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SHORTENING SPACE CURVES
AND FLOW THROUGH SINGULARITIES

STEVEN J. ALTSCHULER & MATTHEW A. GRAYSON

Abstract

When a closed curve immersed in the plane evolves by its curvature vec-
tor, singularities can form before the curve shrinks to a point. We show
how to use the curvature flow on space curves to define a natural contin-
uation of the planar solution for all time.

0. Introduction

When a simple closed curve in the plane evolves by the curvature flow,
it shrinks to a point in finite time, becoming round in the limit ([4] [5]).
When the curve is not simple, however, singularities can form in finite time
as loops pinch off to form cusps. The classical machinery for short-time ex-
istence of solutions to the curvature flow breaks down when the curvature
becomes unbounded. This is not to say that it cannot be continued. In [2],
Angenent shows that the singular curves are nice enough that, with some
possible trimming, they may be used as initial data for the curve shorten-
ing flow. Solutions after the singularity have fewer self-intersections than
before.

About ten years ago, Calabi suggested a method for flowing through
planar singularities using space curves. The idea is to take a family Γ of
embedded space curves limiting on the immersed plane curve, and then
define a flow through the singularity as the limit of the flows in Γ.

Several points must be checked:
(1) The space curves must be non-singular for longer than the planar

curve.
(2) The space curves must converge to a planar curve at later times.
(3) The limit planar curve should be independent of Γ.
Definition 0.1. A ramp is a space curve which steadily gains height,

that is, its tangent vector has positive vertical component at all points.
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We use periodic ramps to approximate the planar curve.
Definitions 0.2. Let Γo(/) be an evolving immersed closed curve in the

plane, non-singular for t e [0, ω0]. Let Γλ(0), λ e (0, 1] be any family
of periodic ramps which project vertically onto Γ0(0) and have vertical
period λ. Γλ(t) then evolves by the curvature flow for space curves.

Main theorem. Given Γ as above, we have the following:
(1) For all λ> 0, Γλ exists and is smooth for all time.
(2) The limit as λ -> 0 of Γλ(t) is a smooth curve at all but a finite

number of times ωt e [ω0, ωn]. For t>ωn, the limit is a point.
(3) The limit agrees with the planar evolution away from the singularities.
(4) The limit planar curve is independent of the choice of ΓA(0) and

hence is unique.
In fact, the limit is unique if Γ0(0) has zero two-dimensional Haussdorff

measure [7].
The paper is organized as follows.
First, we introduce necessary computational machinary. Then, we dis-

cuss long time behavior of solutions. At first inspection, a result of this
nature seems rather tricky for space curves due to a bizarre phenomenon;
inflection points may develop during a time interval on which the curva-
ture is bounded. When this happens, the curvature becomes zero and the
torsion infinite at a point! Nevertheless, we show that the curve remains
smooth.

Next, as an illuminating example, we explicitly compute the evolution
of helicies. Then we show that all periodic ramps have bounded curvature
for all time and in fact converge to straight lines in infinite time. In the
case of closed curves, singularities will develop [1]. Indeed, ramps are
quite special.

In the last two sections, we prove an area estimate crucial to the conver-
gence of ramps as their slopes go to zero, and we prove the main theorem.

It is the authors' pleasure to thank Richard Hamilton for many helpful
discussions. We would also like to thank the following people for their
comments and encouragement: S. Angenent, E. Calabi, M. Gage, and L.
F. Wu. The authors wish to thank the Institute for Mathematics and its
Applications, University of Minnesota, for providing an excellent research
environment.

1. The Evolution

To set notation, the Frenet formulas for the derivates of the tangent,
normal and binormal vectors are
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a fl\ /q k

Note that the existence of a Frenet frame requires ||fcN||2 > 0. That is, a
particle traveling along the curve must experience acceleration.

The "curve shortening" evolution equation is given by

(1.2) JΪ = k'N>

where γ : Sι x [0, ώ) —• R3, y( , 0) is a smooth curve, and k - N is
the curvature times the normal to the curve. N is not always defined,
though k N always makes sense. Short time existence of solutions to
this differential equation follows from a general theorem proved in [4]. Of
course, this evolution also makes sense for nonclosed curves in R .

Theorem 1.3. Let y( , 0) be a smooth, immersed, closed curve in R3.
Then, for some ε > 0, solutions γ: Sι x[0, ε) —• R2 to the "curve shrinking
flow" exist. Furthermore, these solutions are smooth.

It is often necessary to commute ^ and §-t. These computations are
similar to those appearing elsewhere; we include them, however, to show
that torsion does not matter.

Lemma 1.4. The operators §-t and f-s commute according to the fol-
lowing rule

^'^ dtds~ dsdt+ ds'

Proof In this discussion, u is a time independent parametrization of
the circle. Derivatives with respect to arc length are given by

( L 6 ) dS = vdϊι>

where v = |§£|. υ(u, t) can also be thought of as an "arc length density"
along the curve, i.e., ds - vdu.

The evolution of v is computed, as usual, by differentiating v2 =
<£>§£>• Thus,

dt~ \dtdu' du/ \dudt'du



286 STEVEN J. ALTSCHULER & MATTHEW A. GRAYSON

radius

FIGURE 1. A TORUS CURVE

From | j = -k2υ , one computes

( U )

d d

With these formulas, we may now compute all related flows for the
evolution. The evolution of the tangent vector T is

2

(1.9) dτ_
dt

d2τ
ds2

dT
ds

T.

The evolution equation for k2 = \d2T/ds2\2 is

(no) »-[\°Σ
y ' dt\\ds

d2τ
ds2 Ί - d2T

ds2

dT

ds

k and τ evolve in the following manner:

(112) ^ ί - ^ l + 2 I ^
{ ] dt~ d i + ι k d s d s

1 (dk\2

Here is the strange behavior of τ alluded to in the introduction.
Namely, that the torsion can blow up even though the curvature remains
bounded. Helices on a torus exhibit this behavior.

The evolution equation moves points on the outer edge of the torus
inwards, while, if the pitch is sufficiently small, it starts to move points of
the curve on the inside of the torus outwards. Before too long, though,
the whole curve moves within the inner radius, so the inside points must
change direction (see Figure 1). At that time an inflection point (k = 0)
is created. We show that the evolution equation ignores the singularities
in the torsion.
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The following theorem states that, regardless of the behavior of τ ,
bounded curvature k implies long-time existence.

Theorem 1.13. If k is bounded on the time interval [0, a), then there
exists an ε > 0 such that γ( , t) exists and is smooth on the extended time
interval [0, α + ε).

Proof. The proof proceeds by induction. Assume that k2 = | | j | 2 < M

on our time interval. The first induction step is to bound \d2T/ds2\2.

Then we bound all higher derivatives.
By the rules for differentiation we obtain

(1.14)

dιτ
ds2 ds2 ds3

2

+ 6
dT
ds

2 d2τ
ds2

+ 4

Using the facts that (T, d2T/ds2) = -
{X, Y}< \X\\Y\ we have

dzT 4
ds2

a T
dsz

-2
d3τ
ds'

-M
1/2 d2τ

ds'

(1.15) 16M
dιT

ds'

d2τ
ds2

2

+ 16M
d2τ
ds2ds2

so the maximum principle implies that \d2T/ds2\2 has at most exponen-

tial growth. Therefore, \d2T/ds2\2 remains bounded on the (finite) time

interval.
From above, we conclude that | ^ | 2 is bounded. Therefore, at time a,

the tangent vectors have a well-defined limit and give a C 1 curve.
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In general,

d (

dt\ds

rd2τ

as2
ds

dτ\
"+ι' ds r

dT 2 c.n
d"T
ds"

2n
'd"τ

ds2

(1.16)

djτ dkT

0<iJ,k<l

where the coefficients Nijlc = Nijk(n). Thus

d_

dt

\d"T

ds"

\d"τ
ds2\\ds"

2)

- 2
d"+iτ

ds"

(1.17)

dT

ds

d"τ
ds"

4n

dT

ds

d2τ
ds2

11
dnτ
ds"

d"τ
ds"

+ 2 Σ

dT

ds

N
"ijk

-2

d"τ
ds"

dιτ
ds'

2

dJτ
dsj

dkτ
dsk

d'T

ds'

An application of the Peter-Paul inequality and the induction hypothesis
allows us to rewrite our equation in the form

(1.18) % ί <
d2x
ds2

(A, B constants).

The maximum principle shows that \dnT/dsn\2 increases at most expo-
nentially. Hence this term is bounded on the time interval.

Therefore, \§-t[dnT/dsn]\2 are all bounded and the tangent vectors at
time a may be integrated to give a smooth curve. The short-time existence
theorem now allows us to flow for some more time.

2. Evolving Ramps

The helix is a good example, so we include an explicit computation of
its evolution.
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time

FIGURE 2. EVOLVING HELICES WITH VARYING SLOPE

Example. The helix is parametrized by

(2.1) γ(z, t) = (A(t)cos(z)9A(t)sin(z)9B(t)z),

where A and B are functions only of time. The arc-length derivative is

and the evolution of γ is explicitly given by

(-A cos(z), -A sin(z), 0)

(A2 + B2) '

Hence

(2.4) Mσ^4 , / A2 n2\~ι OB Λ

and solutions are given by

(2.5) ^

Note that, for positive B, A(t) converges to but never reaches zero (see
Figure 2).

The curvature k = A/(A2 + B2) -» 0 as ί -> oo whereas the torsion
τ = 5/(v42 + B2) -> B~ι as ί —• oo. So the limiting curve is a straight
line, and the non-zero torsion reflects the fact that the frame is twisting
along the limiting curve.

Now we are ready to use an argument which shows that the curvature
remains bounded for all time on a curve which has positive inner product
with a fixed vector. It was pointed out to us that Ecker and Huisken [3]
employ similar type arguments.

Theorem 2.6. Let γ(0) be a ramp. Then
(1) γ(t) is a ramp for all t>0,
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(2) k is bounded from above for all time, and
(3) γ converges to a straight line in infinite time.
Proof Let V = £ be the unit tangent vector field to the height coor-

dinate. Then (T, V) > 0 initially. A computation shows

(2.7) §-(T, V) = ^ ( Γ , V) + k2(T, V).
o ι as

The maximum principle implies that the minimum of this quantity is
increasing. This proves the first assertion.

Since (T, V) > 0 for all time (that is, the curve remains a graph), we
may divide by this term! We obtain the following evolution equation:

dt\(T,V) = «1 ( k \
ds2\(T,V)J

τ2

*(T,v)ds{ ' }ds\(τ,v)J (τ,v)

The maximum principle implies that the maximum of k/(T, V) is
decreasing. From | |(Γ, V)\\ < 1 it follows that the maximum of k is
bounded by some constant for all time. We may then use the arguments
of the previous section to imply infinite time existence of solutions.

Integrating over one period of the ramp yields

(2.9) f°° f k2dsdt< length(y(0)).
Λ=0 Jy(t)

The fact that j-t J ,t)k ds is bounded by a constant for all time and our
previous estimates implies that k -> 0 as t -> oo. Hence the ramp
becomes a straight line.

3. The area estimate

In order to prove convergence as / —• 0, we must have some way of
controlling the separation of two nearby solutions over time. We will let
/ denote the length of Γ0(0).

The area estimate 3.1. Given 0 < β < a < 1, the area bounded by the
curves π(Γa(ή) and π(Γβ(ή) is <(l + 2πt)y/ά.

The central tool is a lemma about the area of minimal disks spanning
an evolving space curve.

Lemma 3.2. Let A(t) be the area of the minimal disk D(t) bounded
by a closed curve C(t) in space evolving by the curvature flow. Then Af(t)
<-2π.
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C

FIGURE 3. THE MINIMAL DISK SPANNING A SPACE CURVE

Proof. The first variation of the area of a minimal disk is zero, so the
only change in area comes from the motion of the boundary, namely the
curve. This area change is the inner product of the curvature vector of
the curve with the outward pointing vector tangent to the disk. This is
minus the geodesic curvature, kg, of the boundary (see Figure 3). The
Gauss-Bonnet theorem states that 2π = fDκda + fck ds, where K is
the Gaussian curvature of D. Since D is minimal, K < 0 and the lemma
follows.

Proof of area estimate. How are we going to get a minimal disk into
the picture when all we have are ramps (of different periods, yet)? Here
is the trick. Let p be some point on Γ0(0). Take n turns of Γα(0),
where n — \\jy/oi\, connecting two lifts of p . Do the same for Γ« with
n = \l/y/a~\. Now vertically translate the two coils so that their endpoints
have z coordinates ±na/2 and ±nβ/2. Finally, connect the two upper
endpoints of the coils with a vertical line of length n(a — β)/2, and the
same for the lower endpoints. We now have a closed curve which bounds
a disk of area < n2l(a - β)/2 + nl(a + β) < 0.9/ if a < 0.01 (see Figure
4, next page).

The coils will evolve by curve shortening. Their endpoints will keep
fixed z coordinates, and the connecting arcs will also evolve by curve
shortening with boundary conditions determined by their endpoints. Since
the connecting arcs are ramps, and the behavior of their endpoints are
controlled by the curves Ta(t) and Γβ(t), they exist and are smooth for
all time.

If we were to let these endpoints go freely, the area of the minimal disk
spanned by this closed curve would decrease faster than 2π. Since we
are holding the endpoints back, we increase the area rate by the sum of
the four exterior angles, which is < 4π . Hence, the area of this disk is
bounded by / + 2πt for all time.



292 STEVEN J. ALTSCHULER & MATTHEW A. GRAYSON

FIGURE 4. THE DISK BETWEEN THE TWO RAMPS

FIGURE 5. THE DISK AND ITS PROJECTION AT A LATER

TIME

Now notice that the two arcs connecting the coils have a reflection in the
xy-plane symmetry in both their initial conditions and in their boundary
conditions for all time. This implies that the symmetry is maintained
for the connecting arcs themselves for all time. Therefore, the projection
of the minimal disk is a planar surface covering the region between the
projections of Γα(ί) and Γβ(t) at least n times (see Figure 5).

It follows that the area between the curves is bounded by (/ + 2πt)y/a.
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4. The dilation-invariant estimates

The area estimate gives us some control over nearby solutions. In order
to get better convergence results, we need bounds on curvature and its
derivatives after a short time.

Definition 4.1. Consider a space curve which also has the good fortune
of being a graph r = r(z). We define the graph flow to be

(4 2)

It is easily seen that a graph r = r(z) evolving by the graph flow differs
from the curve shortening flow only by a tangential motion.

A theorem of the following type was first brought to our attention by G.
Huisken. Our proof uses a technique taught to us by R. Hamilton (lecture
notes).

Theorem 4.3. Let r = r(z, t) be a solution to the graph flow for (x, t) e
[0, δ] x [0, a) = Ω. Assume that | r z | < 1/10 holds on Ω. Then

(4.4)

is true on Ω.
Proof It is easy to compute the following equalities from the above

equation:

(4 5) (I'zl2), = γ^τh ~ 2(1 + \τf)\τt\
2 - 4(rz , r,)2

and

(46) (Ir I2)

The maximum principle implies that | r z |
2 < 1 is preserved for all time.

Therefore, we may consider the quantity

(4 7)
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Thus,

Q Qzz 8(l + | r z | 2 )(r z , r ,) 2 | r , | 2 8(r z, r,)(r,, rt<)

' l + | r z | 2 ( l - | r z | 2 ) 3 ( l - | r z | 2 ) 2

ΆrJ 4(r,z,rz)|r/

l - | r z | 2 ) ( l + |rz|
2) (1 - | r/)( l + |rz|

2)

(l + |rJ2)|rJ4 4(r,, rz)
2|r,|2

( l - | r z | 2 ) 2 ( l - | r z | 2 ) 2

(4.8)
| r / ( l - | r z I Ύ ( l - | r z Γ)( l + | r z n

Λ I 12 ^ i 14

( l - | r z | 2 ) ( l + | r z | 2 ) ( l - | r z | 2 ) 2

1

1 + Ir/ + 1 - |rz|
2

< z | 2 l 2
r81r t z | | r z | | r j 2 - |r j 4

 | 4 |rJ |rz | |Γ < | 2 - 2|r

Let Z be the quantity in braces. Since we are assuming that |r z | <
1/100,

^00 + A J_ 2. i _ 2 . 1 0 0 ,2_ | r ,4

(4.9)

Therefore

(4.10)

It is not hard to check that if / = z(δ - z), then gzz < g2 for g =

δ2f~2 . So, letting h = l/t + g we have

(4.11) (β - h)t <{Q- h)zz - (Q - h)(Q + h).

Since max(Q( , 0) - A( , 0)) < 0, the maximum principle implies Q < h
for all t > 0 and the result follows.
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5. The convergence of ramps

Definition 5.1. A space curve is ε-flat, ε-veryflat, or ε-extremely flat if
given any two points connected by an arc of length < ε, the angle between
their tangent vectors is < 0.1, < 0.01, or < 0.001, respectively.

Note that ε-extremely flat implies lOε-very flat and therefore lOOε-flat.

Lemma 5.2 (graph-like). If a curve has f k2 ds < M, then it is

l/(lO2M)-flat, l/(lO4M)-verγflat, and I/(106M)-extremely flat.
Proof. These are immediate consequences of the Holder inequality ap-

plied to the total change in angle / \k\ ds .
Lemma 5.3. Let γ0 be a curve with sup|fc| < M and let yλ be a curve

which is ε-flat, with ε <c 1/Af, so that, a priori, yχ is much wigglier than
γ0. Now suppose further that both curves are ramps with very small vertical
periods < 10~6ε2, and that the area between their planar projections is
also < 10~6ε2. Then γ{ is actually C1 close to γQ, so that it is at least
l/(l000M)-veryflat.

The important point is that the conclusion is independent of ε.
Proof Note that γ0 is really l/(103M)-extremely flat. Because of the

small pitch of the ramps, every tangent vector to both curves is nearly
horizontal. If any tangent vector to yχ differed significantly from γ0 in
either location or direction, the curves could not get close enough to keep
the area between them small.

Lemma 5.4. Given a positive ε < 10~4 and a curve which is ε-veryflat
at time t0, then for all tχ e [t0, t0 + ε 3 ], the curve is ε-flat.

This is a generalization of an argument found in [2].
Proof It suffices to show that the tangent vectors to the curve do not

themselves move very far in space or direction. In time ε 3 , no curve
can leave a tubular neighborhood of radius λ/2ε3/2 < ε/50 about itself;
compare the curve to a shrinking sphere about a point outside that neigh-
borhood. Suppose that some tangent vector T(pχ, tχ) differs by more
than 0.05 from T(p0, t0), with d(p0, p{) < ε/5 . Then there would be a
plane nearly parallel to T(p{, tχ) with at least two intersections with the
curve at time tx. At time t0, however, the curve points in the direction
T(p0, t0) at the point p0 . Since the curve turns very slowly (it is ε-very
flat), it crosses the plane at a sufficiently steep angle so that the connected
component of the intersection of the plane with the tubular neighborhood
contains no other intersections with the curve. Since the distance to a
plane evolves by a strictly parabolic equation, the number of intersections
between the curve and a fixed plane inside this connected component can-
not increase. This is a contradiction. Hence we conclude that the curve
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.02ε neighborhood
ofγ0

FIGURE 6. WHY FLAT CURVES STAY FLAT FOR SHORT

TIMES

turns by less than 0.1 in any arc of length ε over the designated time
interval (see Figure 6).

Theorem 5.5. Given any time tQ and an ε < l/(104/), there is a time

t3 e [tQ, to+ε] such that Tλ(t) converges smoothly to a limiting plane curve

for all te[t3,t3 + ε3].

Proof. Since l\t) = - j k2 ds, there is some time tχ e [t0, to+ε] when

/r (t )k2ds < l/ε, hence Ta(t{) is ε2-very flat. By the last lemma, Γa(t)

is ε -flat for all t e [tχ, tχ + ε ] . The dilation-invariant estimates then tell

us that sup(fc) < ε~5 at time t2 = tχ + \ε6. Since sup/: increases no

faster than its cube, we know that sup(fc) < 2ε~5 for all t e[t2, t2 + ε6].

For β < a there is a time t3 e [t2, t2+εΊ] in which /Γ ( ί ^k2 ds < lε~Ί .

Therefore Γ^(ί3) is ε8-veryflat. The above lemma shows that it is actually

flat on the same scale as Γα(/3), that is, ε2/100-very flat. Remember that
the area between the projections is < (/ + 2πt)y/a, which can be chosen
arbitrarily small, say < ε 2 0 . The dilation-invariant estimates then imply
that Tβ(t) has sup k < 2ε~3 for a time interval on the order of ε6 . This is
independent of β, so at times arbitrarily close to the singularity, indeed,
close to any time, the family Tλ{t) has uniformly bounded curvature.
Hence, given the area estimate, the family converges uniformly in C 1

(see Figure 7).

Now use the dilation-invariant estimates to show that these curves have
uniform bounds on the spatial derivatives of curvature (see [1]). Again,
this together with the area estimate gives C°° convergence, q.e.d.
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Γ α is fairly smooth

but Γβ may be awful.

α is still smooth
and now Γβ is also nice,

p
but at a much smaller scale.

The area between the
projections is very tiny,
and so both curves are
nice on the same scale.

FIGURE 7. How Γa GIVES UNIFORM CONTROL OVER ALL

Γg WITH β < a .

Once we know that the space curves yield smooth solutions past any
singularity, we can conclude

Theorem 5.6. The number of singular times is finite. The limiting curve
is smooth at all other times and evolves by the curvature flow.

Proof. Note that the essential property of ramps in the previous dis-
cussions is that their solutions exist past the time of singularity for the
planar curve Γ o . One may also approximate Γo by a family of planar
curves as long as this family exists past the time of the singularity.

When a plane curve forms a singularity, a loop must pinch off, reducing
the number of essential self-intersections (those that cannot be perturbed
away with small area change). Such a curve has an arbitrarily close (in
the sense of area) family of smooth, planar approximations with fewer
self-intersections. These planar curves also converge (in their family pa-
rameter) in area to the limit of the approximating ramps Γα(ί). The area
of the region between π(Γa(ή) and the planar approximation increases
no faster than 2πty/a. Thus the smooth plane curves converge smoothly
to the limiting planar solutions on the same time intervals as the ramps.
Since the number of self-intersections of the smooth planar solutions does
not increase, and nonessential intersections vanish instantly, we conclude
that the number of self-intersections of the planar limit Γ0(ί) decreases
after a singularity.
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Now we have smooth convergence of ramps on an open dense set of
times, and a necessarily finite number of times for singularities in the
planar limit, if it exists at all times. But the planar solution is e-flat
for some ε between singular times, and the ε is fixed away from the
singular times. The area estimates and the dilation-invariant estimates
then imply long-term smooth convergence of any approximating family. In
particular, both the ramps and the smooth planar approximations converge
smoothly to TQ(t) between singular times, and until Γ0(ί) shrinks to a
point, q.e.d.

We could have used the plane curves to extend the flow through the sin-
gularity, and it would have been easier, for the area estimate is immediate.
Our purpose has been to show how the space curve approximation works
for all time, and not just between singularities.
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