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ISOMETRIC IMMERSIONS IN SYMMETRIC SPACES

ALFRED GRAY

l Introduction

Let M and M be complete Riemannian manifolds (we make this assumption
throughout the paper). Denote the sectional curvatures of M and M by K and
K, respectively. R. Hermann [4] has proved the following theorem.

Theorem A. Suppose that M is simply connected, M is isometrically
immersed as a closed submanifold of M, and K < K < 0. Then H^M) = 0
for i > dim M — dim M. (Here the homology groups have coefficients in an
arbitrary field.)

It follows from Theorem A that M cannot be immersed in M if
dim M < 2 dim M and M is compact. In fact E. Stiel [10] has proved the
following result.

Theorem B. Suppose M is compact and M is simply connected. If K is
constant, K < 0, K < 0 and dim M<2 dim M, then M cannot be isometrically
immersed in M.

In this paper we show that the hypotheses of Theorem A can be weakened
provided M is a symmetric space. At the same time we obtain a generalization
of StieΓs theorem. An example of our results is the following.

Theorem (3.4). Suppose M is isometrically immersed as a closed submanifold
of M, M is a simply connected symmetric space with nonpositive curvature,
and sup£ < minK — maxK. Then M has the homotopy type of a CW-
complex with no cells of dimension greater than dim M — dim M.

We also give variations of the above theorem under the hypotheses that M
is a minimal variety of M or that M is not simply connected. Furthermore we
consider the case when M has positive curvature, and generalize some results
of Otsuki [9].

2. The Hessian of the distance function

In this section we assume that M is isometrically immersed as a closed C°°
submanifold of M. Let Mp and Mp be the tangent spaces of M and M at a point
p € M, and write Mv = Mv 0 M£. We denote by <, ) the metric tensor of M
or M, and by Rxy(x, y e Mp) and Rzw(z, w € Mp) the curvature operators of
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M a n d M, r e s p e c t i v e l y . I f \\χ Λ y \ \ Φ 0 Φ\\z Λw\\, w e w r i t e Kxy

= II* Λ y\\~2(Rxyx, y) and Kzw = \\z A w\\~2(Rzwz, w} for the sectional
curvatures of M and M, respectively. Let T be the configuration tensor of M
in M. Here for x e Mp, Tx: Mp —• Mp is a skew symmetric linear operator such
that Txx is the acceleration in M at p of a geodesic in M starting at /? and
having initial velocity x. T contains the same information as the second
fundamental form Sz(z e M^ ), which is related to T by the formula Szx = TΛz.
(See [3] for further details.)

Let p denote the distance function of M. We assume the existence of a point
mQ € M,mQ$ M, such that M is disjoint from the cut locus of m0. (Such a point
always exists if M has nonpositive curvature and is simply connected.) Define
a real-valued function / on M by /(m) = p(m, m0) then / is difϊerentiable. We
determine the Hessian Hf at a critical point m e M of /.

There exists a unique unit speed geodesic σ: [0, b] —• M from m0 to m. We
denote by σ' the velocity of σ and by Z ' the covariant derivative of a vector
field Z along <τ. There are no points on a conjugate to m0. For z,we Mm let Z
and W be the unique Jacobi vector fields along σ (i.e., Z " = RZa,σ') such that
Z(0) = W(ϋ) = 0 and Z(6) = z, »X&) = w. Define

W'y - (Ra,zo\ W)}(t)dt

Then [5, p. 219] the Hessian Hf is given by the formula

Hf(x, y) = Q(x, y) + <Txy, z) for x,yeMm,

where z = σ'(b) €
If M is a symmetric space, we can explicitly determine the quadratic form Q.
Lemma (2.1). Suppose M is a symmetric space.
(i) Then the eigenvectors of w —> Rzwz(w e Mm) diagonalize Q.

(ii) / / w is an eigenvector of w -+ Rzwz corresponding to the eigenvalue
λ = Kwz, then

wyV^Icoth(bS=λ) , ifλ<0,

where b = pirn, m 0 ) .
Proof. Let ^0, , λt be the eigenvalues of w -> Rzwz, and z0, , zt be

the corresponding eigenvectors. We take z0 — z (so that λ0 = 0). Since
w —> JR2W,Z is a symmetric linear operator, each λt is real and we may assume
that {z0, , Zι\ forms anorthonormalbasis of Mm. Let Po, - ,Pι be parallel
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vector fields on σ such that P{(b) = zt (i — 0, •••,/) . T h e n , because M is a
symmetric space, we have

Raf{t)Pmσf{i) = λtPtit)

(i = 0, - - , Z) for 0 < / < b. If Zi is a Jacobi vector field on <τ with Zt(0) = 0
and Z2(ί>) = Zi e Mm, we may write

z, = /Λ

then #' + ^/ t = 0, ft(b) = 1, and /f(0) = 0 for i = 0, •••,/. It is not hard
to see that β f e , z3) = 0 for i Φ j . Then

Since each /< is trigonometric, linear, or hyperbolic, the lemma follows.

3. Immersions in symmetric spaces of nonpositive curvature

We begin by sharpening a result of Hermann [4] in the case that M i s a
symmetric space of rank 1.

Theorem (3.1). Suppose that M is a simply connected symmetric space
with K < 0. Let M be an immersed closed submanifold of dimension n. Suppose
k is an integer such that for all p e M and all z e M^ with \\ z \\ = 1 at least k
of the eigenvalues K of Sz (counted according to multiplicity) satisfy

(3.1) κ<V-maxK.

Then M has the homotopy type of a CW-complex with no cells of dimension
greater than n — k.

Proof. Choose m0 e M,mo$ M, so that the function /: M —> R defined in
§2 has no degenerate critical points. This is possible by Sard's theorem (see
[1, p. 225]). The Hessian Hf at a critical point m e M of / is given by

Hf(x, y) - Q(x, y) - <$,(*), y} .

If x is an eigenvector corresponding to an eigenvalue K of Sz satisfying (3.1),
then

Hf(x, x) > | | j c | | 2 ( V - m a x ^ - /c) > 0 .

It follows that any subspace of Mm on which H} is negative definite must have
dimension less than or equal to n — k. Since / is obviously bounded from
below, Theorem (3.1) now follows from [5, Theorem 3.5].
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We next investigate some sufficient conditions that the hypotheses of Theorem

(3.1) be satisfied. The following lemma is originally due to Otsuki [8], but we

use it in the form given by O'Neill [7].
Lemma (3.2). Let Vd and V6 be two vector spaces over R of dimensions

d and e respectively, let < , > denote a positive definite bilinear form on
either Vd or Ve, and suppose φ: Vd X Vd -> Ve is a symmetric bilinear
function. Define

Air VΪ - < > ( * , x ) , <p(y, y ) > - 11 φ(*> y) II2

provided x,y<zVd are linearly independent. Let xεVd be a point on the unit
sphere of Vd at which x—>|| <p(x, x) || assumes its minimun. Then

(i) (x, y} = 0, // φ(x, y) = 0 and φ(x, x) Φ 0;
(ii) <<p(x, y), φ(x, x)} = 0, if <JC, y} = 0;

(iii) if (x, y} = 0 and || y \\ = 1, we have

(3.2) A(x, y) + 3\\ φ(x9 y) ||2 > || φ(x, x) ||2 .

We shall need the following consequence of Lemma (3.2).
Lemma (3.3). Suppose that the hypotheses of Lemma (3.2) are satisfied;

in addition, assume that there is a Δ>0 such that A(x, y) < Δ whenever x
and y are linearly independent, and that e < d. Let k = d — e\ then for
each unit vector z € Ve, there exist xl9 , xk € Vd with || x{ \\ = 1, (xi9 Xj} =
0 (i Φ j), such that (φ(xi9 xt), z>2 < Δ for i, j = 1, , k.

Proof. Let xx be a point on the unit sphere of Vd at which x-+(φ{x, x), z>2

achieves its minimum. If φ(x19 jq) Φ 0, then since e < d, there exists y € Vd

such that ||y || = 1, <p(xl9 y) = 0, and <JCX, y} — 0. From (3.2) we conclude
that ζφίxl9 xλ), z}2 < Δ.

Let W be the orthogonal complement of xx. Evidently if e < d — 1, the
above argument applies to the restriction of φ to W. We conclude that there
exists x2eW with || JC2|| = 1 such that (φ(x2, x2), z}2 < Δ. We continue this
process until x19 , xk are constructed.

Next we use Theorem (3.1) and Lemma (3.3) to obtain the theorem
mentioned in the introduction.

Theorem (3.4). Suppose that M is a simply connected symmetric space
with max K < 0. Let M be an immersed closed submanifold. If sup K < min K
— max K, then M has the homotopy type of a CW-complex with no cells of
dimension greater than dim M — dim M.

Proof. In Lemma (3.3) we take φ to be the restriction of T to a map from
Mp X Mp into M$. Then by the Gauss equation [3], Δ(x, y) = Kxy - Kx±

whenever x,y εMp are linearly independent. We take Δ — sup K — min K
in Lemma (3.3). It follows that at least 2 dim M — dim M of the eigenvalues
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K of Sz (where z e M£, \\z\\ = 1) satisfy

κ2 < sup K — min K < — max K .

Now Theorem (3.4) follows from Theorem (3.1).
The following corollary is an immediate consequence of Theorem (3.4).
Corollary (3.5). Suppose that M is a complete simply connected symmetric

space with max K < 0, and that M is a compact Riemannian manifold such
that max K < min K — max K. If dim M < 2 dim M, then M cannot be
isometrically immersed in M.

In the case where max K = 0, Corollary (3.5) is a special case of a result
of [6]. If max K > min K — max K, we can still obtain a lower bound on
the diameter d(M) in M of a compact immersed submanifold M.

Theorem (3.6). Suppose that M is a simply connected symmetric space
(of rank 1) with max K < 0, and that M is a compact Riemannian manifold
with dim M < 2 dim M and max K > min K — max K. If M is isometrically
immersed in M, ίΛew

,* ^ j , x 1 , 1 frna* KT — min ^ \ 1 / 2

(3.3) </(M) > . coth"1

Proof. We take ra0 € M, and let m e M be a point at which / assumes its
maximum. (Then m is possibly a degenerate critical point of /, and / is possibly
non-differentiable at m0, but this does not matter.) We have Hf(x, x) < 0
for all x e Mm. Let b = /(m); then & < d(M). It follows from Lemma (2.1)
that

(3.4) || Txx || > β(jc, JC) > V - m a x Z coth (J(M)V-min^)

for all Λ: € Mm with || JC || = 1. In particular, (3.4) holds if we choose x to be a
point on the unit sphere of Mm at which || Txx\\ achieves its minimum. Thus
we have by Lemma (3.2) that

max K > min K — max K coth2 (J(M)V—min K) .

This last inequality is equivalent to (3.3).
In the case that M is not simply connected, we can still say something

about the topology of immersed compact submanifolds
Theorem^ (3.7). Suppose that M is a complete locally symmetric space

with max K < 0, and that M is a compact Riemannian manifold isometrically
immersed in M with dim M < 2 dim M. If max K < min K — max K, then
πλ(M) is infinite.

Proof. If πx(M) were finite, then the inverse image of M in the universal
covering space of M would have compact components.



242 ALFRED GRAY

The mean curvature vector field H of an isometrically immersed submanifold
M of a Riemannian manifold M is defined by

H = Σ TEA ,

where n = dim M, and {Eu , En} is any orthonormal frame field on an
open subset of M. M is a minimal variety of Λf if and only if H = 0. We
state without proof the following theorem which is similar to the theorems
proved above.

Theorem (3.8). Suppose that M is a complete locally symmetric space
with max K < 0, and that M is a compact Riemannian manifold isometrically
immersed in M with dim M < 2 dim M. PFπte n = dim M.

(i) // max || H || < nV—max i£, ίAen TΓ^M) M infinite.
(ii) // M is simply connected, then

coth x

v —

provided max ^ < 0.

4. Immersions in compact symmetric spaces

In this section we prove some results analogous to those in § 3. However,
the theorems in this section are weaker because in the case of nonnegative
curvature the symmetric bilinear form Q may not be positive semidefmite.

If M is any Riemannian manifold and q e M, we denote by U(q, b) the
closed "geodesic" neighborhood consisting of all points whose distance to q is
less than or equal to b. Now suppose that M is a compact simply connected
symmetric space, so that min K > 0 and max K > 0. Let M be an immersed

compact submanifold of dimension n.itqeM and 0 < b < — (max K)'1/2,

define k(q, b) to be the greatest integer k such that for all p € M D U(q, b) and
all z € Λf£ with || z \\ = 1, at least k of the eigenvalues K of Sz (counted according
to multiplicity) satisfy

(4.1) tc < Vmin K cot (δVmax K) .

Theorem (4.1). Suppose that M is a compact simply connected symmetric
space, and let M be an immersed compact submanifold of dimension n. If

0<b<— (maxKY ι / \ then

(i) for almost all qe M, Mfl U(q, b) has the homotopy type of a CW-
complex with no cells of dimension greater than n — k{q, b)
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(ii) for all q e M the conditions k(q, b) > 0 and 0 < b' < b imply that
M is not contained in U(q, bf).

Proof, According to Crittenden [2], the cut locus of M coincides with the
conjugate locus of M. Hence we may apply the results of § 2. The rest of the
proof is along the same lines as that of Theorems (3.1) and (3.6), and so we
omit it.

Similarly, the following theorem can be proved in the same fashion as
Theorem (3.4). _

Theorem (4.2). Suppose that M is a compact simply connected symmetric
space. Let M be an immersed compact submanifold with

(4.2) max K < min K esc2 (fcVmax K) ,

where 0 < b < — (max K)~ι/\ Then
- 2

(i) for almost all q e M, M Π U(q, b) has the homotopy type of a CW-
complex with no cells of dimension greater than dim M — dim M

(ii) for all qεM,M is not contained in U(q, b'), provided dim M<2 dim M
and 0<bf <b.

We remark that sufficient conditions that (4.1) and (4.2) hold are that K < 0
and max K < min K, respectively.

If max K > min K, we can obtain a lower bound on the diameter d{M) in
M of M, just as we did in Theorem (3.6).

Theorem (4.3). Suppose that M is a compact simply connected symmetric
space, and let M be a compact Riemannian manifold with max K > min K
and dim M < 2 dim M. If M is isometrically immersed in M, then

(4.3) d{M) >

(Here (4.3) is nontrivial precisely when M is a symmetric space of rank 1.)
Finally we note the following theorem, which is an analogue of Theorem (3.8).
Theorem (4.4). Suppose that M is a compact simply connected symmetric

space of rank 1. Let M be a compact Riemannian manifold isometrically
immersed in M with dim M < 2 dim M. Write π=dim M. Then

V max K

Hence if M is a minimal variety, d(M) > —(max K)~ι/2.
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