1 components and normal crossings.

Proof of the corollary, (a) The statement is vacuously true if k = 0.
If k > 0, we apply Lemma 2.1 to the varieties Bk(M), Bm(M) x Ck_m

(m < k), and Bn(M) x Cm_n x Ck_m (n < m), and the chains of smooth
centers:

{(«„.*' ! ) : B"(M) * Cm-n x Ck_m - Bm{M) x Ck_X:o

l,

K , , * : Bm{M) x Ck_m - Bk(M)}k

m-J0.

By induction, we may assume that Bm(M) - Um(M) are all divisors with
normal crossings for m < k, so the lemma applies.

(b) This time, we apply Lemma 2.1 to the varieties P(i/°(C, M)),
Bm{M) (m < k), and Bn(M) x Cm_n {n < m), and the chains of
smooth centers:

By (a), Bm(M) - Um(M) are all divisors with normal crossings, so again
Lemma 2.1 applies.

Proof of Proposition 2.2. We need to prove two statements: first,
B (M) and B (M) are chains of m smooth centers, and then, am k

is an injective map of smooth centers. These follow from the definitions
once we show that for all k and m < k, blm(am k): Bm(M) x Ck_m -•

blm(Bk(M)) is an embedding, and, if we identify Bn(M) x Ck_n with its



MODULI OF RANK-2 VECTOR BUNDLES 445

image in bln(Bk(M)), then

b!H(°m,kΓl(BH{M) x Ck_n) = B\M) x Cm_n x Ck_m.

By Corollary 1.6, we already know that blm(am k) is an embedding

when restricted to Um(M) x Ck_m . The problem is to understand what is

going on over the complement. This is accomplished using the Terracini

Lemma 1.3 and induction. Again by Corollary 1.6, Bk(M) is covered

by U (M), together with the locally closed subvarieties Un(M) x Ck_n ,

(n<k). If we let εm: blm(Bk{M)) -> Bk(M) be the (multiple) blow-up,
then we will show that the induced maps

π°εm £(UH(M) x ck-n) - V\M) x Ck_n -> U\M)

are all smooth, and that, for each x e Un(M),

(π o emy\x) * blm_n(Bk-m-\M(-2Dχ))).

(The notation here is as in Lemma 1.3.)

The description of (πoem)~ι(x) will not only be an essential ingredient
of this proof, but will be used extensively in the next section.

The proposition is proved by induction on m for each fixed k . In order
to demonstrate the ideas in the proof, we start by proving the proposition
for the first few values of m.

Case m = 0. We only need to show that aQ k is an embedding.

Proof. Since, in this case, U°{M) = B°(M), this is Corollary 1.6.
Case m = 1. We need to show that:
(0) α 0 k is an embedding,

(1) a~\(B°(M) x Ck) = B°{M) xCx Ck_χ, and
(2) blι(aι k) is an embedding.
Proof. (0) has been shown already. (This is case m = 0.) (1) is some-

thing new, but also follows immediately from §1. First, by Corollary 1.6,
a~ ι

k(Uι {M) x Ck_ j)Π(B°(M) x C x Ck_ x) = 0 , so, at least set-theoretically,
(1) holds. In order to get a scheme-theoretic equality, we need to show
that the induced map on conormal bundles da, , : α! . N* -> N* n

is surjective. But this is precisely the content of Lemma 1.3(c).

By Lemma 1.3(d), the exceptional divisor in blχ{Bk(M)), which is

just P(Λ£ ), is smooth over C, with fibers Bk~ι(M(-2p)) over each

p e C. Furthermore, by the same lemma, the map on exceptional di-

visors induced by blι{aι k) is a map of varieties over C, which is just

a0 k_{: B°{M(-2p)) x Ck_x -> Bk~ι{M(-2p)) on the fiber over each

peC.
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BX(M) bUB\M))

(c

uι

(M)xCk j

E0Λ

ε i Bι{M

xCxCk-L>

(M) x Ck^

Bk(M)

FIGURE 3

Finally, we need to prove (2). As remarked earlier, blχ(aχ k) is an

embedding along Uι(M) x CJζ_ι, so we need to focus on points in the
exceptional divisor. As in Figure 3, let Eo χ and EQ k denote the two
exceptional divisors, and let άχ k denote blχ(aχ k). Then we get the
following commuting diagram of conormal sequences for the exceptional
divisors:

0 T*(E0A) - 0

The isomorphism on the left follows from the surjectivity of the map
da{ k on conormal bundles. The map on the right is surjective by Case
m = 0 since the map on exceptional divisors is a C-map which is a0 k_ι

on the fibers. So a { k is an immersion along the exceptional divisor. We
only need to show that άχ k is injective as a map of sets, but this, too,
follows from Case m = 0.

Case m = 2. In addition to the items already proved, we have to
show:

(1) a = CxC2x Ck_2

(2) blχ(a2Jcy
ι(Bι(M) x Ck_χ) = Bι(M)xCx Ck_2, and

(3) bl2(a2k): B2(M) x Ck_2 -+ bl2(Bk(M)) is an embedding.
Proof. The proof of (1) runs exactly as in the previous case. For (2),

we refer to Figure 4.



MODULI OF RANK-2 VECTOR BUNDLES 447

(B\M)xC)xCι

B2(M) x C.
k-2

UZ(M) x C

k-2

FIGURE 4

FIGURE 5

B\M)xCιk-ι

bUB\M))

On the complement of Eo 2 and EQ k , (2) is easily checked by Lemma

1.3. We just have to show that for all y in EQJc n {Bι(M) x C ^ ) , it

follows that blι{a2Jcy\y)cBι{M)xCxCk_2 and if y = blγ{a2Λ)(x),

then d(blχ(a2k)): N? (y) -+ Λ !̂ (x) is surjective.

By Fact A, £ 0 ^ Π (fi^Af) x C f c - 1) = (C x C) x Ck_x, the exceptional

divisor in Bι (M) x Ck_χ, and similarly, E02Π(Bι (M) xC)x Ck_2 = (Cx

C x C) x Ck_2 . These intersections are transverse, so, in fact, N? (y) =

tfr*r*r \ιr Cv) and similarly for N*. (x). But now, as before, when

we restrict bl{(a2 k) to EQ 2 , the resulting map of C-varieties is aχ k_χ

on the fibers. By the identification of the intersections and normal bundles,

we can reduce the problem to the previous case.

Finally, for (3), consider Figure 5, where EQ2 and EQk are the blown-
up divisors Eo 2 and Eok from Figure 4, and Eχ2 and Eχk are the

new exceptional divisors over Bι(M). The crucial observation here is

that Eo 2 is a C-variety, with fibers isomorphic to Bι(M(-2p)) x Ck_2

and induced map aχ k_χ to the fibers of EQk, while Eχ2-E02 is a

ί71(M)-variety with fibers B°(M(-2Dχ))xCk_2 and induced map aok_2
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blnl(Bm(M))xCk_

"-(B"-\M)xC
v V m-n+

V k-m
B"-\M)xCk_n + ]

FIGURE 6

to the fibers of Eχ k over Uι(M). But once we make these observations,
the proof immediately follows from Cases m = 0 and m = 1.

Case m arbitrary. Let otm k = blm(am k). We have to show:

! '

x C) x
and

(m + 1) α m ^ is an embedding.
m/ To prove (n), 1 < n < m, we assume by induction that

W * - i K *)= bln_{(Bm(M)) x Ck_m - bln_x{Bk{M)) exists (see Figure
6).

Further, if 2sf. m and Et k are the exceptional divisors as pictured, then
bln_χ{a){Eim -U^.EjJ c Eik - [jj^Ej^, and the induced map is

a morphism of [/'(ΛO-varieties which is bln_i_χ{am_i_χ k_i_x) on the
fibers.

By repeated use of Facts A and B and induction, we have

= bln_ι(a)-\(Bn-l(M)xCk_n+ι)ΠEik),

and because the intersections are transverse, (n) holds. But, in addition,
if Eim is the blown-up exceptional divisor in bln(Bm(M)) x Ck_m , then

^i1m~ Uj<iEj,m *s a ^'(-W)-variety with appropriate fibers and induced
map.
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Finally, (m + 1) is proved in the same way, reducing to the excep-
tional divisors and arguing by induction. This completes the proof of the
proposition, q.e.d.

The proof of Proposition 2.3 follows the same pattern by using Lemma
1.4 instead of Lemma 1.3. The only difference is that one has to keep track
of the fact that if M separates 2k + 2 points, then M(-2Dχ) separates
2fc + 2-2deg(DJ C) points.

As mentioned earlier, the proofs of Propositions 2.2 and 2.3 give use-
ful information about the structure of the embeddings a . and β :=

** ΪYl , K ' ftί

blm(βm) which we collect in the following corollary.
Corollary 2.5. (a) The m smooth exceptional divisors of blm(Bk(M)),

which we denote by Eo k, , Em k, come equipped with maps π. k:
Elk := Ei,k - Uj<iEj,k -> U\M) with the property that

Further, άm k induces morphisms E® m —• E® k over Uι (M) which are

the appropriate a map on each fiber.

(b) The k + 1 smooth exceptional divisors of blk+ι(P(H°(C, M))),

which we denote by Eo, = , Ek, come equipped with maps π.: E? ->

U\M) with the property that π~\x) £ blk_^x{Jf{I^{C9 M{-2Dχ)))).

Furthermore, βk induces morphisms E® k —• £? over Uι{M) which are

the appropriate βk_i_x maps on the fibers.

3. Blowing up the extension map

For the rest of this paper, suppose L is a line bundle of nonnegative

degree on C and M = L <g> ωc . Then we define P L := P(tf°(C, M)).

Now suppose deg(L) = 2k + 1 or deg(L) = 2k + 2. Then the work in

§2 allows us to construct PL := blk(PL). We will see that this blow-up is

"stable" in the sense that we can naturally assign to each point in PL a

semistable rank 2 vector bundle with determinant L. This assignment will

extend the extension map mentioned in the introduction to a morphism

Φ L : PL —¥ Jf2 L and will be seen to satisfy the requirements of Theorem

1. But first, we need to rigorously define the extension map φL .

Recall that Ext1 (L, 0C) is defined to be the set of short exact sequences
(*): 0 -+@c -• E -> L -» 0 modulo the equivalence (*) ~ (**) if there is
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a commuting diagram:

(•): o > 0C > E > L > 0

(**): o > @c > E' > L > 0

Thus there are maps of sets:

{Sequences (*) } -> Ext^L, 0C) -^ {rank 2 bundles E }.

Recall also that:

(1) Extι(L, 0C) s Hι(C, L*) s fl°(C, M)*,
(2) if A: e C*, then for all x e Έxtι(L9 0C), fL(x) = fL{kx),
(3) fL{x) ^<?CΘL if and only if x = 0.

Putting all this together, we get a well-defined extension map

Indeed, if we let πc and πL be the two projections on C x P L , then we
have

Definition-Claim 3.1. There is a natural Poincare extension on C x P L :

(*): 0 -> π ^ ( 1) -> % -> π^L -> 0

with the property that if x e P L , then the restriction of (*) to C x {x}
yields x .

Proof. The extension space

/^(C x P L , π^L* (8) π]0(\)) = Hl(C, L*) 0H ι(C, L*)*

has the natural identity element. One checks that the Poincare property
holds for this extension.

Thus, φL is a rational map with domain:

άom(φL) = {(*) : 0 - > ^ c - > £ - > L - > 0 | £ is semistable}.

Observation 0. If deg(L) < 0, then dom(φL) = 0 .
Observation 1. If deg(L) = 0, 1, or 2, then dom(φL) = PL .
Proof. If (*): 0 -> 0C -*. £ -> L -> 0 and £" is not semistable, then

there is a quotient £ -> L ; -> 0 where deg(L') < deg(£")/2. Consider the
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following diagram:

ψ
i
0

If deg(L) = 0, then deg(L') < 0, so a = 0, β is defined, and β = 0,
a contradiction. If deg(L) = 1, then the same reasoning shows that
deg(L') = 0. But then a is an isomorphism, and (*) is split, a con-
tradiction. Similarly for deg(L) = 2.

Remark. By definition of Jt2 L , ΦL is the constant map if deg(L) =
0.

If deg(L) > 2, then there is the usual linear series morphism C —>

Observation 2. If d = deg(L) > 2, and (*): &c -> E -> L -> 0
determines x e P L , then E is not semistable (resp. semistable but not
stable) if and only if x e D with deg(D) < d/2 (resp. deg(D) = d/2).

Proof. As in Observation 1, we see that E is not semistable if and only

if there is a quotient E -> <9c{p) -+ 0 with deg(Z>) < d/2, and a: &c -•

(fc(D) is not the zero map. But via the identification Ext^L, ^ c ) =

ίΓ°(C, Af )*, this exactly means that x eD.

Let k(L) be the largest integer less than d/2. We have just seen that
Seck^~ι(C) C P L is precisely the locus of extensions which determine
bundles that are not semistable. In addition, though, if L is effective,
then k(L) has the property that M separates 2k(L) points, so, as men-
tioned above, we can define PL = blk{L)(J?L). In addition, let UL =

P L - SeeklL)-\C), so, by Corollary 2.4(b), PL = UL U Eo u U Ek(L)_x,

where the Ei are all smooth divisors, intersecting transversely.

Using Corollary 2.5(b), we can construct the map Φ L : PL -> ̂ #2 L as

follows:

(0) If k(L) = 0 (i.e., deg(L) = 1 or 2), then by Observation 1, φL is

defined on all of P L , and PL = YL, so let ΦL = φL.

(k) If k(L) = k and y e UL, let ΦL(y) = φL(y) as in (0). Otherwise,

let / be minimal so that y e Er Then, by definition, y e E*}, so y £

^k-i-\^L(-2D )) f o r a u n i Q u e x e Uι(M). (Notation and result are from
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Corollary 2.5(b).) But k - i - 1 = k(L(-2Dχ)), so *

PL(-2DX)> a n d > b y induction, we let ΦL(y) = <&L{_2Dxp)

This map is well defined everywhere on PL and satisfies (2) of Theorem
1 by definition. Thus, to complete the proof of Theorem 1, we only need
to prove:

Proposition 3.2. There is a rank-2 vector bundle %L on C x PL with

the property that for each y e?L, ^L\Cx{y} = Φ^OO In particular, by the

universal property of \£2 L, ΦL is a morphism.

As usual, we start the proof with a construction living on the secant

bundles. Recall the universal divisor C x Ck = 3fk+x c C x Ck+ι. Let

Ak = Bh(M) - Uk(M) = \JEik and let έ: Bk(M) -> Bk(M) be the
(multiple) blow-down.

Let πc, τiβk(M), and pk+χ be the natural maps in the following dia-
gram:

C x B (M) Pk+ι

V V M

iBk(M)

(Note. pk+ι is not, in general, a smooth map.)

Finally, let r

Definition. We define the following line bundle on C x B (M):

Example. The fiber Γ of B2(M) over p + q + r is isomorphic to P 2

blown up at three points. Let E , Eq , and £ r denote the three exceptional
divisors (see Figure 7).

./

q

/

p,q

\

E
p

I

\

FIGURE 7
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?2
If we restrict SfL to Γ, then we get

Now recall from Corollary 2.5(a) that E* k c Bk(M) are fibered over

U\M) with fibers ^" /" 1(M(-2D J C)) over each xeU*(M). Consider
X'

k-\ k-\

μ μ
i=0 i=0

where all the unions are disjoint.

Lemma 3.3. ^ l C x p - . ( Λ / ( _ 2 β χ ) ) = - S g l ^ , β

Remarks. (1) In the example above, we identify E with the fiber Γ r

of 51(3/(-2p)) over p + q. Then

Sέ π*c{f{p) ® <f (β + r)) ® π* (if (1) ® <f (-^ - r))

(2) This lemma tells us that 3*k has the same sort of recursive property

which we want %L to have. (Compare the lemma with the definition of

*L )

Proof of the lemma. The proof works exactly as the example did. Let
B = Bk"i~ι(M(-2Dχ)). Then we observe that π*cffic\Cχ<g £ π ^ c . Since
B = 5 / C " / " 1 ( M ( - 2 J D ; C ) ) , we observe that π ^ c | C χ ~ = π ^ c . Further,
from the inclusions C x {JC} x Ck_{ cCx U\M) x Ck_i cCxBk(M), it
follows that ^ + 1 ^ t l ) | C x y = ^ . ^ ( ^ . i ) ® ^ / ) , ) . Next, because
^ ( Λ / ) ( l ) | { j c } x q is trivial by Lemma 1.1 (a), ^ ( M ) ( 1 ) | ^ is trivial, and
finally, by the proof of Corollary 2.4(a), we get

{ S if 7 < /,

From all this, it follows that

2L I ϊ " π ^

as desired, q.e.d.
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FIGURE 8

Now, recall that UL = PL-(\Jm=o~l E

m) I f σ- PL "> P L is the multiple

blow-down, then σ factors through Bm(M) when restricted to Em. Let

γm: £ m —• Bm(M) be the induced maps shown in Figure 8.

Abusing notation, we will let <5^m denote not only the line bundle on

C x Bm(M) defined earlier, but also its pullback to the smooth divisors

C xEm. Thus, any surjective map from a vector bundle & of rank n on

C x PL to J2^w yields a kernel which is also locally free of rank n .
This observation motivates the following inductive definitions and

claims which start with the Poincare bundle from Definition 3.1 and end
by proving Proposition 3.2.

Definition-Claim 3.4. (0) Let <gf = (1, σ)*^L . Then

( k{L)-\

U En
m=0

(k) If 0 < k < k(L), there is a natural surjective map of sheaves on

ζ * " 1 . Let %£ be the kernel of this map. Then

fk{L)-\

C x PL from

(

- (J En

\ m=k

Note that this sequence of claims and definitions parallels the sequence
of claims and definitions implicit in Proposition 2.3. Just as in that case,
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we rely on a fundamental lemma, analogous to the Terracini lemmas of

§1.

Suppose x e Secm(C) - Secm \C)1 m < k(L). Then, by Terracini,
we may regard x e Um(M), and 2Dχ c P L is the (projective) tangent
plane to Secm(C) at x. By the proof of Observation 2, there is a natural
lift λ of bundles on C x {x} :

0 > 0 > £ • L > 0

Let H c P L be a plane of codimension 2m + 1, meeting Secm(C)

transversely at x. Let ε: H -> /ί be the blow-up at x , and let EH c H

be the exceptional divisor. Let ^ = <Ŝ> \CxH and let g^ be the pullback

to C x H. Then we construct a new vector bundle ^ via:
Γί

0 > 9X , g& , ( 1 9 έ T 0 C x { x } ( D x )

(l,β)*λ

where /? is the restriction map to EH .
Lemma 3.5. The natural identification EH = YL(_2D ) > obtained by

projecting, identifies %%\CXEH W ^ ^L{-ID )®π*c^'(Dχ).

Proof. We construct a new vector bundle &j~ on C x H by pushing

~ :forward the extension which gives 8

0 > π~(l) > g§ > πcL > 0

0 > π^(ΰj0^(l) > &~ > π ^ L . 0

The extension giving &~ splits when restricted to C x EH, and we

form ^ as the kernel

But &~ can also be thought of as the pullback of extensions, dividing by
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the equation for C x EH:

(**): 0 —• π*c@{D ) <g> π~(<^(l) <8&(—EH)) —> ^ —> π^.L —̂  0

1 { ?
Now, ^ , (g^, and # ~ all fit into the following diagram:

11 li 11

0 0

I I
0 —>• ^ ^ —>• <?ς^ —• ( 1 , ε)*&(D ) —>• 0

1 I I

1 I

0 0

from which it follows that %j}\CxE fits into the following pullback of

extensions:

(**): 0 - κ^f(Dx) 9 π*Ef{\) -+ «g|CχJΓj | - π*cL(-Dχ) - 0

But this extension is the twist by π*c(f(Dχ) of the extension giving

^L(-2D )' a s i s easily checked, and the lemma is proved, q.e.d.

Now, we prove Claim 3.4 by induction on k. As in the proof of Propo-
sition 2.2, we will demonstrate the first few cases first to illustrate the
general proof.

Case k = 0. This is covered by Observation 2 and Definition 3.1.
Case k = 1. We need to prove:
(la) There is a natural surjective map %£
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(lb) The kernel g^1 satisfies « £ | C x { j c } = ΦL(JC) for all x e EQ -

Proof, (la) The surjective map is the pullback from C x P L of the lift
Λo below:

(*):0

From the exact sequence

H°(A, &A) -+H\CX B°(M), πcϋ <g> π*oo ( M )

-> Hl (C x c ^

and the fact that (*) is by definition the image of the first map, it fol-

lows that Λo exists (and is easily seen to be unique), and moreover,

A 0 |C x r y: Eχ —> &{Dχ) is the map λ in the remarks leading up to Lemma

3.5, hence Λo is surjective, since each λ is. It is important to remark that

since Λo is defined on C x P L , it follows that W^ is the pullback of a

bundle on C x έ/1(PL) defined in the same way. Abusing notation, we

will refer to that bundle, too, as <^|.
(lb) Pick a hyperplane H transverse to C at p , and apply Lemma

3.5. The restriction of the exact sequence of sheaves on C x blx(PL),

remains exact when restricted to C x f l , s o ^Icxβ" 1 ^) ~ ^Icx^e: *s

naturally identified with %Ίt_2p) ® π c ^ ( ^ ) ^ ^ e l e m m a

By the proof of Proposition 2.3, we may regard UL{_2p) c p

L(-2p) =

e - 1 (p) as a subset of £ 0 - Um>o^m I ndeed, it follows from the proof
that Eo - \Jm>0Em = \JpeC UL{_lp). But now, Case (lb) follows from the

case k = 0 since &}\CxU = &U-2D)\CXU ® π c ^ ( ^ )

Cα^e k = 2. Again, we need to show:

(2a) There is a natural surjective map ζ | -+ -S^1.

(2b) The kernel i f satisfies ^\Cx{y} = Φ(y) for all y e ^ i - U m > i E

m
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Proofof'(2a). We define the lift Λ j O n C x Bι{M) as before:

(*):0

For x G t / ^ M ) , the restriction Λ 1 | C x { ; c } : Eχ -• (9{Dχ) is surjective.

But if x e Aχ ^ C x C, say x = (p, q), then Λ j | C x { ; c } : £ χ -• ̂ ( p + q)

factors through <9{p), and so Ax fails to be surjective at points of the

form (q, p, q) e C x A{. However, A{ lifts to a map A t :

To see this, we only need to show that A{ o ^ is zero, when restricted

to C x A{. But p'1^) Π (C x Aχ) = Δj 2 U Δj 3 where Δ. .̂ is the

/, y diagonal in C x C x C, and A 1 |C x > 4 factors into (Λo, 1) followed

by multiplication by C x Δ } 3 . By construction of ζ 1 , it follows that

Finally, we need to show that Λj is surjective. We only need to consider
the restriction to C x Aγ. But, by Lemma 3.3, if we consider the natural

projection ex: Aχ -> C, then ^l\Cxε-ι{p) = -&L(-IP)
 Θ πc^(P)' a n d by

Case /: = 1, ^ 1 | C x ε - i ( x = ^u-ip) ® π c ^ ( ^ ) FinaUy5 the restriction of

Λj to C x εj"1^) is just Λo, and hence is surjective by Case A: = 1.

(2b) If x e Secι(C) - C, apply the reasoning of Case k = 1 to a

plane transverse to Sec !(C) at x to conclude that if ε2: bl2(PL) -> P L ,

then ^ 0 | C x e - i ( x ) = ^L(-2D ) ® ̂ Φx). So we only have to worry about

For this, we observe that by (2a), %£\Cxε-\p) = %L{-2p) ® πc^(P)' s o

the result follows by Case k = 1 applied to the fibers.
General Case. We prove the two statements:
(a) There is a natural surjection Ak_x: 8*£~l -> - S ^ " 1 .

(b) The kernel g7/ restricts to Φ(y) for each y e Ek_χ - \jm>k Em .
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Proof, (a) We first remark that g^" 1 is pulled back from the bundle
defined the same way on blk_χ(PL). Then we construct the lift:

( * ) : 0 -

Then, exactly as in Case 2, we lift Ak_{ to Ak_ι

Λ*-i , ς*k-ι(A )
ι(M) °^L \Λk-V

This time, Ak_{ consists of k - 1 components, but Ψk_x is a composi-
tion of k— 1 maps, and each of the factors in the composition ψk_x oA fe-1

vanishes on the corresponding component of Ak_ι.

Finally, Ak_ι is directly seen to be surjective on C x Uk~ι(M), while
on C x Ak_χ, one reasons by induction. We conclude in particular that if

x e UJ(M) (j<k-l), then the newly constructed kernel satisfies:

(b) If x e Sec*"1 (C)— Sec*~2(C), on applies Lemma 3.5 to a transverse

plane to conclude that ^ | C x β - i ( j c ) = ^L(-2D ) ® πc^(Dχ)' τ h u s ' ^L

agrees with Φ L on Cx{y} for all y G Ek_ι-\Jm>kEm. But by (*) above

and induction, &£ agrees with Φ L on C x {j;} for all y € (U7<A;-I EJ) ~

(Um>/c-i ^m) ' w h i c h concludes the proof.

4. Fibers of the extension map and applications

We start this section by proving that the fibers of the extension map ΦL

are connected. By the projection formula, this will imply that as soon as
deg(L) > 2g - 1, there is a canonical identification H®{Jί2 L, #(kθ)) =

H°{PL,Φ*L&{kθ)). We will then use Theorem 1 to calculate Φ*L0(kG)
from which we will obtain Theorem 2 and the additional results mentioned
in the introduction.
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Lemma 4.1 (stable fibers). Suppose E e ^ ^ L Then there is a natural

rational map e: P{H°(C, E)*) -* P L satisfying the following:

(a) ΓAe έ/omαm dom(e) 3 { α G i/°(C, £)|deg(Z(α)) < 1} .
(b) The map e is injective on U = {a: <fc ^> E}, and the image

ι

(c) Suppose there is an a: @c <-• E. For each D c C, if there is an

aeH°(C,E) with Z(a)=D, then Dnφ

Proof. We start by defining e. By linearity of <g> and the functor Hx,
we get a linear map

λ: H°(C,E) -+ Hom{Hl(C, L*),Hl(C, L* ®E)).

If a e U, then there is some short exact sequence (*): 0 -> ̂ c —• E —•
L -»- 0, so the long exact sequence on the cohomology of (*) ® L* yields

>H°{C,&)-^H\C,L*) -Ά Hl(C, U Θ £) -• . . .

Since E is stable, ί ^ 0, so dim(ker(A(α))) = 1.
On the other hand, suppose a £ U. Let D = Z(a), and let α': (9c{Tΰ)

c-> £ be the induced map. Then λ(a) factors:

λ(a): Hl(C, U) -+ Hl(C, L*{D)) -^U Hl(C, L* ® E).

But from the long exact sequences on cohomology associated to 0 ->
0C(D) -+ E -4 L(-D) -> 0 and 0 -^ @c -+ &C{D) ^ ^ ( Z ) ) -> 0,
one immediately checks that ^(α7) is injective and so, by Serre duality,
ker(A(α)) 3 7/°(C, M ® ̂ ) * . Notice that if deg(Z)) = 1, then this is
one-dimensional.

Let X = {ψ e P(Hom(Hι(C, L*)9H
ι(C, V 0 £))*)|rank(vθ < r} ,

where r = hι(C, L*). Then the natural rational map

is defined on {ψ e X|rank(^) = r - 1}. Further, there is a universal
blow-up ^ of X resolving k. Set-theoretically, X = {(^, Λ)|dim(Λ) =
1, Λ c ker(^)}, and the induced morphism k: X -> P L maps (ψ, A) to
Λ.

Now, by the analysis above and a dimension count, λ is injective and
defines a morphism I : P(//°(C, is)*) -> JΓ. Let e = A: oλ. From the
description of k, we get (a).

Suppose θL,oί \@c<-+ E and e(α) = e(a). Then by definition, there

are short exact sequences (*) and (**) containing a and a and defining
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the same extension class e(a) e P L . But since E is stable, Aut(is) = C*,

and it follows that a = a e P(i/°(C, E)*). This gives the first part of

(b). For the second part, if x e φ^l(E), then x comes from some exact

sequence (*): 0 -> ffc - ^ E -+ L -> 0, and, by definition, e(a) = x .

Finally, for (c), we consider the strict transform Ϋ of the image of I

in X. This is an irreducible variety mapping to P L . Further, if a e

H°(C, E) with Z(α) = D, then ker(ϊ(α)) £ H°(C9M®0D)*, so there

is a y € Ϋ lying over ϊ ( α ) , and y gets sent to a point in Z). This proves

(c). q.e.d.
As an immediate corollary, we obtain:
Corollary 4.2. If deg(L) = 1, then φL is injective.

Proof. If det(JE) = L and h°(C,E) > 1, then there is an a e
HΌ{C, E) with Z(α) ^ 0 and £ is not stable, So Λ°(C, £) = 1 for
all stable E, and the corollary follows from the lemma, q.e.d.

In contrast to the previous lemma, we have:
Lemma 4.3 (Semistable fibers). Suppose that deg(L) > 2, and [E] e

^2 L does not represent a stable point, so that there is an extension 0 —>
Lχ U E -> L2 -> 0 with deg(Lj) = deg(L2) and Lχ ®L 2 = L. Then there
are three possibilities for the fiber φ^ι([E]). Either:

(a) H°(C, Lλ) = //°(C, L 2) = 0, in which case φ~L\[E}) = 0, or

(b) H°(C, L.) ^ 0 /or exactly one of i= 1,2, in wAicA c α ^ ι/ Lz s

0

(c) JζΓ°(C, Lf) φ 0 /or toίΛ i = 1, 2, I/I which case if L. s
1

Proo/ Recall from [12] that [Ef] = [E] if and only if Ef has either

L{ or L2 as a quotient line bundle. Now, suppose φ^ι([E]) Φ 0 . Then

there must be some Ef with [Ef] = [E] and some map a: @Γ <-• J?'. So

α induces a nonzero element of H (C, L.) for some /. This gives (a).

Next, by symmetry we may suppose that H°(C, Lχ) Φ 0 but H°(C, L2)
= 0. Then {(*): 0 -> ̂ fc -> £ ; -+ L -> 0} G ̂  ([£]) implies that £ ' has
Lj as a quotient, and (b) follows from Observation 2. Similarly, we get
(c).

Corollary 4.4. If deg(L) = 2, then φL is injective.
Proof By the argument in Corollary 4.2, φL is injective at the stable

points of P L . On the other hand, if E is not stable, then, by Observation
2, x e φ~^\[E]) corresponds to a point in the image of C —> P(H°(C, L®
ωc)), and there is an exact sequence (*): 0 -» L(-p) —• Ef -> ̂ c ( p ) —• 0.
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Now, by Lemma 4.3, there are two possibilities. Either H°(C, L(—p)) = 0
andjby (b)), φ~L\[E])=p or (by (c)), L{-p) s &c{q) and φ'L\[E]) =
p U q . But in that case, p and </ have the same image in P L . q.e.d.

We use Theorem 1 to prove:
Proposition 4.5. // deg(L) > 2g - 1, then ΦL @~ £ ^ .

/ Since Jf2 ^ is always normal (see [5]), it suffices by Zariski's

main theorem to show that ΦL is onto and that the fibers Φ^ 1 ([E]) are

connected for all [E]e^2 L
Surjectivity is an easy consequence of the theorem as follows. If deg(L)

> 2g-1, then by Riemann-Roch, H°(C , E)φO for all E e Jί2 L . Now,
if there is an a: @c

 c-> E, then, as we have seen, E e im(φL). Otherwise,
suppose a€H°(C, E) and a factors through a : @C{D) ^ £ , deg(D) =
A: + 1. Then [E] e im(φL^_2Σ>, <g> &(D)), so [E] is in the image of ΦL

restricted to the fiber of Ek over any x e UD .
The same argument shows that if deg(L) < 2g - 1, then [E] e im(ΦL)

if and only if H°(C, E) Φ 0 (or, if E is not stable, if and only if
H°(C ,E')φO for some E1 - E).

We will prove that Φ^ 1 ([E]) is connected for all L by induction on
deg(L). First note that we have already shown in Corollaries 4.2 and 4.4
that if deg(L) = 1 or 2, then ΦL = φL and φL is injective, so of course
the fibers are connected.

If [E] eJ?2tL with deg(L) > 2, then we should think of Φ " 1 ^ ] ) as
a union of various "pieces." The first piece (which may be empty!) is the
fiber φ~ι([E]), which we have already described in the two lemmas.

To define the other pieces, suppose a € H°(C, E) and Z(α) = D.

Then, by the surjectivity argument, {ΦL{_2D') ®#(D')yι([E]) Φ 0 for all

D' C D, SO, by Theorem 1(2) and induction, Φ " 1 ([£]) Πσ~\UD.) is a

connected fiber bundle over UD, for all ΰ ' c ΰ . But UD is dense in 25,

so Φ^\[E]) Π σ~ι(D) is connected, as well.

Thus, the decomposition Φ^([£]) = Φ~L\[E}) U ̂ C{D)^E(Φ'L {[E]) Π

σ~ι(D)) consists of φ~^ ([E]) and a collection of connected sets.
We finish the proof by considering various cases.

Case 1. E is stable and φl\E)φ0.

By Lemma 4.1(b), φ~L\E) = e({a: @c ^ E}) so Φi\E) is itself

connected. Moreover, by (c) of the same lemma, if Z(a) = D, then there

is an x eDΠφ^ι(E) (closure in P L ) . But this means that φ^l(E) (closure

in PL) meets every Φlι(E)Πσ~ι(D). Thus Φ^CE) is connected.
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Case 2. E is stable and φ~ι(E) = 0.

In other words, for all aeH°(C, E), Z(a)φ0. But in this case, it is
easy to see that there must be a (maximal) line bundle L with the property
that every section a factors through L. Now unless H°(C> L) = 0, in
which case Φ " 1 (£) = 0 , we can write L = #C(DO)9 and then

Φ~L\E)= (J (φ-L\E)nσ-l(D'))U U (Φ~L\[E])nσ-\D)).
D'e\D0\ &C(D)^E

But, just as in Case 1, the first term is connected (it maps to the con-
nected base \DQ\ with connected fibers) and meets all the components of
the rest.

Suppose [E] e Jt2 L and E is not stable. Then there is an exact

sequence (*): 0 -> Lχ -> E —• L2 -> 0 with deg(Lj) = deg(L2) and

L{®L2^L. Thus by the surjectivity argument, Φ " 1 ([E]) φ 0 if and

only if there is an E1 ~ E, and &C{D) <-» £"' for some D c C. But then

either //°(C, Lj) ^ 0 or AΓ°(C, L2) ̂  0, so by Lemma 4.3(a), we have

(^^([E]) φ 0 . This leaves only:

Case 3. [£] is not stable and φ~L\[E]) φ 0 .

First, we observe that if Lemma 4.3(b) applies, then as in Case 1,

Φ~L\[E\) is connected and, for all a:ffic(D')<->E' and Ef~E, Φl\[E\)

Π σ~ι(D') φ0,so Φl\[E]) is connected.

Next, if Lemma 4.3(c) applies, then either Φl\[E]) = {{JDe]D | UD) U

(\JD>e\D I UDt) has one connected component, in which case we reason

as before, or else there are two connected components. But since L =

(9C{DX +D2) it follows that D{ ΠD2 φ 0 , so if UD Π UD, = 0 , there must

be a nonempty Do c D n D'. But then φ~ι([E]) is connected through

Φ " 1 ([£"]) Π σ " 1 ^ ) , so, once again, the connectedness of all of Φ " 1 ([£"])

follows, q.e.d.
For the rest of this section, we will be particularly interested in three

degrees for L:

deg(L) = 2g - 1. In this case, ΦL is surjective by Theorem 1. Since

dim(PL) = 3g-3 = dim(^#2 L), the map ΦL is birational. Also remark by

Theorem 1 that there are g exceptional divisors in PL, which we number
Eo>'" >Eg-i'

deg(L) = 2g. In this case Φ L is again surjective, but this time the
generic fiber is of dimension one, and again there are g exceptional divi-
sors.
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deg(L) = 2g - 2. Here, ΦL maps birationally to a subvariety of codi-
mension one, and there are g - 1 exceptional divisors.

Using the Poincare extension from Definition 3.1, we define two hyper-
surfaces in P L .

Definition-Claim 4.6. The variety

ΓL := {(*): 0^&^E-+L^0\ h°(C, E) > 1} c PL

is a hypersurface of degree g if either deg(L) = 2g - 1 or L = ωc .
Pushing down the Poincare extension to P L , we get

^ ^ ί C ) ^ - 0 .

If deg(L) = 2# - 1 or L = ωc, then the map 2 is a # x # matrix of
linear forms on P L which degenerates exactly along ΓL , so ΓL c P L is
the hypersurface of degree g defined by det(λ).

Example. If g = 2, then ω®2 maps C to a conic in P 2 . On the

other hand, if deg(L) = 3, then ωc ® L embeds C as a curve of degree

5 in P 3 and the image is contained in a unique quadric surface.
As a first application of Theorem 1, we obtain a special case of the

theorem of [5] mentioned in the Introduction. The result in this form is
also proved, for example, in Ramanan [10].

Application 1. Pic(^f2 L) = Z if deg(L) is odd.

Proof. Since ΦL\PL-+Jί1L is birational for deg(L) = 2g - 1, it

follows that the map on Chow groups Φ + : CHι(?L) —• CHX(JK2 L) is

surjective. Further, by Theorem 1(1), Pic(PL) = ZH®(®g

kZl ZEk), where
H is the pullback of the hyperplane class from P L . Now,

(i) ΦL*Ek = 0 if fc>0.

By Theorem 1(2), Ek dominates Sec^(C) and is a fiber bundle over
UD c D for each D of degree k + 1. Thus, the fibers of the induced
map ΦL: Ek —• Jί2 L have dimension at least k, so, if k > 0, then the
codimension of the image is at least 2, and we get (i).

(ii) Let f L be the strict transform of ΓL in PL. Then f L ~ gH -

(g-l)E0 Eg_χ a n d Φ L / L = 0.

The second part is as in (i) since by Lemma 4.1 and the definition of YL ,
the fibers of the map to J^2 L are positive dimensional.

Let D c C be a general divisor of degree k + 1 < g. Then because of
Theorem 1(4), for each x e UD, there is an equality:
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fL Π σ~\x) = {(*): 0 -> 0(D) -> E -> L(-Z>) -> 0| λ°(C, £) > 1} .

Since h°(C,L(-D)) = g - k - l = hι(C,ffi(D)) (remember, D was

chosen to be general), we see that &E (fL) = ffE (g-k- l)o(degree 0 over

Secfc(C)), which gives the formula for TL .

Now, let V be the span of fL and the Ek k>0, in CHX(PL). Then
V C ker(ΦLJ . But

2 ZH®ZE0/gH-(g - l ) ί 0 S Z ,

so P i c ( ^ L) is a quotient of Z. But ̂  L is a projective variety, so
V = ker(Φ^) and Pic(^ 2 L ) £ Z.

Notes. (1) The group P i c ( ^ L) is not generated by Φ L *//. In fact,
if pushes down to (£-1) times the generator. Two divisors that do push
down to generators are (g-l)H-(g- 2)E0 and (2g -\)H-{2g- 3)E0.

(2) An argument of Beauville's [3] concludes from P i c ( ^ L) = Z for
deg(L) odd that P i c ( ^ n-pd — Z. It should be possible to show this
directly by a close analysis of the map ΦLstc for deg(L) = 2g.

Definition. If L is a line bundle of degree 2g - 2, define ΘL c Jί2 L

to be the image ΦL{?L) with the reduced scheme structure.
As a second application of the extension map, we obtain a result first

shown in [3].
Application 2. Pic(^2 ω ) is generated by (a translate of) θ ω .
Proof. It suffices to show that the class of θ ω is irreducible in

Pic(^f2 ω ). We will do even better. We will show that Pic(θω ) ^ Z
and is generated by &θ (θ ).

Step 1. Pic(θω ) S Z . Since θ ω is normal (see Laszlo [6]), it suffices

to show that CHι ( θ ω ) = Z. But exactly as in the previous application,
we see that:

(i) Φ Ek = 0 for all A: > 0,

2. Φ ^ θ (θ ) - ^ ( ( g - l ) / / - ( g - 2 ) £ 0 ^ _ 2 ) Let

τ € Pic°(C) be a two-torsion point. Then f̂θ ( θ ω ΛT) = Λ .On the

other hand, we can explicitly describe

and as before we get the expression for the pullback.
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But now, as observed in the Note above, the image of (g - \)H-
(g - 2)E0 generates the quotient of ZH θ ZE0 by gH -(g-l)E0, and
we get the result.

Notation. Since Jί2 # always has Picard group isomorphic to Z, we
will let θ stand for the ample generator. We have just seen that there is
a canonical choice for θ in the case Jf2 ω . There is no such obvious
canonical generator for deg(L) odd. However, we do have:

Definition. If deg(L) = 2g - 1, let

ΞL = {Ee . # 2 Jthere is an s e H°{C, E) with Z{s) φ 0 }.

Application 3. ΞL ~ gθ.
Proof. On the Chow group level, ΞL = ΦLste (EQ). But using Application

1, we see that the image of Eo is g times the generator of ZH θ ZE0

modulo gH - (g - l)EQ . q.e.d.
As a final illustration of these methods, we show:

Application 4. If deg(L) = 2g, then the image of Φ L J | C : CHX(PL) -•

CH°(^2 L) is generated by twice the class \Jί2 L].
Proof. Just as before,

(i) ΦL^(Ek) = 0 for fc>0,and
(ii) ΦL.(gH-(g-l)E0) = 0.

To see (ii), we show that Φ*L(Θ) = gH - (g - ί)E0 . For this, we
may as well assume that L = ωc(2p), in which case we can represent θ
as the translate θ ω (2/7) of θ ω by ® ̂ ( p ) . In this case,

is a hypersurface of degree g, and we finish as before, q.e.d.
Thus, the image of ΦLjte in CH°(^2 L) is isomorphic to Z . But his

time, ΦLif is not surjective. Indeed, if E e Jί2 L is general, then the

preimage Φ ^ ( £ ) = P 1 and meets Eo in exactly deg(£) = 2g points.
So ΦL: EQ -^ Jt2 L is generically finite of degree 2g. Thus ΦL^(E0) =
2g\Jf2 L], and it follows immediately that the image im(Φ L J = 2\Jf2 L]Z.

Further, the class ΦL*((g - \)H - (g - 2)EQ) = 2\JT2 L]. We will see
that (g - \)H - (g - 2)E0 is effective, so there are rational hypersurfaces
in p 3 ^ " 2 mapping to JH2 L with generic degree 2.

Proposition 4.7. (a) If deg(L) = 2 ^ - 2 , then Φ^(θ) * (g - \)H -
(g-2)E0 Eg_2.

(b) // deg(L) = 2g, then Φ*L(Θ) £ gH - (g - l)EQ Eg_λ.
(c)//deg(L) = 2g-\,then Φ*L(Θ) * (2g-l)H-(2g-3)E0 Eg_{.
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Proof. We have already proved (a) in Application 2 and (b) in Applica-
tion 4. In both cases, we used the fact that θ has a geometric realization.
We will similarly use the geometric realization of ΞL to prove (c).

From the expressions derived in the Applications: ΞL ~ gθ and ΓL ~
gH - (g - 1 )E0- (g - 2)Eχ , it follows that we may write

where nΓ and nk are integers.
Claim. nΓ = 2g - 1, and nk — k-\-\.

Proof. Since ΞL = ΦL^(EQ) and ΦL is birational to its image when
restricted to EQ, we get n0 = 1 for free. In order to calculate nΓ and the
other nk , we need to understand how Eo intersects a general fiber of ΦL

restricted to the corresponding divisors.
If E e ΦL{fL) is a general point, then Φ~l{E) ^ P 1 , and n~ =

deg(£0 Π Φ ^ ( £ ) ) = deg(£) = 2g - 1. On the other hand, if E e ΦL{Ek)
is general, then there is a unique D e Ck+ι with a unique <f(D) *-+ E,
and the preimage of E in Ek is a connected set containing an open subset
isomorphic to UD and connected but mutually disjoint divisors over each
p e D c C c P L . These k+\ divisors in Φ^CE) comprise EonΦ^x(E).
By generic smoothness, then, nk = deg(Z>) = k + 1.

Finally, substituting for ΞL and Γ L , we get the theorem, q.e.d.
As a quick corollary, we recover the formulas for the canonical line

bundles (see, for example [3] or [5]):
Corollary 4.8. The canonical divisors K^ are:

(a) K^ L - -2Θ if deg(L) is odd.

(b) κJL ~ -4Θ if deg(L) is even.

Proof Compute the canonical line bundle in two different ways using
the maps σ: PL -+ P L and ΦL: PL -> Jf2 L for line bundles for degree
2g - 2 (odd case) and ωc (even case), q.e.d.

Suppose S cPL is a hypersurface of degree d. Then S pulls back

to a section of <9~ (dH - akEk) if and only if S contains Sec^(C) and

the tangent cone to S at all points of Secfc(C) had degree (at least) ak

(i.e., if and only if S e H°(PL, 0{d) ® ~ ^ * ( C ) )
 B u * suppose S vanishes

along C and the tangent cone has order a0 at all points of C. Since every

secant line in Sec^C) meets C at two points, it follows immediately that

as soon as 2ao> d, then S contains Sec2(C), and, taking derivatives, it
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follows that in fact, if aχ = 2ao-d, then H°(?L, @(dH-a0E0-axEx)) =

H°(PL, 0{dH-aoEo)). Similarly, a 3-secant P 2 must be contained in S

as soon as 3ax > d, which happens as soon as 3a0 > 2d. More generally,

one sees that H°(PL, @(dH- a0E0 akEk)) = H°(PL&(dH- a0E0))
if ak = (k+ l)ao-kd.

Now let us take another look at the pullbacks of θ in Proposition 4.7.
In all three cases, we find that ak=d-(k+ \){d - aQ) = (k + l)a0 - kd.
As we just saw, this means that the higher ak are extraneous and in each
case H°(PL, Φ*L(Θ)) = H°(?L, dH - a0E0), where dH - a0E0 are the
first two terms in the expansion of Φ*L(Θ).

Putting this all together, by Proposition 4.5 and the projection formula,
we have H*{J[1L, <?(kθ)) s H°(?LΦ*L(ffi(ke)). By Proposition 4.7 and
the remarks above, we get Theorem 2. As an added bonus, we even see
that

Suppose deg(L) = 2g, M = L 0 ωc, and C -> P L = P(H°(C, M))

is the embedding by the complete linear series. Let π: P L -> PL(_p )

be the projection from j?, so π(C) —• PL(_/7) is also embedded by the

complete linear series. Now, if S e H°(PL{_p), 0(d) ® ~ ^ c ) ) , then

Recall that since deg(L(-p)) = 2g - 1, we saw in Application 1 that we

can regard fL e H°(PL{_p), <9{g) toJ^c)) T h e n t h e P a r t i a l derivatives

of ΓL give sections of H°(PL, ,, ^ ( g - 1) ®^<^), and therefore, by

pulling back, we see that in particular, H°(PL, &{g - 1 ) 0 - ^ ~ 2 ) ^ 0 .
This, together with Application 4, gives:

Proposition 4.9. There exist rational singular hypersurfaces S e J>3g~2

and dominant maps of degree 2 from S to ^2 L if deg(L) is even.
Note. One sees that these hypersurfaces are rational by projecting from

a general point q e C.
Finally, suppose deg(L) = 2g - 1, and consider πp:PL-> PL(_/7) for

any p e C. Via the map ΦL (_P) ^u-p) ~^ ̂ i L(-p) a n c * Application 3,

o n e readi ly sees t h a t Φ*L{_pf(θL{_p)) s* 0{(g - \)H - (g - 2)E0 - . ) .

Now, a theorem of Beauville (Theorem II(b) of [3]) states that if C

is not hyperelliptic, then the line bundle &(βLt_p\) determines a map of

degree one from Jt2 L^_p) to its image. Thus, on projective space PL(_P),

the linear series H°(PL{_p), 0(g-1)® J ^ " 2 ) c H°(PL{_p), d?(g- 1)) de-
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termines a map birational to its image. Now, if S e H°(PL, ,,

^ ( # - l ) ® J ^ - 2 ) , t h e n (π*pS)(ΓL) e H°(PL, &(2g-l)®J^g-3), and one
checks that via all the possible projections π , this gives enough sections

of H°(PL9Φ*L0(θL)) to get:
Proposition 4.10. The line bundle #(ΘL) determines a map birational

to its image if deg(L) is odd and C is not hyperelliptic.
Question. In this case, is ^ (Θ L ) in fact very ample?
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