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Cα-COMPACTNESS FOR MANIFOLDS
WITH RICCI CURVATURE AND

INJECTIVITY RADIUS BOUNDED BELOW

MICHAEL T. ANDERSON & JEFF CHEEGER

0. Introduction

In this note, we consider the class of Riemannian ^-manifolds (M, g)
which have a lower bound on the Ricci curvature and on the injectivity
radius

(0.1) R i c M > - 2 , i n j M > / 0 .

Our main result is that the Cα geometry of the metric g and the C ' α

topology of the manifold M are controlled by these bounds. More pre-
cisely, we obtain

Theorem 0.1. Let (M, g) be a compact Riemannian manifold satisfy-
ing the bounds

(0.2) RicM > -λ, injM > i0, volM < V.

Then for all a < 1 and Q > 1, there is a finite atlas of harmonic coordinate
charts Fυ\XJv-+ Rn for M, having the following properties:

(1) The domains Uv are of the form Uv = F~ι(B(rh)), B(rh) a ball in

Rn, of radius rh, satisfying

rh > C(λ, i0, n,a,Q).

~λFurther, the domains F~λ(B(rJ2)) cover M.

(2) The overlaps F = F o F~ι are controlled in the Cι'a topology,
μv

i.e.,

\\FμJcl,«<C(λ,i0,n,a,Q).
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(3) There is a bound N = N(n, λ, i 0 , V) on the number of coordinate
charts, as well as on the multiplicity K = K(n, λ, iQ) of their intersections.

(4) The metric coefficients gtj = g(-^-, ̂ L) in the charts Fv are con-

trolled in the Ca topology, in the sense that

Q~l (δu) < (g-ij) < Qiδij), {βs bilinear forms),

(5) The square of the distance function p2: M x M —• R has a C ' α

bound C = C(λ9 i 0 , n, a, Q) for p < ijl.
There is a Ca compactness theorem naturally associated to Theorem

0.1.
Theorem 0.2. The space of compact Riemannian n-manifolds (M, g)

such that

(0.3) RicM > -λ, inj^ > i 0 , volM < V

is precompact in the Ca topology for any a < 1. More precisely, given
any sequence of n-manifolds {{M^ g.)} satisfying the bounds (0.3), and
given any fixed a < 1, there is a compact manifold M, and diffeomor-
phisms fji —• M , for a subsequence {j} of {i}, such that the metrics

fjgj converge, in the Ca topology for a < a, to a Riemannian mani-

fold (M,g) with Ca metric g. The manifold (M, g) admits a C 1 ' "

harmonic coordinate atlas satisfying (l)-(5) above.
In particular, there are only finitely many diffeomorphism types of man-

ifolds satisfying (0.3).
We wish to emphasize that the passage from a theorem like 0.1 to a

theorem like 0.2 is immediate, given the results of the second author's
thesis. (This point seems to have escaped general notice.)

In [3, §4], one considers the collection of n-dimensional manifolds

MMn , admitting a coordinate covering by N coordinate balls F~{(B(r))

(with a given numbering), such that the coordinate changes Fμ o F~ι are

uniformly C2-bounded, and such that the collection {F~ι(B(r/2))} also
covers. (These assumptions correspond to (l)-(3) of Theorem 0.1.) It is
then shown (cf. also [5]) that given an infinite sequence Mi of such man-
ifolds, there is a subsequence M. and diffeomorphisms ft:M. —• M

lj S l ls lt

such that, as is, it -> oo, the maps Fv^ o fst o F~)\B{r/2) converge to



Cα-COMPACTNESS FOR MANIFOLDS 267

the inclusion B(r/2) c B(r) in the C1 topology. Exactly the same argu-

ment shows that for k > 1, one actually obtains C ' α convergence to

the inclusion, if we are given instead of Ck'a bounds on the F o f " 1

( α ' < α ) .
Now assume in addition that the metric satisfies the bounds

β" 1- (<y < (gu) < β te,), (as bilinear forms)

where typically m = k — 1, in the given coordinate systems. (This corre-
sponds to (4) of Theorem 0.1.) By what was stated above, one can regard
the sequence of metrics as living on a fixed manifold M (by pulling back
by diffeomorphisms), and satisfying the bounds above (with a different
Q) in & fixed system of coordinates. Then the existence of a subsequence

for which the metrics converge in the C m α topology (α < α) follows
immediately from the Arzela-Ascoli theorem; compare with the proofs of
related convergence theorems in [11], [13], [15], [17], [18].

Before proceeding further, we make several remarks.
Remarks. (1) We note that under the bounds (0.1), an elementary

packing argument, based on the volume comparison theorem (cf. [13]),
shows that the bound volM < V is equivalent to a diameter bound
diamM < D.

(2) Versions of both Theorems 0.1 and 0.2 hold for Riemannian man-
ifolds with boundary, e.g., for bounded domains, as well as for complete,
noncompact but pointed Riemannian manifolds, provided one restricts
attention to compact subsets. For instance, let (Ωz, g.) be a sequence
of smooth domains in complete manifolds (M., g.), and fix an arbitrary
ε > 0. Suppose one has the bounds

RicM > -λ, inj^ (x) > i0, vol Ω. < V,

for any x e Ω.:. Then there are smooth domains N. C Ω z, satisfying

ε/2 < dist(z, 5Ω.) < ε Vz e dNt,

such that the sequence of open manifolds {{Ni, g.)} is precompact in the
Cα topology, as above. For the construction of such domains, we refer to
[6], in conjunction with Theorem 0.3 below.



268 MICHAEL T. ANDERSON & JEFF CHEEGER

(3) Actually, we will prove Theorems 0.1 and 0.2 in the Sobolev spaces
Lx 'p , with n < p < oo, in place of Ca , and L2'p in place of C 1 α . By
the Sobolev embedding theorem

(0.4) Lk'p cCk~Ua, a=l-n/p.

This in fact gives one stronger results. Here the notion of convergence in a
given topology is as in the previous paragraph. For instance a sequence of
smooth Riemannian metrics {gt} on M converges in the (strong) L 'p

topology, or the Ca topology, if there is a sequence of diffeomorphisms
ft such that the metrics {/•*£,-} converge, in the (strong) Lι'p or Ca

topology with respect to a given atlas for M, to a limit metric g on M.
As we shall see shortly, the main point needed to establish Theorem 0.1

is to find a lower bound on the radius rh for which one has the metric
bounds (4). This leads to the following definition.

Definition. Let (M, g) be an n-dimensional Riemannian manifold.
Given p e (n9 oo) and Q > 1, the Lι'p harmonic radius of (M, g) is
the largest number rH = rH(p, (?) such that on any geodesic ball B =
Bχ{rH) of radius rH in (M, g), there is a harmonic coordinate chart
U = {wz}": B —• Rn, such that the metric tensor is Lx'p controlled in
these coordinates, i.e., if g.. = g(&-, ^ - ) , then

β- 1 -^-) < (gij) < Q'Vij), (as bilinear forms),

(rHγ-n/P\\dgu\\LP<Q-l.

One should note that the condition (0.5) is scale-invariant, so that the
harmonic radius scales as the distance function under rescalings of the
metric. Of course, the harmonic radius is strictly positive for any fixed
compact, smooth Riemannian manifold (cf. also [14], [8]).

From the definition, the Lι'p harmonic radius also controls the anal-
ogously defined C α harmonic radius for a as in (0.4). We remark also
that, in the same way, one may speak of the L l p harmonic radius as a
function of x e M, rH(x) being the radius of the largest geodesic ball
about x e M on which one has harmonic coordinates satisfying (0.5).

The C 1 > α or L2'p harmonic radius was studied in [1], and shown to
have a lower bound in terms of the geometric quantities | RicM | < Λ,

> i0 Analogously, we have the following result, which we phrase
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purely locally. First, for the arbitrary Riemannian manifold, define

(0.6) sM{x) = sup{min(r, inf{injM(y): y e Bχ{r)})}.

Note that if M is a closed manifold, then sM{x) = inj M for all x e M.
Theorem 0.3. Let (M, g) be a Riemannian manifold satisfying the

bound RicM > -λ2 for some λ>0. Then there are constants cx and c2,
depending only on Q, n, p, such that if

rH(x)<cχ-λ~\

then

(0.7) rH(x)>c2 sM(x).

Let us indicate how Theorem 0.3 implies Theorem 0.1(1)—(4) (and thus
also Theorem 0.2). Clearly, Theorem 0.3 implies parts (1) and (4), with
the rh of (1) replaced by rH/>/Q, and with charts Fv given by harmonic
coordinates satisfying (0.5). Also, the bounds (0.2), together with well-
known packing results [13], imply that one may choose a finite subatlas
with a uniform upper bound on N and M, which gives (3).

To establish (2), we need to obtain C 1 ' " (or better L2yP) estimates
for harmonic functions; in fact, we will obtain L2'q estimates for any
q < oo. Recall that in an arbitrary local coordinate system {JCJ , the
Laplace operator Δ is given by

d
Δ = - 2 ^ - ^ — I g g'

g *-^ dxA (
(0.8)

v i a ( g g'
7) a

where g = (detgrγ^2 . In harmonic coordinates {xt}, the coefficient of
the first-order term vanishes, i.e., one has the simpler expression

(0.9)

since Axk = 0 andd2xk/dxidxj = 0, while dxjdx = δkj
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Thus, let / be a smooth function defined on a ball B of radius rH in

(AT, g). Since the coefficient # z y in (0.9) is controlled in the Ca topology

(for a fixed a e (0, 1)), the if theory for elliptic operators of the form

(0.9) (cf. [10, p. 235]) gives the bound

(0.10) \\f\\L2,HBΊ < C(rH9q9B')[\\ήf\\L<

for any Bf c c B and any q < oo. Recall that by the Sobolev embedding
theorem L2'q c C 1 'β , where β = I - n/q, so that one also has a Cuβ

estimate on / for any β .

Remark. The estimate (0.10) is one of the central estimates for this
paper. We note that (0.10) does not hold in general for elliptic operators of
the form (0.8); one needs a priori Lq bounds for the first-order coefficient
to obtain (0.10) in general. Of course, we do not have such bounds from
the hypotheses on (M, g) or the harmonic radius. This is the basic reason
why harmonic coordinates are used here, and not some other coordinate
systems, e.g., distance coordinates. The reader may also wonder why we do
not use the simpler Schauder theory to obtain C l α bounds for / above
and prove Theorems 0.1-0.3 in the Cα-category. For the answer, see the
Remark following the proof of Proposition 1.1.

We now return to consideration of the control of the overlap maps of
harmonic coordinate charts. Let F., i — 1, 2, be harmonic coordinate
charts on B.(rH/2) with Bι(rH/2)nB2(rH/2) ψ 0 . By definition, we have
Cα control of the metric in the F. coordinates on Bi{rHl2). If v is a
harmonic coordinate function of, say, F2, we see that by (0.10) we have

1 R

C ' p control of v\B ( r / 2 ) for any β < 1. This immediately implies that

the overlap maps F2oF~ι are controlled in the C 1 J ? topology by the size

rH, given in the bounds (0.5). The same reasoning shows that in fact the

overlap maps are bounded in the L >p topology.
Thus, we have shown that Theorem 0.3 implies Theorem 0.1 and thus

also Theorem 0.2, apart from (5), (which will be proved separately).
We would like to thank Louis Nirenberg and Michael Taylor for helpful

discussions concerning P.D.E. topics.

1. Proof of the theorems

As indicated above, Theorems 0.1 and 0.2 follow from Theorem 0.3.

To prove Theorem 0.3, we need to show that the L l p harmonic radius
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rH(x), if less than a sufficiently small constant, depending on the Ricci
curvature, has a lower bound depending only on sM for any p e (n, oo).
More precisely, if

(1.1) rH(x) < cλ-λ~ι, then rH(x) > c2 sM(x).

Note that (1.1) is scale invariant. Here, we fix the quantities p and Q.
The basic structure of the argument is as in [1], although there are

significant differences in detail; in particular, we do not use the equation
for the Ricci curvature in harmonic coordinates, although it is also possible
to obtain a proof along these lines.

To establish the lower bound on rH, we argue by contradiction. By scale
invariance, it suffices to consider the case λ = 1. Thus, if the theorem
were false, then there would exist a sequence of Riemannian n-manifolds
(M., gt) with RicM > - 1 , such that, for some x. e Mi,

(1.2) lim rjx.) = 0, lim Ls^λ = o.

For a fixed /, we would like to choose xt so that ^H(Xi)/sM (x^ is as
small as possible. But for M{ open, no such point needs to exist. To
remedy this, we consider instead the sequence (B., xi, g(), where Bt =
Bx.(sM.(χi))c M i N o t e t h a t ' f o Γ y e Bi'

In particular,

and, as y —• dBt, sB (y) —> 0. Thus, if we continue to define rH as

above, i.e., with respect to M , then there exists y. e B{ such that the

ratio ^Ήiy^/Sj^iyi) is minimal for points in Bt, and as / —• oo,

(1.3) rH(yi)^0,

and

(1.4) ^H-0.

Put r,. = rjjiy^ and rescale the metrics g( by r~2, i.e., define metrics

A. = r~2 gi. Thus, the harmonic radius of (Bi, h() at yi is 1, while
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(i) ?

(1.5) (iii) di

In particular, if we set w = sB(yi)/rH(yi), then w,. -> oo and

for all y e By{uJ2, ht). Thus, given Λ < oo, we have rH(y, ht) > \

on By(R), provided i is sufficiently large. As shown in §0 (cf. Remark

(2) of §2 and the discussion following the statement of Theorem 0.3), we

may apply Theorem 0.2 to the domains By(R ) c (Bt, Λ , y.), Rj ^ oo,

and take a diagonal subsequence to conclude that a subsequence of the

pointed manifolds (Bi, Λ , y.) converges in the Ca topology, a < a, to

a complete (noncompact) Ca Riemannian manifold (N, Λ, y), with y =

limy /. Here the convergence is uniform on compact subsets of (N, h, y).

Note also that since {(Bi, Λ.)} is bounded in L1 > / 7, it contains a weakly

convergent subsequence, so that we may also assume that (N, h) is an

Lι'p Riemannian manifold.
We emphasize that the convergence (B(, h() —• (N, h) is not, a priori,

in the (strong) l) 'p or C α topologies, but only in a weaker topology. An
appeal to some additional hypotheses on the metrics (in our case (1.5)(i),
(ii) above) is crucial in order to obtain an improvement in the convergence.
This improvement, as well as the remainder of the proof of Theorem 0.3,
is contained in the following results.

Proposition 1.1. Let (Mi, gt) be a sequence of Riemannian manifolds

which converge strongly in the Lι'p topology to a limit Lι'p Riemannian

manifold (M, g). Then

(1.6) rH(M)=limrH(Mi),
I—•OC

i.e., the Lι'p harmonic radius is continuous in the strong Lι'p topology.
The same is true pointwise, i.e., for the harmonic radius at any sequence
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Proposition 1.2. Let (M., x., g.) be a sequence of manifolds satisfying

the bounds (1.5). Then a subsequence converges in the strong Lι'p topology

for any p < oo to a limit l) 'p Riemannian manifold (N, g0).

Proposition 1.3. Any Lι'p limit (N, gQ) of a sequence of Rieman-
nian manifolds (M 9 x , gt) satisfying (1.5) is isometric to Rn, with the
canonical flat metric.

To see how the propositions above imply Theorem 0.3, first note that
Proposition 1.2 implies that the convergence (M., A ) —• (N, h) is not just
weakly L 'p but actually in the strong L 'p topology. Proposition 1.3
implies that the limit (N, h) is Rn . It is obvious that Rn has harmonic
radius oo . However, by construction, the harmonic radius of (Mi, ht) at
xt is 1, so that Proposition 1.1 gives the required contradiction.

Thus, it remains to prove the propositions above.
Proof of Proposition 1.1. Note that on an Lι'p Riemannian manifold

the Laplace operator is well defined as in (0.9), so that one may speak of
harmonic functions on M, which are then at least in L2'p . Similarly, the
concept of LltP harmonic radius is well defined on M. We first prove
the less significant inequality

Thus, let Ui be harmonic coordinate charts satisfying the bounds (0.5)
on B. = Bχ(r.) c (M., g ) , where r. = rH(M.); we may suppose that

limrz > 0. Since the metrics g. —• g in the strong Lι'p topology, the

charts Ui converge in the l}'p topology to a limiting map U: B -• Rn ,

where B = Bχ{r) c (M, g), r = hmrt. Since the bounds (0.5) are clearly

preserved under strong Lι'p convergence, this gives (1.7).

To obtain the converse

(1.8) ^ < B m r ^ ) ,
/—» oo

suppose r < rH(M) is finite and let {xk} be harmonic coordinates on
B = B(r) c (M, g) satisfying (0.5). Via diffeomorphisms, we may view
the metrics g. as metrics on B, for / sufficiently large. Let Δ be the
Laplace operator of g. and write Δf. in the coordinates {xk} on B,
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Let {yk} = {yk(i)} be solutions to the Dirichlet problem for Δ on B,
with boundary values xk , and set wk = xk - yk . Thus,

Aiwk=Aixk, wk\dB = 0.

By the Lp estimates (0.10), one has the estimate

where Bf c c B, since wk has zero boundary values. Now since g. -» g

in the strong l)'p topology, the coefficients of Δ/ converge in the strong

l) 'p topology to those of Δ on B. By definition, we have Δ(xk) = 0, so

that by examining the coefficients of (1.9), we have

(1.10) 1^.(^)11^-0 a s / - o o .

Thus, the harmonic coordinates {yk} = {yk(i)} converge in the strong
L2yP topology to the harmonic coordinates {xk} , uniformly on compact
subsets of B. Since the bounds (0.5) are continuous in the strong L 'p

topology, they are satisfied for the charts {yk(i)} on arbitrary compact
subsets B1 C B, with constants <2Z —• Q as i -+ oo . This then establishes
(1.8).

Remark, (i) It is not clear if the Ca harmonic radius is continuous
in the Ca topology, since one does not obtain the estimate (1.10) in this
case. This is another reason why we work with the Sobolev spaces Lι'p

in place of the Ca Holder spaces, besides the fact that l)iP c Ca .
(ii) The same proof shows that the l)'p harmonic radius is continuous

in the strong l)'p topology for manifolds with boundary.
Before beginning with the proof of Proposition 1.2, we will need the

following simple, but basic, result.
Lemma 1.4. Let M be a Riemannian manifold with injM > iQ and

RicM >—λ , λ > 0. Let p = pχ = dist(x, •), be a distance function from
x e M. Then one has the estimate

(1.11) |Δ/?|<(>2-iμ.cothλ/>,

provided p < iQ/2.
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Proof. A well-known version of the Bishop comparison theorem im-
plies that

(1.12) Ap<(n- \)λ cothλp,

provided p < iQ. Given x fixed, let p be any point with t = dist(x, p) <
io/2 let γ be the geodesic with y(0) = x and y(t) = p then set px =
γ(2t). Thus (1.12) holds for p = pχ and for pχ = pp on Bp(i0/2). On
the other hand, the function σ = p + pχ - 2t: M —• R is nonnegative by
the triangle inequality, and achieves its minimal value, 0, along the line
segment γ between p and pχ. Hence, we have

Aσ = A(p + pχ)\γ>0,

i.e., Ap > Apχ > —(n — l)A cothA/?, which establishes (1.11).
Remark. We note that the proof of Lemma 1.4 gives the following

somewhat more precise bound. If γ: [0, /] —• M is a minimal geodesic,
parametrized by arclength, with x = γ(0), and RicM > —λ, then one has
the bound

- ( / ι - i μ cothλ(/-/?) <Ap\γ <(n- i μ cothA/7,

provided p < I.
Estimates of this sort, or as in (1.11), are implicit in the proof of the

Splitting Theorem. They probably go back quite far, for instance at least
to [4].

Proof of Proposition 1.2. Recall now that by assumption one has the
estimates (1.5) on the sequence of manifolds (Mi, gt). For any tangent
vector υt E TχMn let γt be the geodesic in M{ with ^(0) = x. and

γ.(0) = v.. Set y. = Vii-Sj), where st = jiQ rχ,^ oo as / -• oo. Then

the distance functions pt = dist(y , •) - st are smooth on Bχ(si/2), and

by Lemma 1.4, with (1.5), one obtains the estimate

(1.13) IΔ ^ I - ^ O asι->oo

on BXi(Si/2).

On the other hand, on each ball B = Btc M. of bounded distance to x.
and of sufficiently small but fixed radius (cf. (1.5)(iv)), one has harmonic
coordinates {uk} = {uk(i)} , with Lι'p control, and for which the Laplace
operator has the form

dukduι
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The (0,10) estimate then gives the bound

on B1 C C B for any q (> p). (Here we are abusing notation slightly,

namely, pt is actually p. o F~ι: Rn -> R, where Ft is the harmonic

coordinate chart {uk(i)}. Thus, (1.14), (1.15) are defined for functions

defined on domains in Rn . This is also implicit in what follows.)

In particular, {/?J is bounded in L2tQ = L2'q(Rn) for any q, and

thus by the compactness of the embedding L2'q c L1'9, {pt} has a

subsequence converging strongly in Lι κ9 and weakly in L2'q to peL ' q ,

where pop is a distance function (or more precisely a Busemann function)

on (ΛΓ,£?)
We claim that in fact {pt} has a subsequence converging strongly in

L2'q. To see this, we apply the estimate (1.15) to p - pr Clearly,
\\p - />.||L2 -> 0. To show that \\A.(p - p ^ -> 0, we have \A.p.\ - 0 by

(1.13) and also A(p -> Δ/? in L^ since p e L2'q , and the coefficients in

(1.14) converge in Ca topology. Thus we need to show that Ap = 0 in
L* . Letting / e C™(B), we compute

ίf'ApdV= [Af pdV=lim [A.f p.dV. = lim [f A.p.dV. = 0,
J J ΐ-*oo j ι ι ι /-κ» y * f f

which establishes the claim.
We are now in a position to verify that g. -> g strongly in the l) 'q

topology for any q. Namely, fix i for the moment and consider the
distance functions p (= /?.) constructed above. Then we have

where pk = dp/duk, and the {uk} are harmonic coordinates on B c
(Λfz, g.). Choose for instance an orthonormal basis e of Tz M{, where
zi is the center point of B, and consider the n(n + l)/2 vectors eμ,eμ +
ev , //, ι/ = 1, , n . We let pm , 1 < m < «(« + l)/2, be the associated
distance functions described above, so that one has a system of n(n + l)/2
equations

kl m fti Λ

PkP =ι
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on B . We view this as a system of linear equations with gkι as unknowns
and p™p™ as coefficients. One may algebraically solve this system for

kl

g provided the determinant of the coefficients is nonzero. Clearly, by

choosing Q sufficiently close to 1, gkι is arbitrarily close, in the C α

topology, to δ ι . By the estimate (1.15) and the arguments above, each

P™ = Pm{i) is close in the C 1 ' α topology to a limit distance function p

on B c (N, A). By choosing a sufficiently small ball B1 c B (depending

on (N, A)), we see that all pm(i) are close, in the C 1 α topology, to the

correspondingly defined Euclidean distance functions on B1. One may

easily check that the matrix ρ™p™ is nonsingular in Rn and thus, by

continuity of (1.16), it is nonsingular on B1 for / sufficiently large.

Thus, the metric coefficients gkl on (M., g.), in the coordinates {uk},

are rational expressions in {p™} . It has been shown that the {p™} con-

verge strongly in the Lι'q topology for any q to limit Lx 'q functions;

hence the same is true of {gkl} = {gu(i)} .
Proof of Proposition 1.3. To prove that the limit (N, g0) is isometric

to Rn , we return to the family of distance functions p = p(i) constructed
above in the beginning of Proposition 1.2. By the Bochner-Weitzenbock
formula,

0 = A\dp\2 = \D2p\2 + (dAp, dp) + Ric(V/>, Vp).

Integrating over balls B of fixed size in (Mi, g.), one obtains

/ \D2p\2 < h volB + / (Ap)2 + ί \Ap\,
JB JB JOB

where λ is a lower bound for the Ricci curvature. By (1.5) and (1.13), it
follows that

[
JB
[ \ D 2

P i \ 2 - > 0 as/
B

so that D pt converges strongly to 0 in L . Since previously we have

shown that {/?•} strongly (sub)converges in the L2'q topology for any q,

it follows that D2pt converges to 0 strongly in Lq .

Now g0 G Ca for any a since the metric ^ 0 is in Lι'q, and A has

a well-defined Levi-Civita connection (Christoffel symbol) D in Lq . In

particular, for the (Busemann) function p = lim/?,, V/> is in Lι'q Γ\Ca

and DV/> = 0.
It follows in particular that p is harmonic (we already knew this from

the proof of Proposition 1.2) and thus, by the Schauder estimates for
instance, that p e C 2 ' α . The above arguments then show that # 0 G
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C 1 ' α , and repeating this argument by the standard bootstrap shows gQ e

C°° . Finally, since DVp = 0 for any p, it follows that the metric splits

isometrically in every direction, i.e., g0 is the canonical flat metric on Rn .

q.e.d.

This completes the proof of Theorem 0.3 and thus the proof of Theo-

rems 0.1 and 0.2(1 )-(4).

For the proof of (5), we recall from Lemma 1.4 that one has L°° bounds

on Ap2 . Thus, if the Lι'p harmonic radius is bounded below, then by

(1.14) one obtains L2'q bounds on p2 for any q. In particular, this gives

Clyβ bounds on p2 for any β < 1, provided p < inj Af/2.

Remarks. (1) As in the definition of l) ' p harmonic radius, one could

define for instance an Lι >p normal radius, i.e., the largest radius on which

the metric, in some normal coordinate chart, is Lι'p bounded. However,

such a concept does not behave well under limits. For instance, it is not

continuous in Ca , or even Cι'a , topology for the same reason that the

injectivity radius itself is not continuous in the C l α topology. Specific

examples may be found by smoothing the vertex of a sequence of Euclidean

cones converging to Rn .
(2) We point out that there do exist examples of manifolds satisfying

the bounds

R i c M > - Λ 2 , i n j M > / 0 ,

but without a uniform upper bound on the Ricci curvature; we learned
of this in [12], [19]. (In particular, Theorem 0.3 does not follow from
[1].) Very briefly, these examples may be described as follows. Consider
a (solid) cone C in Rn whose cross-section is some (n - 1)-dimensional
submanifold with smooth, nonempty boundary in the unit sphere Sn~ι (1).
Let Cε denote C, truncated at distance ε from the origin. The ((π - 1)-
dimensional) examples are then obtained by smoothing the seam or crease
in dCε.

2. Ca harmonic radius and volume

We have shown in the previous section that the Ca or Lι'p harmonic
radius is bounded below by the geometric bounds
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This is no longer true if one replaces the lower bound on the injectivity
radius by a lower bound on the volume volM of ¥ . In fact, one does
not even have a bound on the contractibility radius under the (stronger)
bounds |Ric | < Λ, vol > υ (cf. [2]). In terms of volume, the best one
could hope for is expressed by the following test question.

Question 1. If B = BQ(l) is an «-dimensional geodesic ball of radius
1, does there exist ε = ε(n) such that if

(2.1) Ric5 > 0 and volB > (1 - ε)ωn ,

then the Ca or l) 'p harmonic radius of B at 0 is bounded below by
δ = δ(ε)>OΊ

Here ωn is the volume of the unit ball in Rn . Note that the hypothe-
ses (2.1) are scale invariant and imply that B is close, in the Hausdorff
topology, to the unit ball ΰ c l " . If true, the question would imply that
B is close, in the Ca topology, to the Euclidean ball. It was shown in [1]
that one obtains a lower bound on the C l α harmonic radius under the
stronger bounds C > Ric 5 > 0, volB > (1 - ε) ωn , where ε = ε(C, ή).

Now the fact that the hypotheses (2.1) are scale invariant leads naturally
to a global analogue of this question, namely,

Question 2. Let M be a complete, noncompact Riemannian H-mani-
fold. Does there exist ε = ε{n) such that if the volume v(r) of geodesic
r-balls satisfies v(r) > (I -ε)ωnr

n , then does M admit a global harmonic
coordinate system U: M —• R" with C° bounds, i.e.,

β " 1 - ^ ) < (gu) < Q'δir (as bilinear forms),

where Q = Q(ε) -• 1 as ε -> 0 ?
We do not include the Cα bounds as in (0.5), since these would require

that M is flat by their scale-invariance.
In fact, the answer to Question 2 is negative. From this and a scaling

argument, one sees that the answer to Question 1 is negative as well.
Proposition 2.1. Let g be a complete metric of nonnegative curvature

on R2 . Then (R2, g) admits no global harmonic coordinate system with
C° bounds, unless g is flat.

Remark. Note this implies that the C° harmonic radius of (R2, g) is
finite, assuming g is not flat, regardless of the volume growth of (R2, g).

Proof. A global harmonic coordinate system with C° bounds is a pair
of harmonic functions with, in particular, bounded gradients. Thus, let h
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be a harmonic function on (R2, g) with bounded gradient VA . By the
Bochner-Weitzenbock formula,

(2.2) \Δ\dh\2 = \D2h\2 + Ric(VA, VA) > 0.

Hence, \dh\ is a globally defined bounded subharmonic function on
(M2, g). On the other hand, it is well known that any complete metric
of nonnegative Gauss curvature on R2 is parabolic, i.e., is conformally
equivalent to C (cf. [7] for a proof which only requires that the vol-
ume growth of geodesic balls is bounded by o r 2 ) . Now, by definition,
a parabolic surface admits no nonconstant bounded subharmonic func-
tions, so that we must have \dh\2 = const. By (2.2), it then follows that
Ric VA = DVh = 0, so that (R2, g) splits isometrically in the direction
VA and thus g is flat, q.e.d.

The argument of Proposition 2.1 uses rather strongly the fact that M
is two-dimensional. For higher dimensions, we use the following result of
A. Kasue [16]. Let M be a complete Riemannian manifold with sectional
curvature KM satisfying 0 < KM < Cjr2, for some constant C < oo,
where r is the distance from some point in M. If A is a harmonic
function on M with uniformly bounded gradient VA , then VA is parallel
on M, and gives an isometric splitting M = Mf xR.

This result immediately gives the following proposition.
Proposition 2.2. There exist metrics of nonnegative sectional curvature

on Rn, arbitrarily close to the Euclidean metric, in the smooth topology on
compact subsets, which admit no global harmonic coordinate systems with
C° bounds.

Clearly, these examples may have υ(r) > ωn(l - ε) rn for any given
ε > 0. By scaling, one may arrange that the l)iP harmonic radius is any
prescribed value in R+ and thus converges to any value in R+ U {0} U {oo}
for a family of such metrics converging to Rn .
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