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DONALDSON'S POLYNOMIALS FOR K3 SURFACES

KIERAN G. O'GRADY

Let M be a smooth compact simply connected four-manifold with

b\ — 2/? + 1, p > 1. Donaldson [5], [7] has defined polynomials γc e

Syin* H2(S, Z) for all c> \(p+1), where d = 4 c - 3(p+1). The polyno-

mials are invariant under diffeomorphisms and actually provide new C°°

invariants [5], [7], To define these invariants choose a generic metric, g,

on M and consider Xc, the Uhlenbeck compactification of the moduli

space Jίc of g-anti-self-dual connections on the SU(2) bundle on M

with c2 = c [7]. There is a map μ: H2(M) -> H2(XC) which extends

the map μ: H2(M) -> H2{J?C) obtained by slant product with -

where P is the universal SO(3) bundle over M x ^ . One defines

γc(Γ)= /ι(Γ)U/ι(Γ)U Uμ(Γ) .
J[XC]' - v '

d times

If M is the smooth manifold underlying a projective complex surface S,
and g is the Kahler metric associated to an ample divisor H, then, by
a theorem of Donaldson [4], Jίc = MS(H, 0, c), where MS(H, 0, c) is
the moduli space of rank-two vector bundles £ on S with cχ (E) = 0
and c2(E) = c, μ-stable with respect to H. By passing to the algebraic-
geometric situation Donaldson has proved that, for a projective surface,
yc Φ 0, at least for big c [5]. Not much is known about Donaldson's
polynomials: R. Friedman and J. Morgan have partially computed γc for
simply connected elliptic surfaces. In particular, let S be a K3 surface
with c > 4 , d = 4c - 6 = 2n, and q the quadratic form of S. They

The aim of this paper is to give a different proof of this formula in the case
where c is odd. We do this by defining a polynomial δc e Syn/ H2(S, Z)
analogous to γc, the difference being that instead of Xc we use the com-
pactification of MS(H, 0, c) provided by the moduli space of semistable
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sheaves. We prove that although γc and δc are not a priori equal, in fact
they are the same polynomial (we prove this only for certain polarized K3
surfaces and a corresponding value of c, but our arguments can be gen-
eralized to any K3 surface); this should be generalizable to many other
surfaces. Then we compute δc(Γ + Γ), where Γ is the Poincare dual of a
nonzero holomorphic two-form on S it is plausible that the method we
employ can be applied to any surface. The result follows because γc is a
multiple of a power of the quadratic form for a K3 surface.

Notation. Let E be a coherent torsion-free sheaf on a projective sur-
face S, and let H be the hyperplane class on S. Then we say E is μ-
stable (respectively semistable) if μ(F) < μ(E) (respectively <) for every
subsheaf F <-+E, where μ(G) = (cχ(G) H)/raxιk(G). We say E is stable
(respectively semistable) if pF(n) < pE(n) (respectively <) for all sub-
sheaves F ^ E and all n > 0, letting pG(n) = χ(G(n))/raήk(G), i.e.,
if E is stable (semistable) according to Gieseker and Maruyama. Both
notions of stability depend on the polarization chosen, so to be precise
one should always specify H. We denote by MS(H, cx, c2) the moduli
space of rank-two locally free sheaves, £ , on S, //-stable with respect
to H, with cx{E) = cχ and c2(E) = c2. We let Ήs(H,cχ,c2) be
the moduli space of rank-two torsion-free sheaves, E, on S, Gieseker-
Maruyama semistable with respect to H, with cχ{E) = c{ and c2(E) =
c2\ it is a projective scheme [8], [10]. There is a natural embedding
i: MS(H, Cj, c2)

c-^ ΉS(H, cχ, c2), and ι(Ms(H, cx, c2)) is clearly open
in its closure, but a priori it need not be that MS(H, cχ, c2) is the closure
of ι(Ms(H, cx, c2)): there could possibly exist components all of whose
points parametrize sheaves which are not locally free. When cχ = 0 and
c2 = c, and there is no confusion about S and H, we will abbreviate
MS(H, cχ, c2) and MS(H, q , c2) to Aίc and Λfc respectively. Let E**
be the double dual of E. By the canonical sequence of £ we will mean
the exact sequence

where Q is a sheaf which naturally lives on Y, the zero-dimensional
subscheme of S defined by the ideal sheaf Ann Q. For such Q and Y
we set l(Q) = h°(Q) and l(Y) = h°(<?Y). In general we will denote by
[X] the equivalence class of an object X for an appropriate equivalence
relation. So, for example, if E is an //-semistable sheaf, then [E] will be
a point in an appropriate moduli space, if Z c S is a zero-dimensional
subscheme, then [Z] will be the corresponding point in the appropriate
Hubert scheme, etc.
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1. Lemma 1. Let S be a K3 surface, H a polarization on S, and
E an H-semistable rank two torsion-free sheaf on S, and let cχ(E) — 0,
c2(E) = c with c odd. Then E is stable.

Proof. In Gieseker's notation

Let F —• E be a rank-one subsheaf of E. Then

pF(n) = \H2n + (detF H)n + ±(detF) 2 - c2(F) + 2.

If E were semistable, there would exist F such that pF(n) = pE(n). This
is impossible because the constant coefficient of pF(n) is an integer (the
intersection form is even), while the constant coefficient of pE(n) is not
integer.

Corollary. Let c be odd. If Mc is not empty, then it is smooth of
dimension 4c - 6, and there exists a universal sheaf over S x M c.

Proof By the lemma, if [E] e Mc, then E is stable, hence simple. By
a result of Mukai [13, Theorem 0.3], Mc is smooth at [E] of dimension
4c - 6. Again by a theorem of Mukai [13, Theorem A.6] a universal sheaf
exists.

Proposition 1. Let S be a K3 surface whose Picard group is generated
by the ample divisor H, and let H2 = 2m, and c = 2m + 3. Then
Mc is irreducible and birational to the Hilbert scheme of zero-dimensional
subschemes of S of length Am + 3.

Proof. If [E] e Mc let F = E®H. Then cx{F) = 2H and c2(F) =
4 m + 3.

Claim 1. The sheaf F fits into the exact sequence

(*) 0 -> 0S -> F -> IZ(2H) -> 0,

where Z c S is a zero-dimensional subscheme of length Am + 3.
Proof By Riemann-Roch, ho(F)+h2{F) > 1 let us prove that h°{F)

> 1. By considering the canonical sequence of F we see that h2(F) =
Λ2(F**). By Serre duality, Λ2(F**) = h°(F*) if h°(F*) > 0 there is an
injection &s(kH) -> F*, k > 0, hence an injection <fs((2 + k)H) —• F**
and consequently a map / z ((2 + k)H) —• i 7 for some zero-dimensional
Z c S. This clearly contradicts the stability of i 7 , hence h2(F) = 0 and
h°(F) > 1. From the stability of F it follows that any nonzero section
has isolated zeros, hence it defines an injection <fs->F with quotient a
torsion-free rank-one sheaf Sf which is isomorphic to IZ{2H) for some
zero-dimensional subscheme Z c S. Since c2(F) = Am + 3, the length
of Z is 4m + 3 .
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If F fits into the exact sequence (*), then the following equalities hold:

(i) ° °
(ii) z z

(iii) h\lz(2H)) = dimExtι{Iz{2H),0s).

The first two equalities follow from the long exact cohomology se-
quences associated to (*) and the exact sequence 0 —• IZ(2H) —• <fs(2H)
-> ffz (2H) -> 0, respectively. Equality (iii) follows from Serre duality.

Claim 2. Let Z cS be a zero-dimensional subscheme oflength Am + 3
such that, if Z ' c Z is a subscheme of length Am + 2 with h°(Iz,(2H)) =
0, then there is a unique stable locally free sheaf F fitting into the exact
sequence (*).

Proof By our hypothesis h°(Iz(2H)) = 0, hence by (ii) and (iii) there
is a unique nontrivial extension, F, of lz(2H) by ffs. Since Z satisfies
the Cayley-Bacharach property relative to |2if|, the sheaf F is locally
free. Let 0 -• &s(kH) -> F be a sublinebundle. Since, by (i), h°(F) = 1,
we must have k < 0, i.e., F is stable.

Definition 1. Let %?c be the Hubert scheme of zero-dimensional sub-
schemes of S of length Am + 3, and let Uc c ^ be the open subset
defined by

Uc = {Z\h (IZ(2H)) = 0 and the corresponding extension (*) is stable.}.

By Riemann-Roch, h°(2H) = Am + 2, hence if Z c S is a generic zero-

dimensional subscheme of length Am + 3, then h°(Iz(2H)) = 0 and, for

any subscheme Zf c Z of length 4m + 2, h°(Iz,{2H)) = 0. By Claim

2 we conclude that t/. is not empty. Let Vc be the open subset of M c

defined by
0

The previous discussion defines an isomorphism / : Uc -^ Vc which ex-

tends to a rational map / : ^ -*• ~MC.

Since ^. is open (or by a dimension count), / is a birational map
between β?c and one component of ~MC. We will be done if we can prove
that there are no other components of ~MC. By the Corollary to Lemma 1
any component has dimension Ac — 6, hence the following claim finishes
the proof of the proposition.

Claim 3. The codimension of ~MC\VC in ~MC is at least Wo {in fact
equal to two).

Proof Let [E] e Mc. Then F = E ® H fits into the exact se-
quence (*), so we have to bound the number of moduli of stable nontrivial
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extensions which arise from [Z] e ^C\UC. Let φ: S -> p 4 m + 1 be the map

associated to the complete linear system \2H\. Let [Z] e ^ vary in a

family ^ for which dimExt 1(/ z(2Jϊ), &s) is constant. Then the number

of moduli of F9s obtained as extensions (*) is at most

d i m ^ + dim Ext1 (7Z (27/), ffis) - 1 - (Λ 0 ^) - 1) = d i m ^ ,

where we have used the equalities (i), (ii), (iii) (this is the essential point).
We stratify %*C\UC according to the dimension of spanφ(Z) and its in-
tersection with φ{S)\ since [Z] £ Uc, dim span φ (Z) < 4m. First, as-
sume span φ(Z) Πφ(S) is zero-dimensional. Then d = dim(span^(Z)) <
4 m - 1 . Since locally on & there is a subscheme Z ' c Z such that φ{Z')
spans φ{Z) and Z(Z') = rf + 1, there is an injection v. & <^> Hilb r f + 1(5),
and hence

number of moduli of F's < 2(rf + 1) < 8m.

If span^(Z) n φ{S) is a divisor D, then either Z) e |77| or Z) e \2H\. In
the first case the number of moduli is dim \H\ + 4m + 3 = 5m + 5, and
in the second it is dim \2H\ + 4m + 3 = 8m + 4. Since dimM c = 8m + 6
we conclude that codim(Mc\]^,, Mc) > 2.

2. Definition 2. Let c be odd, S be a AΓ3 surface, 77 be a polarization
on 5 , and % be a universal sheaf on 5 x Af c . Then we set

v:H2(S,Z)-*H2(Mc,Z)

to be the map given by i/(Γ) = c2(ί?)/Γ.
Notice that a universal sheaf is not unique, but */ does not depend

on the choice of &. Let Xc be Uhlenbeck's compactification [7] of the
moduli space of connections on the SU(2)-bundle with c2 = c, anti-self-
dual with respect to the Kahler metric associated to H. Then one has the
extended //-map μ: H2(S) -> H2(XC). By a theorem of Donaldson [4]
Xc and Ήc are two (different) compactifications of Mc. If we restrict to
Mc, then μ and v agree. Let C c S be a curve and restrict the universal
sheaf % to C x M c . Choose L e Pic^"1 (C), where g is the genus of C,
and let p: C x ~MC -+ C and q: C xΉc-^Ήc be the projections. Then
applying Grothendieck-Riemann-Roch to ^ = ^<S)p*(L) and # one gets

This has an analogue in Xc—one chooses a spin structure on C, and
is replaced by the determinant of the twisted Dirac operator.

One can choose a representative of i/(C) as follows: let

^c(E 0 D) > 0}.
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Then the Poincare dual of v(C) is represented by a cycle Δ(C, L) sup-
ported on Δ(C, L) r e d (with positive coefficients). On the other hand, as is
shown by Friedman and Morgan [7], Δ(C, L) restricted to Mc also repre-
sents μ(C). For this to make sense one has to choose L so that Δ(C, L)
is a divisor (maybe empty), i.e., every component of Mc must contain a
point [E] such that ho(t?c(E <g> Z,)) = 0. By a theorem of Raynaud [14]
this is equivalent to &C(E) being semistable. If C is an ample divisor
and E is //-stable with respect to C, then Mehta and Ramanathan [11]
have shown that there exist n > 0 and C' e \nC\ such that <9C(E) is
stable. We will need the following stronger version due to Bogomolov [2,
11.8, Corollary 1].

Theorem (Bogomolov). Let S be a projective surface, H an ample line
bundle on S, and E an H μ-stable rank-two vector bundle over S with
Chern classes cl9 c2. Then there exists a number k(c{, c2), depending on
cx and c2 but not on E, such that if k > k0 and C is any smooth curve
in \kH\, then E,c is stable.

Definition 3. Let S, H, c be as in Definition 2, and let d = 4c - 6 =
d i m M c . We define δc e Symd{H2{S, Z)) £ Symd{H2{S, Z)*) by setting

δc(Γ) = u(Γ)d foτΓeH2(S,Z).

The polynomial δc depends a priori on the polarization chosen to define
Mc and on the polarized AΓ3 S, so whenever we want to stress this de-
pendence we denote it by δc(S, H). It is clearly analogous to Donaldson's
polynomial yc, but it is not a priori obvious that they are equal.

Lemma 2. Let (S, H) be a polarized K3 surface, let c be odd, and
assume Ήc is not empty. Then γc(H) = δc(S, H)(H).

Proof The proof follows Donaldson's method for proving that γc (H) φ
0 [5]. Let d = dimM c = Ac - 6. We will show that for k large enough
one can choose smooth curves C. e \kH\, / = 1, , d, and line bundles

L{ € Pic^ (Cj.), where g is the genus of C , such that the representatives
Δ(C / ? Lt) of v{kH) intersect only in Mc and the intersection is a finite set
of points (a priori it could be empty, but in fact our main theorem shows
it is not). Let gH be the Kahler metric associated to the polarization
H. Then, as we will see, gff and the Δ(C/.-, L.)'s define an admissible
system in the terminology of Donaldson [5], hence the intersection of their
restrictions to Mc computes yc(H), but then, since there is no point of
intersection on ~Mc\Mc , yc{H) = δc{H).

We introduce the following notation: Δ ; (C, L) = Δ(C, L) ) M . We also

need to observe that the set ^ = {F e Pic(5)| -c < F2 < 0, F -H = 0}
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is finite: this follows from the Hodge index theorem and the fact that S
is regular. By Bogomolov's Theorem there exists k such that if C e \kH\
and [E] e M{ for / < c, then E,c is stable; clearly we can also assume
that \kH\ is very ample.

Claim. We can choose smooth curves C{ e \kH\ and line bundles L{ e

P i c ^ C ) for Ϊ = 1, , d such that
(1) no three of the C^s intersect,

(2) for all i<d, if F e<9> then hQ{Lt 0 ί j ς ) = 0,

(3) Δι(Cχ, Lι)nd Π Π Δι{Cn , Ln)rcά is empty or has codimension n
for any n < d.

Proof of claim. By induction on n . If n = 1 let {[Eχ], , [Er]} be
a finite set of μ-stable rank-two vector bundles on S with cχ = 0 and
c2< c such that any irreducible component of M{ for / < c contains at
least one [Es]. Let Cχ e \kH\ be any smooth curve. Since E>c is stable

for all s , there exists L{ e Pic* \cχ) such that h°{Eslc Θ L J ) = 0 for all

s since S? is finite we can further insure that h°(Lι 0F, C ) = 0. With this

choice of {Cx, Lx), Δ7(Cj, i^red is a divisor for all / < c. Now assume

( q , Lj), , ( C m , Lm) satisfy (1), (2), (3) with d replaced by m. Then

let {[Eχ], " , [i?r]} be a finite set as above such that for all I < c each

irreducible component of Δι(Cι, Lι)τeά n Π AZ(CW , i m ) r e d contains at

least one [Es]. Furthermore, let C m + 1 e \kH\ be any smooth curve such

that Cx, , C m + 1 satisfy (1). Then we choose Lm+χ e Pic*(Cw + 1) such

that ho(Es]c 0 L w + 1 ) = 0 for all 5 and /*°(£m+1 <8> F | c ) = 0 for all

F e y . Clearly with these choices (Cχ, Lχ), -- , ( C m + 1 , ^>w+1) satisfy

(1), (2), (3), hence the proof is complete.

Now let us show that A(Cχ, Lχ)τeά Π Π Δ(Cd, Ld)κά c Mc. Assume
there exists

with [E] e ~MC\MC. Consider the canonical sequence of E,

Let Z c S be the zero-dimensional subscheme whose ideal sheaf is Ann^f,

let Z r e d be the reduced Z , and let c2(£**) = /. Then c2(£**) + /(*f) = c.

If [E] e Δ(ς., L.), then Λ ^ ^ ® L.) > 0 or Z r e d ί l C / 0 . Since £

is Gieseker-Maruyama stable, the double dual E** is /i-semistable. We

distinguish two cases.
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First case: £"** is μ-stable. Since [E] £ Mc, we have E** ψ E, hence
I < c. Let a = #{i\[E**] e Δ^q.L,.)} a n d * = # { ' |Z r e d n C, ^ 0 } ;
then by (*) a + b>d. From our choice of the (Cz, L.)9s it follows that
a < άimMι = 41 - 6. On the other hand clearly b < 2(#Z red) < 2l{β) =
2(c - I), hence d < a + b <2c + 21 - 6 < 4c - 6 = d, which is absurd.

Second case: E** is μ-semistable but not stable. Let F be the semista-
bilizing line bundle of E**, i.e., F H = 0 and £** fits into

(**) 0 —• F —> 2? -^ Iyy <g) F — > ( ) ,

where W c 5 is a zero-dimensional subscheme. From (**) we get that

c2(E**) = l(W) - F2 , by the Hodge index theorem F 2 < 0, hence -c <

F2 < 0, i.e., F G S?. If Z is, as above, the subscheme on which β lives,

then [£] G Δ(C f, L ) implies that one of the following holds:

r e d ;

Since F G S?, we know that (1) cannot hold. Let a, β be the number
of /'s such that (2), (3) hold, respectively. Clearly a < 2{#Wτtά) <1{W)<
2/ and β < 2{c-l), hence d < a + β <2c < 4c-6 = d, which is absurd.

Next we claim that the Kahler metric gH and the Δ(C/5 L.)'s define
an admissible system, as defined by Donaldson [5]. In fact we only have
to notice that, by a theorem of Mukai [13, Theorem 0.3], M[ is smooth
and of the expected dimension (if not empty) whatever / is; but then our
choice of the (C / ? L.y& ensures that the Δ(C/ ? L.ys define an admissi-
ble system. By Donaldson's Proposition 3.6 [5] the intersection number
Δ c(Cj, Lj) Δ C ( Q , Ld) is equal to γc(kH). On the other hand, since
the Δ(C , L.ys do not intersect in ~MC\MC, AC(CX, Lχ) Δ C ( Q , Ld) =
δc(S, kH)(kH), hence we conclude that γc(kH) = δc(kH).

The following lemma is well known in the case of locally free sheaves.
Lemma 3. Let S be a K3 surface, let A c Pic(S) be the subset of

ample line bundles, and let Rc = {F e Vic{S)\ - c < F2 < 0}. The
set of walls Wc = {F± c Pic(5)|F G R} determined by Rc partitions
the ample cone A<g>R into chambers. Let H{, H2 be polarizations on S
and assume that they belong to the same open chamber of A<s>R. Then
Ms(Hl909c)*Ms(H290,c).

Proof We must show that a sheaf E cannot be //2-semistable and Hχ

nonsemistable (then we exchange the roles of Hχ and H2 ). Let

be an Hx desemistabilizing sequence. Let γ = h°(<fΓ) and y =
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Then c = -F2 + γ + γ , hence

(t) F2>-c.

Assume F Hχ > 0 and F H2 < 0. Then by the Hodge index theorem

F2 < 0, and by (f) Hχ and H2 cannot belong to the same chamber,

impossible. If F Hχ > 0 and F //2 = 0, again by Hodge index F2 < 0,

and by (f) and our hypothesis it is impossible. If FΉX = 0 either F = 0

or F 2 < 0. By (f) and our hypothesis F 2 < 0 is impossible. If F = 0,

since /ΓCF) is //t desemistabilizing, -y > -c/2, but -γ < -c/2 since

E is //2 semistable, impossible.
Corollary. Let S be a K3 surface, H a polarization on S, and c an

odd number. Assume ~MC is not empty, and H does not lie on a wall of
Wc. Then

c.

Proof Let CH be the intersection of the open chamber containing H
and Pic(S), and let H. eCH.By Lemma 3 we know that δc(S, H)(H.) =
δc(S, H.)(H.), and, by Lemma 2, δc(S, H.)(H.) = γc(H.), hence δc(S, H)
x(H.) = γc{H.). The set of lines {[H.]\H. e Ch) is a Zariski dense subset
of P(Pic(5r) (g> R), hence the two homogeneous polynomials γ. p i c ( 5 ) and
δc{S, H)\ p i c ( i S ) must be equal.

Lemma 4. Let S be a K3 surface, H be a primitive polarization on
S, H2 = 2m, c = 2m+3,and d = 4c-6. Let q e Sym2(H2(S, Z)) f he
H2(S, Z) be the intersection form and c{(H) respectively. Then δc(S, H)
is a polynomial in q and h, i.e.,

δc(S, H) = a/12 + a/l2-χh2 + ... + ad/2h
d

for some rational numbers a0, a{, , ad ,2.

Proof. The surface S belongs to the family 38 of all K3 surfaces with
a primitive polarization of degree H2, which will be surfaces in a fixed
p r , r = h°{S, nH) - 1 (n > 3). By Gieseker and Maruyama's theorem
([8], [10]), there is a relative moduli space Jt of //-semistable sheaves
over 38. Let π: Jί -> 38 be the projection. By Proposition 1, π{Jt)
contains the dense subset ^ 0 c 38 parametrizing surfaces whose Picard
group has rank one. Since π is proper, we conclude that π(^#) = 38 . We
would like to have a relative universal sheaf on S? xa J!, where S? is
the universal K3 with a primitive polarization of degree 2m, in order to
compare the polynomials δc(S0, HQ) and δc(S{, Hx) for two surfaces. A
relative universal sheaf might not exist, although there is one of each fiber
S x M . But, by using a criterion of Maruyama [10, Proposition 6.10],
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as modified by Mukai [13, Theorem A.6], we conclude that there exists a

finite covering mapjβ: 38 -> ̂ s u c h that there is a "universal sheaf on

^ x j ^ w h e r e ^ = ̂ x ^ ^ . In fact let Hl9H2, ••• , Hd_3 be fixed

generic hyperplanes and let & c S x 33 be^defined by 33 = {(P, ft)l^ G

ffjΠ n ^ζ/_3 Π 5} . By definition on S? there is a section Δ of the

map to 33 hence the sheaf &L. When restricted to S c c5^, ^ is (9P

and χ(&p(E)) = 2; hence Mukai's criterion [13, Theorem A.6] applies

in this relative case^and we conclude that there exists a "universal sheaf.

Let a: [0, 1] -> SB be a path with end points corresponding to surfaces

5 0 and Sx, and let α^: H2(S0) —> H2(S{) be the natural map. Hence we

conclude that <SC(SO, ̂ ( v ) = ί c (5 j , / ^ ( α ^ v ) ) . Now fix one polarized

K3, S; then δc(S > H) is invariant under the action of the fundamental

group of SB. Since the image of πχ(β) in the group of isometrics of
H2(S) is of finite index in the subgroup fixing h , we conclude, as in [6],
that δc(S, H) is of the given form.

Proposition 2. Let S be a K3 surface, H be a primitive polarization
on S of degree 2m, and c = 2m + 3>. Then δc(S ,H) = yc.

Proof By Lemma 4, δc(S, H) is a polynomial in q and h on the
other hand, yc is a polynomial in q [7], hence we can write

dβ

/ / 2 i 2 i

i=0

Let (S, H) be a polarized AΓ3 surface such that Pic(S) = Z[H] θ Z[L],
where i/ 2 = 2m, H - L = a, L2 = -2 (i.e., I is a rational curve of
degree a). Such an S exists if a > 0. As is easily checked, whatever
a is, H will not lie on any wall of Wc (the notation is as in Lemma 3),
hence by the Corollary to Lemma 3 we know that

(**) ^|Pic(5)=ίJc(5'^)|Pic(5)

Let φ be the polynomial on the right side of (*). We claim that (**)
implies φ = 0. Assuming φ Φ 0, we will arrive at a contradiction. Write
φ = h2nψ, where ψ is not divisible by h, so ψ = ΣfiL

2

naiq
dl2~ih2i~2n

and anφ0. Obviously ψ* p i c ( 5 ) = 0. Let D e Pic(5) be a nonzero divisor

class perpendicular to H. Then ψ(D) = anq(D)d/2~n and, since D2 Φ 0,
we get an = 0, which is a contradiction.

Corollary. Lei S be a K3 surface, H be a primitive polarization on
S of degree 2m, and c = 2m + 3. Then δc = aqd/2.

3. Let S be a K3 surface, H be a primitive polarization on S,
H2 = 2m, and c = 2m + 3. Recall from §2 that there is an isomorphism
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/ : Uc - ^ Vc: if [Z] e Uc, then /([Z]) is the isomorphism class of the
unique nontrivial extension of IZ(2H) by <9S . We will therefore identify
Uc and Vc. Let Y = S x Uc. By a standard construction [3] there exists
a universal extension

0 _ <?y ^ ^ _> I^(Ps(2H) ®p*U(L)) -> 0,

where J c S x ί / is the restriction of the universal subscheme o n 5 x /
to S x ί / , , /?5 and JP^ are the projections, and L is a line bundle on

Uc. If we tensor & by p^(-H), we get a universal sheaf ί? on *S x £/c

and consequently on S x K c :

0 - &Y(P*S(-H)) ^%^ I^(p*s(H)®p*Uc(L)) -> 0.

Now choose a nonzero holomorphic two-form, ω , on 5 . Let Γ e
//"2 (S) be the Poincare dual to the class [ω] € H2(S) represented by ω,
and let P. D.(5") be the Poincare dual of ^ . Then

Since [ω] U c{ (H) - 0, we see that

so that c2(£?)/Γ is represented by the form obtained by integrating

P*s(ω\& along the fibers of pv , i.e., the push-forward of P*s((o)\&, which

we will denote by ω ( n ) , n = Am + 3 (since Vc is identified with Uc, we

can think of Vc as a subset of <%*c, and then ω(/z) is the restriction of a

holomorphic form on ^ [1]). We have proved

Lemma 5. Let π: Z —• Vc be the projection and let ω ( w ) e Γ ( Ω ^ C )

be the push-forward of p*s{ω)^ - Then v(Γ) restricted to Vc is represented

by ω{n). _
Lemma 6. There exists a unique holomorphic two-form on Mc, τ-g (ω),

extending ω ( / l ) and representing i/(Γ).
Proof The point is that, by the claim following Definition 1,

cod(Mc\Vc, Ήc) = 2, hence ω ( n ) extends holomorphically to τ^ (ω).

Since [ τ ^ (ω)]^v = i/(Γ)|F , we conclude that they are equal on the whole

Remark. We have associated to ω e H°(KS) a two-form on Mc. One
can show that τjj (ω) is (up to a multiplicative constant) the symplectic
form constructed by Mukai ([12], [15]).
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Theorem. Let S be a K3 surface, let c = 2m + 3 be an odd number
greater than 3, and let n = Am + 3. Then

Proof Since all K3 surfaces are diffeomorphic, we can assume that S

has a primitive polarization, H, of degree 2m . By Proposition 3 we know

that γc = δc(S, H). Let ω e H°(KS) be a generator; we will compute

δc(Γ + Γ). Let d = 8m + 6 = d i m M c . By Lemma 6, i/c(Γ + Γ) is

represented by τ-w (ω) + T-TT (ω). Then

which is equal to

I,
Now let 5QW) C UC be the subvariety parametrizing the Z's such that

supp Z consists of AZ distinct points, let Sn be the product of n copies

of S, and SQ be the open subvariety mapping to S^ by the obvious

map. Denote this map by / , and the ith projection by pt: Sn —• S.

Then it is clear that / * ( τ ^ (ω) -h τ-^ (ω)) = ^ = 1 p*(ω -f 6>), so that

The first equality holds because in the wedge product the only terms
which give a nonzero integral are

p*(ω) Λ;?*(ω) Λp*2(ω) A - - Ά

In

and all its permutations. Since deg/ = n\, we have

By Proposition 2 we conclude that

s (2n)\ n

y = δ ^ q
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