
J. DIFFERENTIAL GEOMETRY
35 (1992) 359-383

HARMONIC FUNCTIONS AND THE STRUCTURE
OF COMPLETE MANIFOLDS

PETER LI & LUEN-FAI TAM

Dedicated to Professor Shiing-Shen Chern on his 79th birthday

0. Introduction

This paper is motivated by previous work of the authors [18] and its
application to the study of the structure of complete Kahler manifolds in
a subsequent work of the first author [16]. Roughly speaking the main
theorem in [18] relates the infinity geometric structure of a certain class of
manifolds to the theory of harmonic functions. Let us recall the precise
setting.

Let M be a complete noncompact manifold without boundary. Sup-
pose the sectional curvature KM of M is nonnegative outside some com-
pact subset of M. Without loss of generality, we may assume that the
compact subset is contained in a geodesic ball of radius 1. By using the
argument of Cheeger-Gromoll [5], one concludes rather easily that M has
finite topological type. In particular, M has finitely many ends and each
end is homeomorphic to the product of a compact manifold with the half-
line. In fact, Abresch [1] (also see [2]) proved that a slightly more general
assumption on the sectional curvature, which he referred to as asymp-
totically nonnegatively curved, is sufficient to imply that M has finite
topological type. Moreover, the number of ends of M can be estimated
by a quantity computable by the pointwise lower bound of the sectional
curvature.

In the case when M has nonnegative sectional curvature on M\B(l),
the ends of M are given by the connected components of M\B(l). The
notions of large and small ends were defined by the authors [18] depending
on the volume growth of the end. With these definitions, we may assume
the ends of M are given by s small ends {eχ, , es} and / large ends
{E{, -" , Ej}, for some 0 < s < oc and 0 < / < oo with s + / > 1.
The main result of [18] was to show that the numbers s and / have
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function theoretic meaning. To elaborate on this, let us first introduce
various spaces of harmonic functions defined on M.

Definition 0.1. The space •FOC(M) is the linear space of all bounded
harmonic functions defined on M.

Definition 0.2. The space ^(M) is the linear space spanned by the
set of all positive harmonic functions on M.

The theorem of [18] asserts that if M\B{\) has nonnegative sectional
curvature, and if / = 0, then d i m ^ + = d im^°° = 1. However, if
/ > 1, then d im^°° = / and dimX + (M) = s + / .

By constructing a metric at infinity (see [13]) of the asymptotically non-
negatively curved manifolds, Kasue later [14] generalized this theorem
to that situation. A complete manifold is asymptotically nonnegatively
curved means that the sectional curvature KM of M satisfies

KM(x) > -k{r(x))

for some nonnegative monotonically nonincreasing continuous function of
the distance r to a fixed point, with the property that

i;tk{t)dt< oo.

These theorems give rise to a natural question. Can the assumption on
the sectional curvature be weakened to an assumption on the Ricci cur-
vature instead? Other than just a technical improvement, there are two
main practical reasons for this question. Let us first recall Yau's theorem
[31] which asserts that a complete manifold with nonnegative Ricci cur-
vature does not admit a nonconstant positive harmonic function. If we,
for a moment, ignore the fact that the assumption is on the Ricci curva-
ture instead, one could consider the theorem of Li-Tam as a generalization
of Yau's theorem. This can be seen by applying the splitting theorem of
Cheeger-Gromoll [4], which asserts that M either has one end or it has
two small ends. Hence, if Li-Tam's theorem is valid for nonnegative Ricci
curvature, then Yau's theorem would be a corollary. However, it is unfor-
tunate that the argument in [18] and [14] used the infinity structure rather
heavily, which in general is not true for manifolds with nonnegative Ricci
curvature outside a compact set. Retrospectively, Yau's theorem is rather
amazing now that we know of examples by Sha-Yang [27], [28] of posi-
tively Ricci curved manifolds with infinite topological type. In any event,
Yau's theorem and the subsequent work of Li-Yau [22] on the heat equa-
tion indicate that the analysis is still not so complicated even though the
topology could be. This philosophy is encouraged by the work of Donnelly
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and Cheng. Donnelly [10] first observed that the space of bounded har-
monic functions on a manifold with nonnegative Ricci curvature outside
a compact set is finite dimensional. Cheng [8] showed that the space of
positive harmonic functions is of finite dimension on the same class of
manifolds. In the same paper, he also gave an estimate on the dimension
of β?°°(M) by a constant depending only on the dimension on M , the
diameter of the set where M has negative Ricci curvature, and the lower
bound of the Ricci curvature on M.

Another motivation for relaxing the curvature assumption on Li-Tam's
theorem is given by the work of the first author [16]. Using the harmonic
functions constructed in [18], he studied the structure of complete Kahler
manifolds with nonnegative sectional curvature outside a compact set. For
the purpose of possible applications in algebraic geometry, it is quite desir-
able to generalize this structural theorem or even a part of this theorem to
curvature, in particular, the Ricci curvature or the holomorphic bisectional
curvature.

The purpose of this paper is to show that for most practical purposes,
a more general version of Li-Tam's theorem is valid with an inequality.
In particular, this answers some of the questions posted above. Through-
out this paper, the Riemannian manifold M is assumed to be complete,
noncompact, and without boundary. Let us first consider the following
definitions.

Definition 0.3. A manifold is said to be parabolic if it does not admit
a positive Green's function. Conversely, a nonparabolίc manifold is one
which admits a positive Green's function.

Definition 0.4. An end £ of a manifold M is an unbounded compo-
nent of the complement of some compact subset D of M. In this case,
we say that E is an end corresponding to D.

It is also easy to see [19] that parabolicity of a manifold depends only
on its infinity behavior. Hence, it makes sense to speak of whether an end
is parabolic or not.

Definition 0.5. An end E is said to be parabolic if it is the only end
of some complete parabolic manifold without boundary. This is the same
as saying that E could be extended to a complete parabolic manifold
by attaching a compact set to its boundary. Conversely, an end E is
nonparabolic if it is nonparabolic after extending to a complete manifold
without boundary by attaching a compact set to its boundary.

It is clear that if Dχ c D2 are compact subsets of M, then the number
of ends corresponding to Dχ is less than or equal to the number of ends
corresponding to D2. Hence we say that M has finitely many ends if
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there exists b < oc such that the number of ends corresponding to D
is less than or equal to b for any compact subset D c M. One also
observes that in this case there exist an integer b0 < oo and a compact
subset DQ c M such that the number of ends corresponding to D is b0

for all compact subsets D containing DQ. We say that b0 is the number
of ends of M. Moreover, it is known that if M has a nonparabolic end,
then M is itself nonparabolic.

In the case when M satisfies the hypothesis of Li-Tam's theorem or
Kasue's theorem, it was shown that an end is large if and only if it is
nonparabolic. It is also known [29] (also see [22]) that if a complete man-
ifold has nonnegative Ricci curvature everywhere, then the notion of a
large end is also equivalent to that of a nonparabolic end. However, due
to technical reasons, it is still not known for manifolds with nonnegative
Ricci curvature outside a cocompact set whether the notion of large end
and nonparabolic end are equivalent. On the other hand, it was shown by
the authors [20] that if an end is nonparabolic then it must be a large end.
We shall also point out that Varopoulos [30] has an example of a large end
which is parabolic.

Let us now define the following spaces of harmonic functions on a com-
plete manifold.

Definition 0.6. The space βf£°(M) is the space of bounded harmonic
functions on M which has finite Dirichlet integral.

Definition 0.7. The space β?°(M) is the linear space spanned by the
set of harmonic functions on M which are bounded on one side at each
end. More precisely, ^ (M) is spanned by those harmonic functions /
which have the property that there is a compact subset D c M, such that
/ is bounded from above or below on each of the ends corresponding to
D.

Clearly, we have the monotonic relations

{constants} c %£°{M) c βT°°{M) c ^+{M) c &°(M).

The key result of this paper (Theorem 2.1) is to construct a subspace
βf'(M) of β?°(M) such that the number of ends of M is bounded
by dim^'(Λf) . When the manifold is nonparabolic, this upper bound
can be sharpened so that the number of ends is bounded from above by
d i m ^ + ( M ) , and the number of nonparabolic ends is bounded from above
by d i m ^ ° ° ( M ) . In both cases, we construct subspaces of ^+(M) and
^°(M), respectively, whose dimension gives precisely the number of
ends being considered. The surprising part about this theorem is that
there are no curvature assumptions imposed on M at all.
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We would like to remark that the notion of Martin boundary is directly
related to the boundary of the space β?+(M). However, if the manifold
is parabolic, then one can conclude that ^+(M) = {constant}. Hence,
in view of Theorem 2.1, perhaps one should consider the boundary which
is related to the space &°(M) instead. Another interesting point is that
Grigor'yan [12] has shown that the condition dim^°(M) > 1 is a quasi-
isometric invariant. It is also true that the notion of parabolicity is a quasi-
isometric invariant. On the other hand, an example of Lyons [25] showed
that the condition dim^+(M) > 1 is, in general, not a quasi-isometric
invariant. This leads us to speculate that there should be a subspace of
<%*+(M) which is quasi-isometrically stable for the purpose of detacting
the number of ends.

In the last two sections of this paper we will give some applications of
Theorem 2.1 to Riemannian geometry (§3) and Kahler geometry (§4). In
Theorem 3.1 we show that if the Ricci curvature of Mn satisfies

RicM(x) > -k(r(x))

for some monotonically nonincreasing continuous function k(r) of the
distance r(x) = d(p, x) to a fixed point p e M such that

f
Jo

rn k(r)dr < oo.

then there exists a constant C(n, k) > 0 depending on n and the func-
tion k alone so that dim^'(M) < C(n9 k). In particular, the number
of ends of M is not greater than C(n, k). In the special case when the
Ricci curvature is nonnegative on M\B{\), the argument can be simpli-
fied substantially and one can estimate the dimension of the larger space
<%*°(M) in terms of a constant depending on n and the lower bound of
the Ricci curvature on B{\). Of course, by Theorem 2.1, this implies that
the number of ends has the same upper bound.

We would like to point out that Liu has independently proven a ball-
covering lemma for manifolds with nonnegative Ricci curvature on
M\B{\) and with the additional assumption that the sectional curvature
is bounded from below on M , As a consequence, the number of ends
can be estimated in terms of the dimension and the lower bound of the
sectional curvature. At the same time, Cai [3] has also proved an estimate
on the number of ends (similar to ours) without the assumption on the
sectional curvature. After reading Cai's preprint, Liu [24] has been able
to modify his argument so that the assumption on the lower bound of the
sectional curvature is deleted. In the work of Liu and Cai the methods
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of proof are purely Riemannian geometric and are completely different in
approach in comparison to ours.

In §4, we assume that M is a complete Kahler manifold. Then by
using an argument of [16] and a vanishing theorem of [23], we will show
in Theorem 4.2 that if Mm has Ricci curvature bounded from below by

RicM(x) > -δ(m)r~2

for a sufficiently small δ(m) > 0 depending only on m, and if M is
nonparabolic, then M must have only one end. By imposing a much
weaker curvature assumption in terms of some Lq integral on the Kahler
manifold M, we will also show (Theorem 4.1) that M can only have
one nonparabolic end. This integral curvature assumption was first con-
sidered by Yau and the first author in their work [23] where they proved
a generalization of Huber's theorem in higher dimensions.

1. Green's function and parabolicity

In this section we will recall some of the fact about green's functions on
complete Riemannian manifolds. The authors considered the question of
whether any complete manifold admits a symmetric Green's function. It
turned out that the answer is affirmative and its existence was first proved
by Malgrange [26]. A construction procedure was recently developed by
the authors [19], and as a consequence these Green's functions satisfy some
nice properties which are useful for the purpose of constructing harmonic
functions in §2. Let us first outline our construction procedure.

Let Ωz be a monotonic increasing sequence of compact subdomains of
M, which gives an exhaustion of the manifold. Consider the symmetric
Green's function G (x, y) with Dirichlet boundary condition on Ω.. For
a fixed point p e M and a compact subset D of bounded as functions in
the y-variable. It was also shown (see Remark 1 of [19]) that the existence
of a geodesic ball B (R) and a corresponding end which admits a positive
harmonic function with its infimum achieved at infinity is equivalent to
the condition that M admits a positive Green's function. In particular,
the end which supports the positive harmonic function is a nonparabolic
end. Moreover, if / is a nonconstant harmonic function mentioned above
defined on a nonparabolic end e with -oo < inf̂  / = min^ / , then by the
maximum principle by taking e0 to be e\{an open neighborhood of de} ,
/ will satisfy -oo < inf / < min~ / . Hence such an / does not exist.
This proves the following proposition.
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Proposition 1.1. E is a nonparabolic end of M if and only if there
exists a nonconstant harmonic function f defined on E with the property
that -oo < mϊE f < m i n ^ / .

In fact, by using / as a barrier, one could prescribe boundary condition
on dE.

Lemma 1.1. If E is a nonparabolic endf then there exists a harmonic
function φ defined on E with the following properties:

(1) 1 >φ>0 on E;
(2) 0 = 1 on dE
(3) φ(pt) —• 0 for some sequence of points in E such that p{ —• oo
(4) φ has finite Dirichlet integral over E.

Proof Let £ b e a nonparabolic end corresponding to B (R). For
r > R, let us consider the harmonic function φr on E Π B (r) with the
boundary conditions that φr = 1 on dE and φr = 0 on EndBp(r). By
Proposition 1.1 there exists a harmonic function on E such that -oo <
infg / < mindE f - By translation, we may assume that inf^ / = 0 and
that there exists a sequence of points pt e E with pt —• oo such that

(1.1) / (/>/)-0 .

By the maximum principle and the boundary conditions, clearly

0<φr<f/minf

on E Π B (r). Hence, the gradient estimate implies that the family of
functions φr converges uniformly to a harmonic function φ on compact
subsets of E satisfying

0 / / / o n £
u hi

and
φ=\ ondE.

Clearly, by (1.1), φ satisfies condition (3). The fact that φ has finite
Dirichlet integral follows from the argument of Theorem 1.1 in [16] or
Lemma 1.4 below, q.e.d.

In the case when M does not admit one of the barriers mentioned
above, it was shown that for any fixed compact subset D of M\{p}, by
passing through a subsequence the sequence of functions

gi(y) = G^p, y) - nύn Gt{p, x)

converges to a Green's function on a compact subset. Observe that since
the oscillations of Gt{p9 y) are uniformly bounded on D, the sequence
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of functions

(1.2) Λ.(JO = Gi(p,y)-maxGi(p,x)

also has a convergent subsequence which converges to h(y) defined on
M\{p). However, Λ is defined so that A < 0 on Ω.\Z), hence h is
a nonpositive harmonic function on M\D. In fact, mϊM^Dh = -oo,
otherwise M would have a positive Green's function. This construction
implies the following lemma.

Lemma 1.2. Let e be the only parabolic end corresponding to a compact
subset B (R) of M. Then there exists a harmonic function ψ defined on
e with the following properties:

(1) ψ > 0 on e\
(2) ψ = 0 on de and
(3) ψ(Qj) —• oo for some sequence of points in e such that q. —• oo.

Proof From the construction described, the Green's function is ob-
tained by taking the limit of the sequence (1.2). In particular, if we take
Ω; = Bp{R>) for a sequence of R. —• oo, then there exists a sequence of
positive harmonic functions f. defined on e given by

φ) = max Gt{p, x) - Gt{p, y)
| V xe(Bp(R)\Bp(R/2)) | V l V

such that /) -• / . In particular, /] has boundary condition /]. = C for

C, = max G-(p,x).
1 xe(Bp(R)\Bp(R/2)) ι

Let us now consider the harmonic function ψi on e Π B (Rt) with
boundary conditions ψ = 0 on de and ψ = Ct on eΠdB {R.). Clearly,
by the maximum principle, we have

for all y eeΠB (R.). Since f. —> / , we conclude that there is a positive
harmonic function ^ defined on e such that ψt^ ψ. The function |^
clearly satisfies the desired properties, q.e.d.

We will also give some estimates on the growth of the Dirichlet integral
of the barriers constructed in Lemmas 1.1 and 1.2, which will be used in
the later sections.

Lemma 1.3. Let M be a complete noncompact manifold and let f be
a harmonic function on M\B (I), where p is a fixed point. Suppose there
are Ct > 0, R. -> oo, and harmonic functions f. on B' (R.)\B (I) with
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= ° a n d fi\dBp(Rt) =
 Ci s u c h t h a t f = ιimi-+oo ft - τhen> Siven anyi\dBp{\

a>0,

(1.3) f | V l o g ( / + α ) | < /
JM\B{\) a JdB{\) or>M\Bp{\) U JdBp{\)

and

(1.4) / |V/|2<4 sup fx f ?£m
JBP(R)\BP(\) dBp(R) JdBp{\) or

Proof. For simplicity, let us denote B{r) = Bp{r). If R. > R > 1,
then

B(R)\B(1) JB(Ri)\B(\)

a JdB(\) dr

JdB{\) υ r

where we have used the facts that fχ > 0, dfjdr > 0 on dB(R.)9 and
fχ', = 0 on 5(1). By letting i —> oo, and then R -»• oo, inequality (1.3)
follows. By observing that (1.3) implies

f |V/|2<(SUPfiW\J?W/ + α ) \ : ί °l,
JB(R)\B(1) a JdB{\) 9r '

and by setting a = s u p ^ ^ / = s u p 5 ( Λ ) ^ ( 1 ) / , we obtain inequality (1.4).
Lemma 1.4. Let M be a complete noncompact manifold and f a har-

monic function on M\B (I), where p is a fixed point. Suppose there exist

i?. —• oc and harmonic functions f. on B (R )\B (I) with ft\dB ( 1 ) =

f\dB (1) a n d fi\dB (R.) = ° SUCk t k a t f = limi^oo fi ' T h β n

pv ' py i'

/
M\Bp{\) JdBp{\)

Proof Since f. is harmonic on B^R^B^l) and f. = 0 on dBp(R.),

we have

The estimate follows by letting / —> oo.
dBp{\)

2. Existence of harmonic functions

Let us now consider the set of ends corresponding to the compact set
B (R). Suppose {eχ, , e,RΛ are the set of parabolic ends for some
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0 < s(R) < oo, and {E{, , El{RΛ are the set of nonparabolic ends for
some 0 < l(R) < oo with s(R) + l(R) > 1. Clearly the counting functions
s(R) and l(R) are monotonically nondecreasing functions of R. If M
has finitely many ends, then s(R) -> s and l(R) -* / for some integers
s < oo and / < oo. We will now construct harmonic functions on M,
which are adopted to the parabolicities of the ends.

Theorem 2.1. Let M be a complete manifold. If dim^°(M) < oo,
then M must have finitely many ends. In particular, if s and I denote the
number of parabolic ends and the number of nonparabolic ends, respectively,
then

(2.1) s + l

Moreover, if I > 1, then

(2.2) s + l

and

(2.3) / ^

Proof To prove the theorem it suffices to show that s(R) and l(R)
satisfy the estimate stated in the theorem for all values of R. Let R > 0
be arbitrary. For simplicity, let us denote s(R) - s and l(R) = I. Let
us consider the ends corresponding to Bp(R) as denoted above. For each
nonparabolic end E. there is a harmonic function φ{ defined on E{ and
a sequence of points {pl

k}^=l £Et satisfying the properties of Lemma 1.1.
Also, for each parabolic end e. there is a harmonic function ψ. defined

on e and a sequence of points {ql}™=ι £ e. satisfying the properties of
Lemma 1.2.

To prove (2.3), let us first assume that / > 2. In this case, for any
nonparabolic end, say E., by an argument of the authors [18, Theorem
6.1] one can construct a bounded harmonic function f. on M with the
following properties:

(1) /,(/i)->l aspj-oo;
(2) fι{pJ

k) —> 0 as pJ

k —• oo for and j φ i\ and

(3) o < y; < l.
By the construction and Lemma 1.4, the functions f. have finite Dirichlet

integrals. Moreover, {^} = 1 forms a linearly independent set. In fact, if
we have the identity

7=1
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for a set of constants {ax, , at} , then by evaluating on the sequence

of points pι

k and letting k -> oo, we have

7=1

Hence, dim^°{M) > I. Since the constant functions are in 3
the estimate is automatic when / = 1.

To prove (2.2), we will construct positive harmonic functions which
distinguish the parabolic ends. Let e( be a fixed parabolic end. Let us
consider the harmonic function A. r defined on Bp(r) such that ht r = 0
on dBp(r)\ei and A/jΓ = yz on e ΠdB (r). We claim that A;. r is bounded
uniformly on de( for all r. To see this, let us denote a(r) = maxaέ, A r.
Clearly α(r) > 0 by the maximum principle. If a(r) —• oc, then let us
consider the function

This nonnegative harmonic function satisfies max^ Hr = 1. By passing

through a subsequence, the gradient estimate implies that Hr-> H, which

is a nonnegative harmonic function on M with the following properties:

(1) maxde H= 1;

(2) H < ί on M\e. and

(3) H ( p J

k ) - + 0 f o r a l l 0<j<l.

The last property follows from the fact that Hr < φ. on E.. Moreover,
since i/r < 1 < ψ /a(r) + l on d ^ U ^ n d ^ r ) ) , the maximum principle
yields

Hr<wJa{r) + \ on^.n^(r).

Hence by taking the limit as r -> oo and using the fact that α(r) -+ oo,
we have H < \ on er Together with properties (1) and (2) of H,
the strong maximum principle gives that H = 1 on M. However, this
is a contradiction to property (3). Therefore, we conclude that a(r) is
bounded from above also. Let us denote the upper bound by a. The
functions ψ. + a and ψ( can now be used as upper and lower barriers to
show that the sequence of functions Az r must converge to some harmonic
function h( defined on M which has the following properties:

(1) Λ^y-oo;
(2) A.(pj[) -> 0 for all 1 < j < / and
(3) 0 < A. < a on e. for all 7 φ i and 1 < j < s.



370 PETER LI & LUEN-FAI TAM

In fact, the difference τr = hχ,r - ψt is a harmonic function defined on
ei n Bp(r) wit*1 boundary conditions τr = ht r > 0 on det and τr = 0
on ez Π dBp(r). Since Af. Γ -• λ, , the function τ r -» Λz - ^ , which is a
bounded harmonic function on et.

To see that the set of functions {/j, , fn hχ, -- , hs} forms a linear
independent set, we consider the linear combination

By evaluating the sequence of points {pι

k} and letting k —> oo, we con-
clude that at, = 0. Evaluating at the sequence of points {qJ

k} and letting
k —• oo, we conclude that ft. = 0 by properties (1) and (3) of the ht 's.
Hence estimate (2.2) is valid.

To prove (2.1) we may assume that 1 = 0. The estimate is obvious if
s = 1, so let us assume that s > 2. We will construct harmonic functions
on M such that it is bounded on one side at each end. For values of
R < r < t < oo and a constant a > 0, let us define the harmonic function
grt on Bp(t)\(eχ\Bp(r)) with the following properties:

(1) Srt-~aΨ\ o n e\^9Bp(r);
(2) g . = ψΊ on eΊ Π dB (t) and

For a fixed r, clearly mina^ grt > -a maxe ndB ,. ψχ = -A for A > 0.

We claim that Mt = max^ grt is bounded from above for all t > r.

Suppose there is a sequence /. —> oo such that 0 < Λf. = M —• oo . Let us

define the function G = M~ιgn . Clearly, G. satisfies -^/Af. < G < 1

on de2 and 0 < Gz = Ψ2/Mi on e2Γ\dBp(ί). Hence, by the maximum

principle,

Moreover, by the boundary conditions of G f , we have -A/Mi < G < 1
on Bp(t)\(e2 U (eχ\Bp(r))). Therefore, by passing through a subsequence,
G( ^ G, which is a harmonic function defined on M\(eχ\B (r)) satisfy-
ing 0 < G < 1, with G = 0 on ^ Π #5 p (r) and maxa^ G = 1. This im-
plies that G is a nonconstant harmonic function defined on M\(ex\Bp(r))
which achieves an interior maximum on de2. This is a contradiction.
Hence the Mt are bounded for all t.

Let t( —• oo be a sequence such that Mt = Mt —• 5 < oo. The same

argument as above shows that the sequence of functions grί —> g r, which
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is a harmonic function on M\(ex\B (r)) satisfying

-A + ψ2 < gr < max# r + ψ2 on e2,

and has boundary condition gr = -aψχ on eχ Π dB (r). Also B =
maxde 8r I n f a c t > w e c a n s a y m o r e a b o u t Sr The harmonic function

gr - vcάnde gr - ψ2 is bounded on e2 and is nonnegative on de2 . Since

e2 is parabolic, we have

Therefore gr - vcάnde gr > ψ2 > 0 on e2 .

Let us also analyze the behavior of gr at the other ends e. for j =
3, , s. Since ^z = 0 on βjΠdB^t^ and gz -• g r , the above argument
shows that gr is bounded at e.. Again, Proposition 1.1 implies that

g r g r

on ej ϊoτ j = 3, , s.
We will now consider the set of all gr forr>R and all a > 0.

Since we are now allowing the constant a > 0 to vary, we denote the
harmonic functions constructed on M\(e{\Bp(r)) by ga

r . Clearly, if we

take α = 0, then ^ is nonnegative. If we define min 5 ,2R) g
a

r = mj*,

max5 ( 2 Λ ) ̂  = M r

α, and ωa

r = Ma

r - ma

r for a > 0 and r > 3i?, then

m? > 0 for all r > 3R. Let us now denote W = {(a, r) \rna

r >0} . W is

nonempty, since it contains (0, r ) . In particular, W Π {(<z, r)} / 0 for

any fixed r > 3R. We claim that for (a,r) eW, the oscillations ω^ of

g^ are uniformly bounded on B (2R). If there is a sequence of αz and

a sequence of r. such that ωt = ω*' —• oo, let us consider the functions

defined by

Fi = (Zi ~ mi)/ωi,

where g. = ga

r

ι and mi = m^'. Then Fz have the following properties:

(2) \ = B p { ) i

(3) 0 < F. < 1 on ^ for all j = 3, , s
(4) /r = (^2 + 0. — mi)/ωi, where 0t is a harmonic function on e2

bounded by mi < θt < M{ and
(5) F. < {-a^x - mi)/ωi + 1 < 1 on eχ n ̂ ( r . ) , because Fi < 1 on

β ^ and Ft = {-aiψι - mi)/ωi < 0 on
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Hence, by passing through a subsequence and using the fact that ω
oo, we have F. —• F, which is a harmonic function satisfying:

(1) 0 =

(2) l = ^ ( 2 Λ )

(3) 0 < F < ί on βj for all j = 3, ,s\
(4) F — h , where A is a harmonic function on e2 bounded by 0 <

h < 1 and
(5) F < 1 .

If the sequence rχ. -> oo, then F will be a nonconstant harmonic function
on M, which is bounded by above by 1. This is a contradiction to the
fact that M has no nonparabolic end. If the sequence r. is bounded,
say limsup,^ = r > 31?, then F is only defined on M\(eχ\Bp(r)) with
boundary condition F < 0 on eχ Π dBp(r). Thus by Proposition 1.1 we
conclude that F is a nonconstant harmonic function which achieves an
interior maximum on Bp(2R). Again, this is a contradiction. Hence the
ωa

r are bounded for all {a, r) e W. Let us denote this bound by ω.

We now claim that for each fixed r > 3R, we can find a value ar = a > 0
such that ma

r = 0. By continuity, it suffices to show that for a fixed r,
ma

r <Q for some value of α > 0. If this is not the case, then ma

r>0 for
all a > 0. Similar to the argument above, as a sequence of functions in
a, the functions Ka = ga

r - ma

r satisfy:

(1) 0 = a

(2) ω Bp{2R)

(3) 0 < Ka < ω on e. for all = 3, , s

(4) Ka = ψ2+ha-ma

r, where ha-ma

r is a bounded harmonic function
bounded by 0 and ω and

(5) Ka < -aψ{ - ma

r +ω < -aψx + ω on ex Π l ^ ( r ) .

In particular, 0 < AΓfl < -aψχ + ω on ^ n Bp(2R). This gives a con-
tradiction by taking a —• oo. In fact, this argument shows that a <
ω/ max^ nB ( 2 Λ ) ψχ, which is independent of r.

Take a sequence of r. —• oo with αz = αr such that m*' = 0 and
at -> α < oo . The same argument as before implies that g. —• g, which is
bounded on e. for all 3 < j < s, and g = ψ2+h on e2 for some bounded
harmonic function h . Morever, if we set η. = g( + aiψχ on βj n B' (r.),
then ^ is harmonic with boundary conditions ^ = 0 on eχΓ)dB (r.) and
r\i = g. on deχ. Hence, by taking the limit, l i m ^ ^ ηt = η = g + aψχ

for some harmonic function y/ which is bounded on eχ. This proves the
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existence of a harmonic function g on M which is bounded on e. for
3 < j < s. Also g - ψ2 is bounded on e2 , and g + aψχ is bounded on
eχ for some a > 0.

Clearly, for any end e. for 2 < j < s we can find a harmonic function
gj such that gj - ψχ is bounded on e{, gj + a.ψ. is bounded on e for
some Oj> 0, and g. is bounded on both sides on all the other ends. We
now claim that the set {1, g2, , gs} forms a linearly independent set.
In fact, let us consider the identity

7=2

Evaluating at the sequence of points {qι

k} and letting k -> oo we see that

6 αz = 0. Since aχ > 0, this implies that 6. = 0. Hence 6 = 0. This

establishes (2.1).

Remark 2.1, Let %?\M) be the space spanned by constant functions

and all the harmonic functions constructed in the proof of the theorem for

the ends of M\Bp(R) for any R > 0. Then &\M) c JT°(M), and the

number of ends of M is less than or equal to the dimension of M*'(M).

Remark 2.2. Let us point out that for a fixed R > 0, because of the

behavior of the harmonic functions ht and g- constructed in the theorem,

their linear combinations are also bounded on one side on each end.

3. Applications to Riemannian geometry

In this section we will consider the manifold Mn whose Ricci cur-
vature has a lower bound given by -k(r), where k(r) is a nonnegative
nonincreasing continuous function of the distance r to a fixed point which
satisfies the integrability condition

rn~Xk{r)dr<oo.

We will give an estimate on the dimension of the space %?\M) in terms
of k and n, which implies an upper bound for the number of ends of
M. For the definition of Jf\M), see Remark 2.1. Let us first derive
some estimates concerning the Jacobi equation on such manifolds. The
integrability conditions on k for these estimates are weaker than that
which is required for the upper bound of βf'(M). The following fact was
proved by Abresch in [1]. However, an outline of the argument is included
for the sake of completeness.
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Proposition 3.1. Let k: [0, oo) —• [0, oo) be a continuous nonincreas-

ing function such that /0°° rk(r) dr < oo. For R>0, let g be the solution
of the equation

g\r) = k{R-r)g{r)

on [0, R] with initial conditions g(0) = 0 and g'(0) = 1. Then there
exists a constant β > 0 depending only on k such that

Rr g(r)

Proof Define kχ(r) = f™ k(s)ds. By the assumption on k it is easy
to see that kx is well defined and /0°° kx(r)dr = /0°° rk{r) dr is finite. Let

uR be the solution of

φ' = φ2-k(r)
on [0, R] with boundary condition uR(R) = 0. Since φ = 0 is a subso-

lution and kχ is a supersolution, it can be shown that 0 < uR < kχ on

[0, R]. Therefore u = l i r n ^ ^ uR exists and satisfies u — u — k on

[0, oo), and 0 < u{r) < kχ{r) for all r > 0. In particular,
/•OO λ OO

/ u(r)dr< kχ{r)
Jo Jo

< oo.

If we define z(r) = exp(- /o

r u(s) ds), then one checks that z(0) = 1,
z(f) > 0, and z" = kz. Now let i? > 0 be fixed and let g be the
solution of

g'\r) = k{R-r)g{r)

on [0, R], with initial conditions #(0) = 0 and #'(0) = 1. Note that g
is increasing and g(r)/g(R) < 1. To prove the lower bound, let us define
h{r) = g(R - r)/g{R). Then h satisfies

h'\r) = k(r)h(r)

on [0,R]9 with boundary conditions λ(0) = 1 and h(R) = 0. By the
maximum principle, z > h on [0, R], and hence z - h is convex. There-
fore if r e [0, R], we have

z(r) - h(r) < j(z(R) - h(R)) + (l - j) (z(0) - *(0)) < j

and

h{r) > z(r) - ^z(R) > z(R) (l - £ ) >

where /? = exp(-/0°° u(s)ds) > 0. By the definition of h, we conclude
that
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for all r e [0, R]. This completes the proof of the proposition.
Lemma 3.1. Let Mn be a complete noncompact manifold. Suppose the

Ricci curvature of M satisfies

RicM(x)>-k(r(x)),

where k: [0, oo) —• [0, oo) is a continuous nonincreasing function of the
distance r(x) = d(p, x) to a fixed point p e M, such that /0°° rk(r) dr <
oo. Given 0 < δ < 1, there exists a constant Cx > 0 such that for all
R>0 and xedBp(R),

Vχ{δR)>CχR.

Proof For x e dBp(R) with R > 4, let γ be a minimal geodesic from
dp

p to x, parametrized by arclength with γ(x) = R. Denote q =
For y e Bχ(R) and d(x9y) = t, the triangle inequality implies that
d{p, y) >R—t. Hence RicM(y) > -k(R-t), because k is nonincreasing.
Let g: [0, R] -• R be the solution of

with initial conditions #(0) = 0 and g'(0) = 1. Using the same argument
as in [6] and applying Proposition 3.1, we have

V<M < Vχ(R)-Vχ(R-2) 5«_2g
n{

Vχ(R-2)~ Vχ(R-2)

- 2

where C2 is a constant depending only on n and k .
Hence

(3-D

On the other hand, using a similar argument, we have

~ 3 '

where C3 is a constant depending only on n, ί, and k . Combining this
with (3.1), the result follows, q.e.d.

We will now give an estimate for the gradient of the barriers constructed
in §1. Let us recall a localized version of Yau's gradient estimate for
harmonic functions which was proved by Cheng-Yau [9] (see also [22]).



376 PETER LI & LUEN-FAI TAM

Lemma 3.2. Let M be an n-dimensional complete Riemannian mani-
fold which may have boundary. Suppose Bχ(2R) is a geodesic ball centered
at x €M with radius 2R. Let us assume that Bχ(2R)ΠdM = 0 . Iff is
a positive harmonic function defined on Bχ(2R) and if the Ricci curvature
of M satisfies RicM > -k on Bχ(2R) for some constant k > 0, then
there exists a constant C > 0 depending only on n such that

for all y e Bχ(R).
Lemma 3.3. Let Mn be a complete noncompact manifold and p a

fixed point. Suppose there is a constant C4 > 0, such that the Ricci curva-
ture of M satisfies RicM(jc) > -C4r~2(x), where r(x) = d(p, x) is the
distance function to p. Let Ro > 0, and let f be a harmonic function
on M\Bp(R0) such that f = lim/ - > o o yj, where f. is the harmonic func-
tion on 5p(JR.)\5p(i?0) satisfying fj\dBp{Ro) = 0, f ^ ^ = C > 0, with
R —• oo. Then there is a constant C6 depending only on n and C4 such
that for R> RQ

SUP | | S f V ( R I 5 \ ( ) ί
i n t V\Rn> \ ) JdBp{R0)

Proof. For simplicity of notation, let us assume that RQ = 1. By
Lemma 1.4, we have

(3.2)

The Bochner formula implies that, for all c e ΘBp{R) and R > 1,

Δ|V/| > -a(R)\Vf\

on Bχ(R/5), where -a = -a(R) is the lower bound of the Ricci curva-
ture of Bp(6R/5)\Bp(4R/5). In particular, a < 2C4R~2 . Since u(y, t) =
exp(-αί)|V/|(y) is a subsolution of the heat equation on Bχ(R/5) x
[0, oo), we can apply the mean value inequality in [21] to u(y, t) on
B (R/5) x [0, R2/l00] and obtain

|V/r<4 sup / / ^

ί
JB
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where C5 is a constant depending only on n and C 4 . Hence, by (3.2),
there exists a constant C6 depending only on n and k such that

sup |V/|2 <
dBp(R)

where we have used Lemma 3.2 and the curvature assumption, q.e.d.
We will now apply this result to some particular cases.
Corollary 3.1. Let Mn be a complete noncompact manifold satisfying

the curvature assumption of Lemma 3.1, and let f be a harmonic function
as in Lemma 3.3. Then f has bounded gradient. In particular, every
harmonic function in %?\M) has bounded gradient.

Proof. Since /0°° rk(r) dr < oo and k is nonincreasing, k must satisfy

k(r) = o(r~2). Following the same notation as in the proof of Lemma 3.3,

suppose |V/| is not bounded. Then there exists Rt -• oo such that

limsup sup |V/| = oo.

We may also assume that sup5 ίR\\β m l^/l = SUVΘB (R.) \^f\ ^ Lem-

mas 3.1 and 3.3, there is a constant C7 independent of / such that

sup |V/|2 < C7 sup |V/| / y~
dB (Rj) B (Rt)\B (I) JdB (I) o r

ί df
= CΊ sup |V/| / — ,

dB(Rt) JdB <l) ό T

which implies that sup a 5 ( Λ ) |V/| are uniformly bounded; this is a con-

tradiction, q.e.d.

A similar argument will also prove the following corollary.
Corollary 3.2. Let M and f be as in Lemma 3.3. Suppose that

l i m ^ Vχ(r{x)/S) = oo. Then |V/|(x) = o(r(x)).
Theorem 3.1. Let Mn be a complete noncompact manifold and p e

M a fixed point such that RicM(x) > -k(r(x))f where r(x) = d(p, x).
Suppose that k: [0, oo) —• [0, oo) is a nonincreasing continuous function
such that f™rn~ιk{r)dr < oo. Then dim^F'(M) < C(n,k) for some
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constant C depending only on n and k. In particular, the number of
ends of M is less than or equal to C{n, k).

Proof If n = 2, the theorem follows from [1], hence we may assume
that n > 3. Let Ή be the Ricci model of dimension^ (see [7]) which has
Ricci curvature in the radial direction given by -k(d(p, x)), where p_ is
the pole of Jf and d is the distance function of M. Let us denote A(r)
to be the area of dBj(r). By the assumption on k we see that A(r)/rn~ι

is bounded from above and below by some positive constants. In fact this
is true if /0°° rk(r) dr < oo (see [11]). Hence the function

r 0 0 1 / / °°— \
φ(r)= = — ( / A(ήk(t)dt)ds

Jr A{S) \Js )
is well defined on (0, oo). Clearly, φ is positive and satisfies l i m ^ ^ φ(r)
= 0 and φ1 < 0. Let g be the function on M such that g(x) —
φ(r(x)). Then

—71

Ag = φAr + φ >=rφ+φ —k
A

in the sense of distribution. This follows from the fact that φ' < 0 and
that Δr < AΆ in the sense of distribution. Let Ro > 0 be such that
Φ{R0) < \ 9 and note that RQ depends only on n and k. If / is a
nonconstant harmonic function in βf'(M), then / has bounded gradient
by Corollary 3.1. We now claim that

sup |V/ |<2 sup |V/|.
M B

P(Rθ)

Without loss of generality, we may assume that supM | V/| = 1. Then

(3.3)

By the definition of %?'(M), there exists Rχ > RQ such that / = γ%=χ vt,
where each υ. is bounded on one side of each end of M\B (R{). Let E
be an end of M\Bp{Rχ). If v is a harmonic function defined on M which
is positive on E and if JC is a point in E with r(p, x) >2Rχ, then by
applying Lemma 3.2 to the ball Bχ(r(p, x)/2) and using the curvature
assumption there is a constant C8 independent of υ such that

(3.4) \Vv\(x)<Csr
l(p,x)v(x).

Since all the vi 's are bounded on one side on E, there are constants
a\' ' " > am a n c * £j = ±1 such that the harmonic functions ui = at +
eiυi are positive on E. Hence, by applying (3.4) to uχ, , um we can
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estimate the gradient of / by
mm m

(3.5) IV/l < £ \Vvt\ = £ |VM/| < Csr-\p, x) £ «.(*).
i = l i = l ϊ = l

For any given ε > 0, inequality (3.3), the fact that l i m ^ ^ g(x) = 0, and
the maximum principle imply

+ g(x) - (sup(|V/| + gή < C8ε i f ; Ui{x) + 1 j

for all x e E. Letting ε —• 0, we conclude that

( | | )
E dE

Since E is any end of M\Bp(Rχ), we have

(3.6) sup (|V/| + * ) < sup

We now claim that in fact

sup (|V/| + * ) < sup (|V/| + g).
M\Bp(R0) dBp{Rχ)

Assuming the contrary, by the maximum principle and the fact the \Vf\+g
is subharmonic on M\Bp(RQ), sup M ^ ^R j(|V/| + g) must be attained at
infinity and so

sup (IV/l + g) > sup (IV/l + g).

However, this violates (3.6). In particular, this implies that

sup (|V/| + g) < sup (|V/| + g) < sup |V/| + \
M\Bp(R0) dBp(R0) dBp(RQ)

= sup |V/| + ±sup|V/|.
dBp(R0) M

Therefore

(3.7) sup|V/|<2 sup |V/|.

Let us now consider the codimension-1 subspace M^{M) of
defined by

For any / e %?\M), the fundamental theorem of calculus gives

sup f2<l6R2

0 sup I V/l2,
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which together with (3.7), implies

sup f2 <64R2

Q sup |V/|2.
Bp(ΛRQ) Bp(R0)

Applying Lemma 3.2 to the function / + sup5 ( 2 Λ } \f\ we conclude that

sup f2 < 32R2

0 sup |V/|2

(3.8) <C9(l+R2

0k(0)) sup ( / + sup | / | ]

<4C 9(l+Λjfc(0)) sup / ,

where C9 is a constant depending only on n . However, the mean value
inequality of Li-Schoen [17] when applied to the nonnegative subharmonic
function | / | asserts that there exists a constant Cl0(n) > 0 depending only
on n such that

Vp(4R0) sup f2 < exp(C10(Λ)(l + R0Jk(Q))) ί / ,

where Vp(4R0) denotes the volume of Bp(4RQ). Hence, combining with
(3.8), we have

(3.9) V(4R0) sup f2 < Cn exp(C12i?oV/fc(O)) / f,

with C n , C1 2 depending only on n . On the other hand, a lemma of the
first author [15, Lemma] implies that there exists a function fQ in
such that

ί 2 2

d i m ^ (Af) / fQ< υ (4R0) sup £ .
JBP(4R0)

 P Bp(4R0)

Hence applying (3.9) to f0 yields the estimate

p ^ ' — 11

Therefore,

dim^'(M) < Cn exp(CnRoyk(O)) + 1,

as to be proven. The estimate on the number of ends follows from Theo-
rem 2.1. q.e.d.
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When the Ricci curvature is nonnegative outside a compact set, say
Bp{\), then one can actually estimate the dimension of a larger space,

%* (M), by a much simpler argument. In that case, we can take g to be
0 and Ro = 1 in the proof of Theorem 3.1 and we do not need to use
Lemma 3.3. Let us just state the theorem without proof.

Theorem 3.2. Let M be an n-dimensional complete noncompact man-
ifold which has nonnegative Ricci curvature outside a unit geodesic ball
Bp{\) centered at p e M. If k > 0 is a constant such that the Ricci cur-
vature on B (I) is bounded from below by -k, then there exist constants
C 1 3 , C 1 4 > 0 depending only on n, such that

dim^°(M) < C 1 3 exp(C14λ/fc) + 1.

In particular, the number of ends of M is not greater than C13exp(C14(λ/fc)

+ 1.
We would like to remark that when M has nonnegative Ricci curvature

everywhere, we may take the ball Bp{\) — {p} in (3.7) and obtain the
estimate

sup|V/|<|V/|(/7).
M

However, since |V/| is a subharmonic function on M, the maximum
principle implies that |V/| must be identically constant. Applying the
Bochner formula to the constant function |V/| again, one concludes that
V/ is a parallel vector field on M. This recovers the consequence of the
splitting theorem of Cheeger-Gromoll asserting that if M has more than
one end, then it must be the product of a compact manifold and the real
line.

4. Applications to Kahler geometry

Throughout this section, we will consider complete Kahler manifolds

which are noncompact without boundary. We will apply Theorem 2.1 to

study function-theoretic properties of the ends.

Theorem 4.1. Let M be a Kahler manifold of complex dimension m.

Suppose R(x) is a pointwise lower bound of the Ricci curvature of M, i.e.,

Ric/7(jc) > R(x)gij for x eM. Let R_(x) = max{-i?(x), 0} denote the

negative part of R. If fM R_ dV < oo, and the Lq-norm of R_ over the

geodesic ball of radius r centered at some fixed point p e M satisfies
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for some q> m and β < 2/(m-2), then M has at most one nonparabolic
end.

Proof. If M has more than one nonparabolic end, then by Theorem
2.1 there exists a nonconstant bounded harmonic function / on M with
finite Dirichlet integral. However, by a lemma of the first author [16,
Lemma 3.1], the function / must be pluriharmonic. On the other hand,
it was shown by Li-Yau [23] (also see [16]) that under the curvature hy-
potheses there are no nonconstant positive pluriharmonic functions. This
contradicts the assumption that M has more than one nonparabolic end.

Theorem 4.2. There exists a constant δ(m)>0 depending only on m
such that if M is a nonparabolic Kάhler manifold of complex dimension
m with Ricci curvature satisfying RicM(x) > -δ(r(x))~2, where r(x) =
d(p, JC) is the distance function to a fixed point p e M, then M has only
one end.

Proof Let us assume that M\B (I) has more than one end. The
nonparabolicity and Theorem 2.1 imply that there exists a nonconstant
positive harmonic function / by using the construction in §2. It is clear
that if we can establish that the Dirichlet integral of / satisfies

(4.1)
Bp(r)ΠE

for each end E, then the argument in the proof of Theorem 4.1 applies to
this case. However, Corollary 3.2, the proof of Theorem 2.5 in [17], and
the construction of / imply that f(x) = o((r(x))2). Property (4.1) now
follows from Lemmas 1.3 and 1.4.
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