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CONVEXITY OF PARTIAL DIFFERENTIAL OPERATORS

W. AMBROSE

In [3, Chapter VIII], Hormander has proved some inequalities for some
partial differential operators by assuming certain convexity conditions. We
shall obtain some generalization of these inequalities under more general
convexity conditions. However, our primary aim has been to insert some
geometric meaning into the formulas of Chapter VIII of [3] via the
concept of the characteristic vector field of a function on a Grassmann bundle.
This geometric interpretation suggests our generalization whose proof then goes
via the analytic techniques of Hormander. The core of the proof is the same
as in [3], but the modifications needed to treat the more general case are non-
trivial.

Let Q be a bounded open subset of R?. Hérmander’s convexity condition,
for a linear partial differential operator defined on 0, involves a real valued
function ¢ on Q. We replace ¢ by a map @ which assigns to each x in Q a
nonsingular linear transformation of R2*! into R2*? (where R? is the tangent
space of R? at x ¢ R%). In the case considered in [3], our 0 is obtained from
the ¢ of [3] by

3 _ 0 dp 3 ,
0(x) " (%) e x) + o x) o ® A<LiLp,
00N —2—(x) =—2— () .

aup+l Upsy

We explain here why a 0 of our type gives an appropriate generalization of
the ¢ which occurs in [3]. Let P(D) be an m-th order linear partial differ-
ential operator defined on Q, and P,, the symbol of P(D). P, is usually
considered as a function on Q X C?, but instead, we shall consider it as a
function on a subset of G,(R?*?), where G,(R?) denotes the Grassmann bundle
of all p-planes at all points of R?. Then 0 induces, in an obvious way, a map ¢’
of G,(R?*") — G,(R?*?). We consider the function P,, - @', defined on a subset
of G,(Rr*"), which has a characteristic vector field V. We assert that the
essential function which enters into the convexity conditions of Chapter VIII
of [3] is the function H, defined on a subset of G,(R?*"), by
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H=V(P,-0).

Since this function can be defined for our type of 0, and corresponding ine-
qualities can then be proved, we feel that this is a natural generalization.
There is a parameter r, which enters into these inequalities but occurs
naturally here too, when we consider a certain @° associated with 0.

Throughout this paper we make the conventions: Q is a bounded open
subset of R?, and “differential operator” means a linear partial differential
operator, with complex-valued C= coefficients, defined on Q.

1. The relation between H, and Hormanders’s G,

In this section we suppose given a @ with properties (1.1) below and an
m-th order partial differential operator P(D). From these we first define the
functions H, mentioned above; they are defined directly from @ and the usual
function P,, associated with such a P(D). On the other hand, using Hérmander’s
quadratic differential form lemma [3, Lemma 8.2.2, p. 189] 0 and the
quadratic differential form (in the sense of [3, p. 1871) |P(D)u|’ give rise, in a
different way, to certain functions G,. The main purpose of this section is to
establish the relation between H, and G, given in (1.30). We would like to
have an intrinsic approach to these G, in the same spirit as that we have for
the H,, and then would like a coordinate-free demonstration of (1.30) but as
yet we do not know how to do it. Most of the work of this section does not
involve the parameter r, which enters later after we associate the family 0*
with 0.

For each x ¢ Q we henceforth suppose we have a fixed non-singular linear
transformation 6(x) of R2*! — R2*? such that both:

(@ OeC,
a.n 9 3 9
(b) O(x) (x) is a linear combination of (x) and (x) .
6 D+1 up+1 up+2

Define (¢,,(x)) to be the (p + 2) X (p + 1) matrix of @ with respect to the
usual cordinate systems of R2*' and R2*?, i.e.,

a p+2 a .
B(x) — @) = 3 ¢pil®) ®, 1<i<p,
ou, =1 ou,

1.2) 0(x) =,

9 (x)=‘/7p+1,p+1(x) 9 (x)+¢p+2,p+l 6

Up 41 aup+1 aup+2

soi,pn(x):oa ISiSP,

where u,, -+ -, u,,, and u,, - - -, u,,, are the usual coordinate systems of R?*!
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and R?*?, So in Hormander’s case

0 . .
0 =0 Prog =i Gpupga=1 (1 <Lji<b),
Ppi1i =05 @piap =0, Pips1 = 0.

We now use this 0 to define a map @’ of the subset z~(Q X R), denoted by
E, of G,(R?*") into G,(R?*?).

Let (x, P) ¢ E, i.e., x ¢ O X R and P be a p-dimensional subspace of R2*!.
First suppose x = (x',0) e @ X (0). We then define &(x, P) = (0(x), OP).
We extend the definition to the rest of E by translation along the (p + 1)st
axis, i.e., if x = (x',7) e @ X R and L is the translation of R%3%, to R%3,,
then we deﬁne 0'(x, P) = (x, LOL-'P).

The function P, usually associated with P(D) = Xp,D= is the function
defined on R? X R? by P,(a, &) = J, p.(x)§* (where & = & .- &, if
& = (&, --- &,)). We wish instead to consider P,, as a function on the above
subset E of G,(R?*'). The reason is that we wish to express our concepts in
terms of the structures associated with Grassmann bundles. Similarly, if the
usual function P,, is extended to a function P,(x, § 4 iy) on 0 X C», as in
[3], we wish to replace this by a P,, defined on the subset EofG (RP*?) where
E = 0 X R X R. So we now define our P,, on £ by

Pm = Z pa(y;-u + iyinz e (ygﬂ + iy£+z)¢p )

lal=m

where ¥, - -+, Ypi0 Yps1s *+ 5 Y011, Ypuos * + +» 5,4, is the coordinate system of
G,(R?*?) naturally associated with the usual coordinate system u,, - - -, Up,,
of Rr+2,

Let wy, -+, Wy, Whyys + -+, WB,, be the coordinate system of G,(R?*")
associated with the usual coordmate system u,, ---, U,,, of RP*, We now
express P, o’ in terms of this w-coordinate system. For this we must first
express the y/ o @/ in terms of the w-coordinate system, via the formulas (1.3)
and (1.5) of [1] (see also [2]). In all which follows we shall write f for the
function for, if f is a function defined on a subset of R?*! or R?*?, and = is
the projection of G,(R?*') — R?*! or G,(R?*?) — R#*2,

We define functions A4,;, B;;, C,; (recalling that in our case ¢; ,,; = 0 if
1<j<p)by

Ay =04+ @paWhy (A <Li<p,p+1<s<p+2),
(1.3) By, =o¢y 1<ij<p,
2 Bkicij = 0y 1<Lij,k<p,
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and the formula (1.5) of [1] gives

yiol = _i A,Cy;
(1.4) =

M=

k3

A (@si + @spsW5,)Ci; 1Lj<p,p+1<s<Pp+2),

since ¢; ,,, = 0. In Hormander’s case these become
By =Ciy =0y,

; 0
Ap+1,i = Wi Ap+2,i = —a‘l% ’
and hence

dp
ouy

’__ ’
}’{,,,,100 = w{)n s y;”oﬂ =

The reason for assumption (b) in (1.1) was to make the C;; independent of
the w%,,,; hence the y/ o @', and consequently the P, 0@, are polynomials in
the wj,,, which is necessary in order to use later the techniques of Hormander.
We have no conceptual meaning or justification of this assumption (b). From
(1.4) we have

Pmoﬂl = Z (paoﬂ/)

lal=m

D . ai
(1.5) ) [ng {(gopﬂ,j + ¢p+l,p+1w£+1) + l(¢p+z,j + ¢p+2’p+1w;+1)}C11]

b . . ap
* [;Z=:1 {(Sopn,j + ¢p+1,p+lw;;+l) + l(¢p+2,j + ¢p+2,p+lw;+l)}cjp] .

We introduce the notation:

P35 = Ppir,s t Ppiaj s

¢ = Qpirpi T i90p+z,p+1 >

P¢ = Pofyf N ng = (P.,,,)g H
so (1.5) now becomes

Pm¢ = Z (pa°0,)

lal=m

(1.6) [,Z: (p; + sbwz“)%]"

B e+ ¢wz+1>5,p]”-
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In Hoérmander’s case these become

. a¢
=1 s =1 N
@i au, ¢
a 1 a ap
ma - Z (pa°0/)( aZl + wp+1) v ( au(Pp + Wp+1) .

Now we wish to consider the characteristic vector field of P, (see [1]), so
we briefly recall this vector field. If F is any C* function defined on an open
subset of G,(R?*') we shall use the notation

F="2  F=3  G<i<pi<i<p+1.

ow, ., ow,

Then the characteristic vector field of F (with respect to a certain lift form
which is not important here) is the vector field V5, defined on the domain of
F, whose coordinate expression is

0

1.7

ﬁ [F + GuFIWy, ] —2—

= i ’
* a Wpi1

(this holding on the intersection of the domains of F and this coordinate
system). We now apply this with F = P, and write V' for this V. What we
wish for now is the coordinate expression for the function V(P,,;).

We first note that if P(D) is any partial differential operator then (using
that P, does not depend on w,,,), elementary calculations give

Py = (,P)s + él ("P)a{lz: Gor + 9wh, DCu

(1.8) + T+ ¢w;,+1)(jcw)} A<i<p,
(P =¢ ; (¥P)sCyy, -

To express V(P,,,) conveniently we introduce the following matrix notation.
First we define the p X p matrices of functions ¢’C and ¢C’ by

»
(Wc)jk = z§1 (j{oz + j¢'wi:+1)cu: ’

©®C"),, = z (@ + Wb, )(,Cro) -
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If B = (B,,) is any p X p matrix with the B;, ¢ C, and ze C, we define
Bz e C by

(Bz); = k}ijl Bz -
We also introduce the notation:
P — (P, ..., "P), P =GP, -, P,
P being any C~ function on a subset of G,(R?*?). Then (1.8) becomes

{(PY = (P)y + @C)(P), + (BC)CP), ,

Py = ¢C(P); .

We shall also write {z, w) for the usual scalar product of z, we C?, i.e.,
z,w) = 1:21’1Ziwr By (1.7), (1.8), and (1.9) we obtain (using that P, does

not depend on w,,,,)

1.9

V(P = 32 1(Prg) 2Lms _ [ (P]-Em
j=1 j j=1 3w},+1
- ;j (P I,Prp)]
_ ; [Pl P rp)]

(1.10)
= —2iIm él [Pl (P op)]

= —2iIm (Ppy), ¥{Prp))
= —2iIm {(Pn)s + @C)CP,)g
+ (OC)CP )y, ¢CCP L))
where *P,, = ¥P,) and ,P,, = ,(P,).
We define
H¢ = IV(IT,,L—,;) =2Im <;(P'm¢), ’(Pm¢)>
= 21m ((Pp)s + B'C)CP,); + (BC)CP,); $CCPLY> -
Now we introduce the parameter r. For each r ¢ R* we define, from 0, a
0" having also the properties (1.1) of 0. We define 0 through its associated
matrix (¢},), where the ¢}, are defined by
?;(L:q)ja (ISiSP,ISa£P+1),
(1.12) Ohpe1 = Po,p41 P+1<s<p+2),
051 = TPs 3 P+1<s<p+2,1<LiLp).

(1.11)
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So @ is defined by

p+2 .
A 1<i<p,
du; b=1 ou,
(1.13)
o = §0;J+1 S St + (P;Hz p+\_a— .
aup+l ’ aqu-l ' aup+2

It is clear that each @ satisfies (a) and (b) of (1.1). And each @°(x) is non-
0

a

(x) then, defining

singular because if O(x)v =0 and v = 3] c,

VT = f ¢y 9 X)) + cpiy g (x), it is easily seen that @(x)v* = 0; hence
j=1 auj aup+1
v* = 0, and v = 0. We now define, for each r ¢ R*,

P, =P, , Py .= Py,
H, = Hy. = 2Im {(P, ), ¥(Pr )>
— 21m {(Pn), + (@YOCP,),
+ ((B)C)CP,)., pCCP,).) -

(1.14)

This expression, if divided by z, becomes, in Hormander’s case, the left side
of his formulas (8.5.5) and (8.6.4).

Now we turn to the other expression we need to calculate in order to obtain
(1.30). This calculation will be based on Hoérmander’s Quadratic Differential
Form Lemma [3, Lemma 8.2.2, p. 189]. But before doing that we need some
preliminaries which we now develop.

Let G = (G;;) may be any p X p matrix of complex numbers. As usual, if
E=(&, -+, &) eRr, welet & = ¢&p, ..., &2, For each multi-index o let
¢. be the function defined on Q by

0(8) = &1 -+ - &7 .
So, trivially, the ¢, with || = m are, for fixed integer m, linearly independent

over C. We define a matrix G™ = (G,,), where «, g run through the multi-
indices such that || = |f] = m by

(1.15) (i Gi@) " (fgl Gi,gi) "" = T Guf',  VEeRr.

(These G,, are uniquely determined because the ¢, with |a| = m are linearly
independent.) Let ¢, be the multi-index defined by

& = (5“5 R aip) .
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Lemma 1.1. Suppose a; > 0. Then
(1’16) Gﬂa Z,GijGﬁ’,u-zj ’
where Y, denotes the sum over all (§, i) such that g’ + ¢; = p.

Proof. (33 Gu&D™ --- (35 Gip&i)ap
= (T GifI(X G -+ (X Gyy€) i - -+ (X Gipé)r]
= (Z Gij‘si) Z G,s',aﬁjf's' ’

where the second sum is over all g/ with |g’| = m — 1. For given g with
[B] = m and B; > O the coefficient of £° in this last expression will be

Gﬁa = Z . Giij',a-.j s

the. =
B +e,

which gives the lemma.

Lemma 1.2. If {d,} is any sequence of complex numbers, indexed with
the multi-indices o such that |a| = m, and we define d;, ; for each j and p’
such that |f’| = m — 1 by

4
dy,; = 1;1 Gijdw-i ’
then
1.17) N G,,,,,,,J,,jd,8 = 2, Gy ol ; va,jwith|e'|=m — 1,
P "

where these sums are over all B and ' such that |8| = m and |B'| = m — 1.
Proof. By (1.16),

22 GiGpo- }dy =0, ife; >0.
Hence
/; {x’ G”Gp,,,,_,jd,,“i} =0, fa, >0,
where };’ again denotes the sum over all i such that 3’ + ¢; = . But this is
&, GrremeCuspae sy >0,
where this sum is over all (8, i) with |f'| = m — 1. That is,

; Gﬁ’,n—'cjdﬁ',j = 0 ’ i.f aj > 0 .
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Hence we now have
Z,,: G,,,‘,,,de,8 = ; G,,,,,_‘jdﬂ,,, . ifa; >0,
which is the same statement as
P;: Gp,a'wjdp = ; Gy oy ve',j .

This proves the lemma.

Lemma 1.3. If the given matrix G = (G;;) is non-singular, then G™
= (G,,,) is also non-singular.

Proof. We induct on m, using (1.17). We consider G™ as acting on the
space of sequences {d,} (with ja| = m) in the usual way. So we suppose that

; Gﬂadﬂ = 0 Va ,

and will show all d;, = 0. By (1.17),

Y Gpodp, =0 v, jwith|a|=m—1,
pl

the d;, ; being defined as in Lemma 1.2. By the induction assumption,
dpj =0 VB,j,
ie.,
z Gijdﬁ'ﬂi =0 \ B
Because G is non-singular we conclude d;.,,, = 0 v8', i, i.e., ds = 0 V8.

Let G = (G;) now be a p X p matrix of complex valued functions in
C=(Q), and F,, - - -, F, also be complex valued functions in C=(Q). We define

(1.18) (F + GD)s, = (Fl + 3 GﬂDi) " --.(F,, + i)’j G“,Di) ”
i=1 =1

where the product on the right is the usual product of operators. We wish to
break (F + GD)g into a sum of two operators:

(F + GD); = (F + GD)* + (F + GD),,
where (F 4+ GD)g consists of those terms in the expansion of (1.18) in which

no F; or G; is differentiated, and (F 4+ GD)j consists of the remaining terms.
Now we say this more carefully.
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First we use the fact

a ___L_a—ﬁﬁ
€+ _oséaﬁ!(a—ﬁ)!é 7

and (1.15) to note that if
F+Go)=F, + LGy ---(F,+ X Gip6)°?,

then

. a!l B G..&
(1.19) (F + G&) = os}p-la @— pp! F mgm Gl

where these G,; are C> functions, defined at each x ¢ 0 from the G,,(x) by
(1.15), and F*~f = F{a8 ... F"pp-ﬁp_
So we now define

a!
@ — P LE— 2 G,Dr,
(1.20) #+ 6D 05;;' (a —P!a! lrlz-—-jlﬁl P

(F + GD); = (F + GD)3, — (F + GD)~ .

Now we insert a parameter ¢z and consider the order of the coefficient of each
t* in the expressions

(cF + GD);, (zF + GD)*, (zF + GD); ,

i.e., we are replacing the F; by zF;.

The following two lemmas will not be used until the next section. We prove
them here because their proof depends essentially on the properties of the
G,s, and we have had to introduce the G,, here. The first is essentially the
associative law for the product (F + GD)=. It is essentially obvious since we
have defined this product via an isomorphism with an associative product of
numbers, but we give a formal proof.

Lemma 1.4. For each multi-index o,

(1.21) (F + GD)***s = Fy(F + GD)* + 3, Gy(F + GD)*D; .

Proof. We shall use the following, which is immediate from (1.17),

(a) Z GrﬁGijDr+'i = Z G Dr .

X T.Bte
i,irT=p rl=p+1

We now compute, for each multi-index 7, the coefficient of F” on the two sides
of (1.21), and show them equal.
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By definition,

a!
« = — T Fe-fey G,,D7,
FyF + GD) OSﬁZSu Bla — B! ! Irlglﬁl g

and if we write 7 = @ — 8 + ¢;, f = @ — 7 + ¢, then the coefficient of F”
here is

a!l
G, . ...D.
® (@ — 75+ elnp —e)! |7l=|§n+tjl P
The second term on the right of (1.21) is
!
; D, = S a— GG D+,
; Gi](F + GD) i 05h<a ﬁ!(a — ﬁ)! Irl§|ﬂ| (¥ Ay ]

and by writing y = @ — B, B = a — 7, the coefficient of F” here is

! 2 GG, .. D,
(@ — Ply! ir=Te=a ’

which equals, by (a),

al
_ G, apie D7
© (@ — Pip! m=h§;+-jl nETT

The coefficient of F7 on the left side of (1.21) is

(a + ¢;)! .
@ (@ + &5 — M) iri=1a=geeyl ”“_"“fD )
Since the coefficient of (d) is the sum of the coefficients of (b) and (c), we
have proved (1.21).

Lemma 1.5. (zF + GD)3 and (cF + GD)* are operators of order < |a|,
and the coefficient of t* in each of these has order < |a| — k. (zF + GD)3
has order < |a| — 1, and the coefficient of * in (cF + GD)3 has order
<la| —k—1.

Proof. The statements for (¢F + GD)3 are trivial (formal proof by
induction on |«|), and for (zF + GD)3 are even more so. So we turn now to
(zF + GD)j3, which we prove by induction on |«|. For |a| = 1 the statements
are trivial because in that case (<F, GD); = 0. Now suppose we have these
statements for all o’ with |o’| < (|, and we will prove them for a.
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Let j be the first integer such that «; > 0. Then

(zF + GD)i = (zF + GD)i — (zF + GD)"
(TFJ + Z szDi) (zF + GD):*i — («F + GD)*

— {(rF + % G )(:F + GD); — <fFj + 3 G,.jDi) (cF + GD)~4|
+ [(TF, ) GijDi) F + GD)~; — (cF + GD)“] .

We now work separately with the expressions { } and [ ], proving separately
that each satisfies the order conditions desired for (¢F + GD)s.
We have

{ }= (TFJ + Z szDi) (zF + GD);™*; ,
and, by the induction assumption,

(zF + GD)i*5 = Y, <4(D),

1<|al-1

where A,(D) is a differential operator of order < |«| — 2 — I. Hence

{ }=(F,+ £6D) 3 +#4D)

<lal-2
= ), t*F;A,_ (D)
1<k<|al-1
+ Z t*Gy;A,(D)D;
OSkSlal -1
+ Z ?kGijA}c(D) ’

OSkSlal -1

where AL(D) is a differential operator of order < |@| — k — 2, obtained by
summing the terms in which the D, have been applied to the coefficients of
A,(D). We see then, from the orders of the 4,(D), that each of these sums,
hence also { }, has order < |¢| — 1, and in the same way that the coefficients
of ¢* has order < || — 1 — k.

Now we prove the corresponding fact for [ ]. We know

GF +GD)* 5= Y, 'B(D),

0<i<]al-1

where B,(D) is a differential operator of order < |a| — ! — 1. Now we write
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[ 1=1F,zF + GD)* s
+ X BiD)

0<i<lal -1

+ 2 Gyy(zF + GD)*~*iD;
- (fF + GD)“ ’

where Bj(D) is a differential operator of order < |a| — ! — 1, obtained by
summing those terms in (3] G;;D,)(}; 'B,(D)) in which some D; has been
applied to some coefficient of B,(D). So the coefficient of ! in )] ‘!B,(D) has
order < |a| — 1 — [, which is the desired order, and we need only consider
the remaining terms on the right side. But the sum of those is 0 by the previous
lemma.

Now we turn to the calculation of the function G,, to be obtained by
Ho6rmander’s quadratic differential form lemma from (P(D) and #, the object
here being the proof of (1.30). We use again the matrix C = (C,;) and the
functions ¢,, - - -, ¢,, ¢ obtained from the given 0. We consider now operators

[C(zp + ¢D)]1g

1.22) =[; Colep, + ¢D,)]" [; Cyplee, + ¢D,)]«p,

the right side being the usual product of operators. If we let
TFk =T 2]: Cjksoj 5 ij = Cjk¢' Py

then this is the same as the expression (¢F + GD)% considered above.
Accordingly, we define, for this choice of the F, and G,

[C(zp + ¢D))* = (zF + GD)- ,

1.23
129 [C(zp + ¢D)]; = (zF GD); = [C(rp + ¢D)5 — [Clzp + ¢D)]* .

Once again, [C(zp + ¢D)]* is the result of dropping from the expansion of
[C(ze + ¢D)], all terms in which a Cy,, ¢,, or ¢ is differentiated.
With P(D) = }, p,D* a partial differential operator we then define
P(C(zp + ¢D))y = X pIC(zp + ¢D)]5
P(C(zp + ¢D)) = ¥ p.[C(zp + ¢D)I*,
P(C(zp + ¢D)), = X PIC(zp + ¢D)]5
= P(C(zp + ¢D)), — P(C(zg + ¢D)) .

(1.24)

We note, with this notation, that

P,(C(zp + ¢D)), = 12_';. PC(zp + ¢D)]; ,
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which is not homogeneous in general; similarly for P,(C(cp + ¢D)) and
P, (C(r¢p + ¢D),. And the reason for writing P(C(z¢ + ¢D)) for the particular
operator defined above is that if we replace each D by z* = z* -+ z;? in
the expansion of this operator, we get what is usually denoted by
P(C(zp + ¢2)).

Lemma 1.5. [C(zp + ¢D)1g and [C(zp + ¢D)]* are operators of order
< |a|, and the coefficient of t* in each of these has order < |a|— k.
[C(zp + ¢D)]; has order < |a| — 1, and the coefficient of ¢* in (¢F + GD);
has order < |a| — k — 1. If P(D) is a partial differential operator of order
< m, then P(C(zp + ¢D)); and P(C(z¢ + ¢D))* have order < m, and the
coefficient of t* in each of these has order < m — k; P(C(cp + ¢D))5 has
order < m — 1 and the coefficient of t* in this has order < m — k — 1.

If Q(D) = 3, q.D=, we shall use the notation

(D) = ¥, 4.0 .

Then clearly

O(Clzp + ¢D))* = ¥, 4.IC(zp + gD)]* ,
and defining

Q(C(zp + ¢D))5 = [Q(C(zp + $D)),1°

we also have

Q(C(zp + ¢D)5 = 3 .[C(zp + eD)]; .
Note that trivially,

[(DNC(zp + ¢D)II* = /[Q(C(zp + ¢D))],

[GDIC(zp + ¢D)II* = ,IQ(C(zp + ¢D))°I .

We remark that Q(D)‘uc is not the same as [Q(D)u]® because in the former
the D, are not conjugated. (In our usual case C is real so C = C.) We now
consider the quadratic differential form in the sense of [3], depending on
7 € R* and defined by

F(D)u = |P,(C(rp + ¢D)uf — | P, (C(cp + FD))uf

(1.26)

= |P,(C(zp + ¢D)uf — |P,(C(zp + $D))°uf* .

We also use z°, as well as z, for the complex conjugate of ze C, where

C(zp + ¢D) and C(zgp + ¢D) are defined by replacing, respectively, the ¢,

and ¢ by , and §, and the D, by D, (i.e. D= —i% D, =i )
ou, ou,
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Hérmander associates with each quadratic differential form F(D) a function
defined on Cr (by replacing, in the canonical expansion of F(D), each D; by
the complex variable z;) and in this way the associated function of the above
F.(D) is

F(2) = |Pp(C(zrg + ¢2)} — |Pp(C(zp + ¢D)} ,

where for P,, = Y, p,D=,

lal=m
P,(C(zp + ¢2)) = | E, p.(C(zp + ¢2))°
= X PAX Cyulzp; + ¢z )™ -+ - (X Cjplrp; + $z))? .

laj=m

Clearly F.(z) = O if z € R?, so we can apply Hérmander’s quadratic differ-
ential form lemma [3, Lemma 8.2, p. 189] to find a quadratic differential
form G (D), depending on the parameter ¢ ¢ R*, such that all the following
hold:

1.27) f F(D)u = f G(Du  (YueCr(Q);

(1.28) the coefficient of z* in G (D) has order < 2m — k — 1, m) ;
ifz=£&+ ip(zeC?, &c R?, e R?), then

(1.29) G, 8 =L s L

& + i0) .
3 % Ty, ETIO

The main purpose of this section is to relate this G, to our previous H, by the
formula:

1
G,(Wl, s Wois Wi 000y w£+1)

(1.30)
=H, +2ImP,, 3 /((Pn)") .

The only thing which will be important about }; /(;(P, .)°) is that it is
7

homogeneous of degree m — 1 in the w},,,, ---, wh,,, . To prove this we
note that the second part of (1.8) shows (using ¢* in place of 0) that if Q is
homogeneous of degree k in wy,,, -- -, ws,,, ¢ then JQ is homogeneous of
degree k — 1 in them; the first part of (1.8) then shows that if R is homo-
geneous of degree [ in these variables then ;R is also homogeneous of degree

l. Applying these with R = P,, ., | = m, then Q = (;P,)., k = m, gives the
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desired statement. Using (1.8) we could get a more explicit, though complicated,
expression for Y] /(;(P, )°), but it would not be useful.
J

It does not matter for the calculation which we now make whether we work
with the real variables &,, - - -, &,, ,, + + -, 7, as in Hormander or whether we
replace these with the coordinates of a Grassman bundle. In the former case
we would transfer our H, to a function on Q X R?, and in the latter would
transfer G, to a function on a Grassman bundle. We do the latter for it is
logically more consistent though unnecessarily sophisticated. For this, consider
the space G, of complex p-planes to R?*!, a space which will have, for the
w-coordinate system previously used, a system of coordinates of the form
Wi, vy Wiy, Whats + o0, Who o, Wiy, - -+, w8, Each 0 induces an imbedding
I, of G5 — G,(R?*?) and we define

Pm,r =P, ol
= Pm(C(T(P + ¢(wp+1 + iwp+2)))
= 5 PX Culre; + pW).1 + iwp, )™

lal=m

(1.31)

tee (Z ij(TSDj + (/J(W{m + iwin)))up .

Let J be the transformation, which carries wj,, — wj,, and wj,, — —wj_,,
on the space of polynomials in the wj,, and w},, with coefficients which are
functions of w,, - - -, w,,,. One verifies, for S and T any such polynomials,
that J(S + T) = J(S) + J(T), and J(ST) = J(S)J(T), and

O o= —Jo_9 .
Wi Wi

In these terms (1.29) says, at points where all w},, = 0:

1
Gw, -, Woits Wpis =% W£+1)

(1.32) § 4 2
=L T (Pu. = |Pa.oTP)

Now we calculate with (1.32) to prove (1.30). First note, at all points where
all W{,” =0,

a0 _ {i(JQ) : if Q is a polynomial in the wj,, + iwj,,,
W}, —i(’Q) if Q is a polynomial in the wi,, — iw?,, .

Hence, using (1.32) we have, at all points where all wj,, = 0,
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1 2 0 0 0
G.= L { P,,,,z_( Pm,z)oc}
212=:1 owh., awjl ! awjl !
0 0
- P’mrz
§ owh,, ow, e
- 9 (LP )P )c)
; awl,, aw,( m)m,e
0
- (Pm f)(Pm f)c + (Pm t)( Pm r)c
B (PP, APn)
= % =2 (2ReP, ((Pn))}
7 0 fm
oP a
= 2 Re Tu" mec Pm, - 'Pmr)c}
; ol (;(Pr)®) + Py, Wi (; (P, )9

2 Re ; {i(j(Pm,r))(j(Pm,r)c) - iPm,r(j(Pm,r)c)}
2Im 3 {—=((Pp N(Pr ) + P (((Pr )N},

which gives (1.30) by comparison with (1.14).

2. Statement of inequalities

We use the same notation as in the previous section with P(D) a C= differ-
ential operator of order < m defined on Q X R? and with a fixed 0 as in § 1.
In dealing with functions such as our P,, H,, etc. we shall usually consider
them now as defined on O X R? (instead of a subset of G,(R?*Y) via the
obvious correspondence; for here we are only making some variations on the
analytic techniques on Hormander, and the conceptual aspect is not important.

If reZ* and r € R* we use the norms | ||, . on C;(Q) defined by

el = 5 e [ e
lal<r

We have the following three inequalities, the first two being trivial (P(D) being
of order < m), and the third following from Lemma 1.5: there exists K € R*
(depending on P(D) and 0) such that for all u e C(Q) and all 7 > 1,

IP(Cle + ¢DNu|| < K|u . 5
2.1 IP(Cle + gDyl < Kl[u|m,. »
IP(Clp + ¢pDNu|| < K|tt]|m-s,c -

The following definition gives a routine generalization of Hormander’s
notion of principally normal, except for one minor difference. Our definition
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is in terms of a function S (we write S where Hérmander writes Q) whereas
the definition in [3, p. 199] is in terms of a differential operator and its
associated function. We take care of this difference in the proofs below,
through (2.1).

Definition. P(D) is principally normal with respect to 0 iff there exists a
function R, defined on @ X R?, of the form

2.2) Rx,8) = X r(xé&,

laj=m~1

where the r, e C*(Q), such that if S is the function defined on R* X Q X R»
by

(2.3) Sz, -, 8) =i ; Pn(C(rp + ¢8)) + R(Clze + ¢&))*
(for all z € R*, § € R?), then
2.4 Hy(-, &) + 2Re (Po(C(0p + ¢S, -, &)
is 0 on O X R». We note that
P (C0p + ¢&)) = P,(Cyt) = ¢m|alZ=}mPa(Z Cpépm - (L Cypfpr .
It is easily seen that if we expand #(P,(C(zp + ¢£)) by (1.8), then S(z, -, &)
will not, in general, be of the form T(C(zp + £)) for some T defined on

0 X Re.
The following are extensions of (8.5.3) and (8.5.5) of [3, p. 200].

lim ;—[H,(x, £) + 2 Re (Po(C(x)(zp(x) + ¢(x)§))S(z, x, £))]

is positive whenever P, (C(x)¢(x)¢) = 0.

(A)

H (x, &) is positive whenever ¢ # 0 and

A,
) Pr(Cx)(zp(x) + ¢(x)§)) = 0.

The aim of this paper is to prove the following five theorems. The first
two are generalizations of Theorems (8.5.1) and (8.5.2) of [3, p. 200]. The
third is an independent fact which is used to obtain the fourth and fifth from
the first and second. The fourth and fifth are also generalizations of the same
Theorems (8.5.1) and (8.5.2) of [3], but differ in that more is assumed
(Condition B below) but a better conclusion is obtained (the inequalities proved
do not contain the matrix C). Theorems 4 and 5 are immediate from Theorems
1,2, 3. Now in this section we state all five of these theorems and prove
Theorem 3, so it will remain only to prove Theorems 1 and 2 in the following
section.
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Theorem 1. Let P(D) be principally normal with respect to 0. If (A,))
holds, then there exist K and =, in R* such that

@) ]| U |fu-r,e < K[| P(Clze + ¢D)yut|f + o™ ulf']

for all ue C3(Q) and all © > z,.
Theorem 2. Let P(D) be principally normal with respect to 0. If (A,) and
(A,) hold, then there exist K and z, in R* such that

(1) il < K[| P(Clzp + ¢D))yu |

for all ue C3(Q) and all © > z,.

Taking C;; =d,;;, ¢ =1, and supposing there exists a ¢ such that
¢; = 0¢/ou,, (I,) and (I,) become the inequalities stated by Hormander, if
one uses the identity

ﬁ’i)al( _ag_o.): —“¢Dee?
(Dl+zaul Dp+taup e *Dee* ,
and makes the substitution » = ue*. Our Theorem 4 and 5 below in the same
way give the inequalities as stated by Hormander, even without assuming
C.; = 8, if we suppose again the existence of a ¢ such that ¢, = 9¢/0u,,
and ¢ = 1. In this way they are more clearly a generalization of those of
Hoérmander, for they give his conclusion with more freedom in the choice of
C = (C,)), as well as in cases where there is no such ¢.

Theorem 3. Let P(D) = 3, p,D*, and G = (G,;) be a p X p matrix of

lal<m _ —
complex-valued C* functions defined on Q, and suppose that for each x ¢ Q

the matrix G(x) = (G,;,(x)) is non-singular. Let G™(x) = (G,,(x)) be the
associated matrix defined in § 1 (by 1.15), where a, 8 run through all multi-
indices with || = |B| = m, and suppose that

B | l}; P(X)Gy(x)€ = O for all (x, &) e O X R for which
2 P(0)§=0.

lal=m

Then there exists a K in R* such that
| P(G(zp + ¢D))u P < K[| P((zp + ¢D) W | + || u]f-y,.]

forall ue C3(Q) and all = > 1.
Theorem 4. Under the assumptions of Theorem 1 and that (B) holds with
G = C, there exist K and ¢, in R* such that

@ tlulfs,. < K[ P((re + ¢D) ) | + o™ u ]
for all u e C3(Q) and all = > z,.



144 W. AMBROSE

Theorem 5. Under the assumptions of Theorem 2 and that (B) holds with
G = C, there exist K and z, in R* such that

I || ulf-r,e < K[| P((zp + ¢D)y0) |

for all ue C3(Q) and all © > ¢,

For the proof of Theorem 3 we need the following lemma which is, like
Lemma 1.4, essentially obvious, but we give a formal proof based on Lemma
1.4.

In the proofs of these theorems we pass back and forth between the
operators P(C(zp + ¢D)),, P(C(zp + ¢D)), and the constant coefficient
operator defined, for fixed x ¢ Q, by

P(x, CO)(co(x) + $(x)D))
=3 p.(x)(}; C, () (ep, (1) + ¢(x)Dj)) .

. (; C,,()(ep,(x) + ¢(x)D,)) .

(Note that, in opposition to the notation of [3], when x does not appear—e.g.
in P(C(z¢ + ¢D))—the coefficients are variable and when x does appear the
coefficients are constants, obtained by evaluating the variable coefficients at
the fixed x. We follow the same convention in the next section in dealing with
quadratic differential forms.)

The operator P(C(zp + ¢D)) serves as an intermediary between
P(C(zp + ¢D)), and P(x, C(x)(zp(x) + ¢(x)D)). Hormander does not need
the distinction between P(C(z¢ + ¢D)) and P(C(zp + ¢D)), because he
makes a change of coordinates so that his ¢ becomes linear and then (in his
case) these operators are the same. But our @ depends on more than a single
real-valued function so we cannot do that. Hence we need to pass back and
forth between P(C(zp+ ¢D)),, P(C(zp+ ¢D)), and P(x, C(x)(ze(x) + ¢(x)D)).
Our proofs of Theorems 1 and 2 are obtained from that of Hérmander by
adjoining the complications necessary for these passages.

Lemma 2.1. For any multi-index o,

2.2) (Clp + gD = T Cplep + 4D .

Proof. By induction on |«|. For |a|= 1 it is trivial so it is sufficient to
show that if it holds for « then it holds for a + ¢;. We show this by using
Lemma 1.4 with first choosing

Fj =13 Cypr » G = ¢Ch
and then F; = 7¢;, G;, = d,,¢, and also by using (1.16) at the last step. We
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have

(Clep + gDV
= (¢ X Casp) Clep + 9D)* + 3 9C./(Clep + $DYD;

=(FECom] B, Cueo + 9DV 4 340 3, Culer 4 4DYD,
= ¥ CiColrpilre + ¢D) + ¢(rp + ¢$D)*D,]

k,181=lal

= 2 CCulre+ ¢D)Yt% = 3 Cr,,,“j(z'go + @D)
k,1Bi=lal Irl=|¢+ljl

proving the lemma.
Proof of Theorem 3. By (2.1) it is clearly sufficient to prove (with the same
conditions)

@ | Pn(G(ze + ¢DYW) | < KI|| Pr((ze + ¢DIW | + || u]f-s,] -
Let Q’ be a neighborhood of Q on which the p, and @ have been extended
so as to be in Cy(Q").

From (B) it follows in standard fashion that there exists K in R* such that
for all (x, &) in O X R?

.

Y P.(®)G(x)E l <K

lal=[Bl=m

lalz=:m P,,(JC)S“

Hence replacing &, by (z¢,(x) + ¢(x)&,), multiplying by #(£), where u € C;(Q"),
and integrating on £ give

J

Z P T Grlepx) + $0EAE) | de

<k{

Hence, for all u e C3(Q’) and all z ¢ R,

T 0. () (eo®) + HEEE) ] ds .

@  |[Pn(x, G@)(zp(x) + $()DW) |! < K|[Ppl(zep(x) + H(x)D)u) | .

We note now that (I') is of local character, i.e. for each x ¢ O there is a
neighborhood Q. such that if (I') holds for all u ¢ C3(Q,) then it holds for all
u e Cz(Q) whose support is in a sufficiently small neighborhood Q" of O.
For if we have such {Q,}, then some finite number of them, Q,, - - -, Q;, cover
0. Letu, ---,u, be a Cg partition of the identity for @, subordinate to these
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Q,. Then

| Pu(G(ze + ¢D)u) |
X Pn(G(zp + ¢D)ut)
<2 X1 Pn(Gry + ¢DY)umw) |

2

< K [Z1PlGep + gDY ) [ + [l -

Now note that
P,(tp + ¢D)uu) = uP,((r¢ + ¢D)u) + A, (D)u ,

where A4, (D) is a differential operator of order < m — 1 and the coefficient
of t* in A, (D) has order < m — 1 — k (this is proved for (zp + ¢D)* by
induction on |«|, then follows for P,((z¢ + ¢D)). Hence, from the above
inequalities, with possible changes in the value of K,

| Pn(Glze + ¢D)u) |1
< K |3 (1uPnl(ep + $DDulF + | A, DD + [ulfs
< K(| Pp((ze + ¢DNU | + ||y -

If (I) is false_ then, by the local character, there exists an x ¢ Q (using
compactness of Q) such that for every n e Z there is a u, e C;(B(x, 1/n)) and
7, > 1 with

®)  [[Pn(G(rap + ¢DNuy |P > nll| Pp((zap + DNy [P + || g -, ond -
By Lemma 2.1 we have

P,(G(zp + ¢D)) = p.Cp(rp + ¢D)? .

lal=|Bl=m

From this and the definition of P,(G(x)(zp(x) + ¢(x)D)) we see that
P, (G(z¢ + ¢D)) has the form

Pm(G(Tﬂo + ¢D)) = Z quakDu )

lal+k<m

where

P (x, G(x)(zp(x) + ¢(x)D)) = |+st g (X)D* .
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Hence, if
611 = max 'qak(y) - qak(x)’ b

y€B(z,1/n)
a,k

then §, — 0 as n — oo. We have
| Pr(G(znp + ¢D)uty — Pr(x,G(x)(zop(x) + H(X)D)uy |

< 5 e — qu@FIDu

B(z,1/n)
< Lo | ulf,..
= L&,
where L is the number of «, k with ||+ k < m.
We also have, by (d) in the case where G(x) is the identity for each x,

GY

O | Pu(zup + ¢DNty — Pr(x, (z290(x) + (X)DDu, ' < Loy, ,

where 7, — 0 as n — .
Hence

| Pr(G(zap + ¢D)u, |
L 20| Pr(Glznep + ¢DNu, — Pr(G(x)(z,p(x) + ¢(X)D)u, |
+ [ Pr(Gx)(tap(x) + ¢(x)D))u, |[]
< 2L3, + K || Pp((za9(x) + ¢(x)D))u, |
< 2L6, + K[| Pp(x, (zh0(x) + ¢(x)D)u — P, ((r@, + ¢DNu |l
+ | Pn((zgn + ¢D)ulf]
< 2Lj, + 2KLy, + K||Pp((za9 4+ ¢DDu, |I* ,

which, letting n — oo, contradicts (b). This proves Theorem 3.

3. Proof of Theorems 1 and 2

The proof given here is essentially that of Theorems 8.5.1 and 8.5.2 of [3,
p- 200], but with many changes in details. Where the details are essentially
the same as in [3], we include them when we feel it makes our treatment
more intelligible, but generally omit them. We try to give an exposition which
is complete except for a limited number of references to [3]. In this section
we use the notation:

P.(D), = P(C(rp + ¢D)), ,
P.(D) = P(C(zp + ¢D)) ,

P(D), = P(D), — P(D),

P(x,&) = P(C(zp + ¢8) .
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Lemma 3.1. If inequality (I;) holds for P(D) (of order m) and if Q(D)
= P(D) + R(D), where R(D) is a differential operator of order < m — 1,
then the same inequality holds for Q(D) (with a possibly different k and t,).

Proof. Q.D), = P.(D), + R.(D), so, by (2.1),

10.D)ult = % IPD)ult — | RAD)yulf

= Kie|lulfre — K[ U],

with K,, K, ¢ R*, independent of u ¢ C3(Q) and = > 1. From this the lemma
follows.

Lemma 3.2. Suppose that for each x ¢ Q there exists a neighborhood Q,
of x such that (I;) holds for all ue C3(Q, N Q), with some K., t, (in place
of K, t,). Then P(D) satisfies (I,).

Proof. This proof is essentially the same as the proof of the local character
of [2] given in § 2 (the proof is taken from [3, Lemma 8.3.1, p. 190]). Let
X, -+, X, be a finite number of points Q such that the 0, cover and (Z,) holds
for each Q... Let u,, - - -, u; be a partition of the identity of Q subordinate to
the Q.. Then by writing

P,(D)*(u,;u) = uiPr(D)*u + Az,i(D)u
as in § 2 and making the same calculation, we get
Tl -, < KO PD)yut | + || ©|fues, ] 5

which easily yields the lemma.
We recall that we use the notation Q(D)¢ for > g, D* if Q(D) = 3] q.D".
Let

SD) = 3 :S¥(D) , (D) = ), *T*D) ,

0<k<s 0kt

where S*(D) is a differential operator of order < s — k — ¢, and T¥(D) a
differential operator of order < ¢t — k — d. Then the coefficient of z* in the
quadratic differential form L (D), defined by

L(D)u = (S(D)u)T(D)u)* ,

hasorder < (s +t — ¢ —d — k, max (s — ¢, t — d)). It follows that there
exists K ¢ R* such that for all = > 1 and u e C3(Q),

3.1 ILDu|| < K||ul}., r=max(s—c,t—ad).
If we define the quadratic differential form M,(D) by
M.(D)u = Re [(S(D)u)(T(D)u)° — (S(D)u)(T(D)°u)] ,
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then by (3.1),
(a) IMDu| < K|ul,., r=max(s—c,t —d).

Clearly M.(x, &) = 0 if £ e R?; so, by Hormander’s quadratic differential form
lemma [3, Lemma 8.2.2, p. 189] there exists a quadratic differential form
N_(D) with the properties:

(b) The coefficient of z* in N (D) has order < (s +t—c—d —k — 1,
max (s — ¢, t — d)), and if 2(max (s — ¢, t — d)) > s —t — ¢ — d then
N.D) can be further chosen so that the coefficient of z* has order
<@G6+t—c—d—k—-1, (max(s —c,t —d) —1).

() f M (D)u = f N.(D)u for all ue Cy(Q) .

Lemma 3.3. Let R(D) be the part of P(D) of order < m — 1, and
R,,_,(D) the part of R(D) of order m — 1. Then there exists a quadratic
differential form N (D) (depending on the real parameter t) of the form

N(D)= Y <N¥D)

0<k<2m-2

with N* a quadratic differential form of order < 2m — k — 2, m — 1) such
that for all real = and all u ¢ Cy(Q),

| PD)yu|* — || PD)sut — Ry, (D)ulf
= | P, (D] — || Py, (D) u|f

(3.2)
42 f Re (P, (D))(Rp_, (D)u)*

+ f N.(D)u .
Proof. Note, for differential operators S and T, that

(i) |Su+ TulP=|Sul*+ |Tu|* + 2 Re ((Su)(Tu)9),

(i) |Su+ Tul* — |Sul*
= |SulP — |Sul + |Tu* + 2 Re (Sw)(Tw)°) ,
(i) |Su+ Tul® — |Su + T°ul
' = |Sul — |SupP + |Tul — | Toup
+ 2 Re [(SW)(Tu)° — (Scu)(T°u)] .

Hence, using (iii),
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|P(D)ytt — Ry, (D" — | PAD)stt — Ryn_ (D)u|*
+ Ry, (D)u*
+ 2Re [(P.(D)yu — Ry (DIW)(R,,_, (DIu)]
= |P(D)yu| — | PD)su |’
+ |Rno, (D" — Ry (D)u
+ 2Re [(P.(D) )Ry, (D))° — (P (D)s)(Ry,_,, (D)u)’]
+ | Rpo1,(D)u * + 2 Re [(PAD)u)(R,,_,, (D)u)?)]
+ 2Re [(P(D)u — Ry, (D)u)(R,,_, (D)U)°] .

Now we write
P(D),u =P, (D)u + P, (D),u + R(D)u ,
and apply (iii) again, to the first term above, with
$ = P, (D), T = P, (D), + R(D)
so the above becomes

| Py (D)ul® — | Py (D)ul
+ [Py, (D) u + R(D)u|* — | Py (D)u + R(D)ul’
+ 2 Re [(P,, (D)W)(P,, (D)u + R (D)u)
— (Pp, (D)Yu)(Py, (D)ju + R.(D)u)]
+ [Ru_1, (D |* — | Rp_y, (D)u |’
+ 2Re [(P.(D)W(R,,_, (D)u) — (PAD)su)(Rp_, (D)u)]
+ | Ry (D)u ]’ + 2Re [(Py, (D)u)(R,,_, (D)u)]
+ 2 Re [(R.(D)W)(R,_, (D)u)]
+ 2Re [(P(D)u — Ry, (D)W)(R,_, (D)u)] .
Let
MD)u = | P, (D)ju + R(D)ul
— | P, (D)gu + R(D)u|” + |Rp_, (D)u
+ 2 Re [(R(D)W(R,_, (D)u)]
+ 2Re [(P(D)u — Ry, (D)W)(R,_, (D)u)],
M;(D)u = 2 Re [(P (D)u)(P, (D)u + R.(D)u)
— (P, (D) u)(Py, (D)su + R.(D)u)]
+ 2Re [(P(D),u)(R,,_,, (D)u)
— (P.D)s) Ry, _, (D)u)] .
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So we have

|P(D),ul|” — |P(D)su — Ry,_, (D)uf
= | Py, (D)ul? — | Py (D)ul’
+ 2 Re [(P,, (D)u)(R,,_, .(D)u)]
+ M{D)u + M?(D)u .

@

From statements above about L (D) we see that each term of M’(D) satisfies
the order conditions desired for N (D). From statements made above about
M (D) we see that M/ (x, &) = 0 for all ¢ ¢ R?, so by (b) above there exists
N”(D) satisfying the order conditions desired for N (D) and such that, by (c),

© [ M= [ N/Du

for all u e C5(Q) and all = > 1. We now define
N.(D) = MD) + M/(D) ,

and by (d), (e) and remarks made above about order, we see that the lemma
is proved.
Lemma 3.4. Let M (D)= Y, <t*M*(D) where each M¥(D) is a

0<k<2m-2
quadratic differential form of order < 2m — k — 2, m — 1). Then there
exists K € R* such that for all ue C3(Q) and all = > 1,

(.3 [ M,(D)u] <Klulk_,. .

If each M¥(D) has order < 2m — k — 3, m — 1), then we can improve this
to

3.4

T fM,(D)u

< Kjufs

m—-1,z *

Proof. This occurs in [3] and the proof only involves the Schwartz
inequality, so we omit it.

Lemma 3.5. Let R,,_,(D) be the part of P(D) of order equal to m — 1.
There exists K € R* such that for all t > 1 and all u ¢ C3(Q),

f [| Py (D)u|* — | P, (D)u

(3.5) + 2 Re (P, (D)W(R,, ., (D)u)]
S| PD)ulf + K|l ulfp-s,. -
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Proof. Immediate from Lemmas 3.3 and 3.4.

We shall use that P(D) is principally normal with respect to @, and follow
the argument of [3, p. 201]. By definition, there exist functions R and S
satisfying (2.2)—(2.4). By Lemma 3.1 our desired inequalities are independent
of the lower order terms in P(D), so we henceforth assume, without loss of
generality, that the part of P(D) of order m — 1 is R(D), where this R(D) is
obtained from the above function R by replacing &* by D= in (2.2). Clearly
then

(3.6) Ry_y,(+, € = R(C(zp + ¢8)) ,

where R, _, . is defined from R(D) as usual.
In §1 we applied Hormander’s quadratic differential form lemma to the
F (D) defined by

F(Du = |Py (D)u|’ — | P, (D)

to obtain a G,(D) satisfying (1.27)—(1.30). With this G,(D) we now define the
quadratic differential form K,(D) (depending on = ¢ R*) by

(3.7 K.(D)u = G(D)u + 2 Re (P, (D)W)(R,,_, (D)) .

So K.(D) has the following properties:

(3.8) The coefficient of z* in K (D) has order < @m — k — 1, m)
(by (1.28)),

(3.9) fK,(D)u = f[l P, .Du| — |P, (D)l

+ 2Re (P (DIW)Ryy_ (D)0))]
(by (1.27)),

K,.(x, E) = H,(x, 5) + 2 Re ((Pm,r(x9 5))
(3.10)
: (i % {Pn) (5 O + Ryl e))c)
(by (1.30)),
(3.11) Ki(x,8) =0 on Q X Rr (by (2.4) and (3.6)) .

There exists K € R* such that for all z > 1 and u e C3(Q),
(3.12) | [ K| < 1P.@ulf + Kluf -

(This is just a restatement of (3.5).)
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Let

KD) =3 «K'D),

(3.13) 1 -2
KD) = —(KD) - kD) = X% K(D) ,

r=0

and note that K(D) = K°(D).

Lemma 3.6. There exist quadratic differential forms (depending on = € R*)
K!(D) and K!”(D) such that

(@) K(D) = K/(D) + K!(D),

(b) the coefficient of =7 in K(D) has order < 2m —r — 2, m — 1),

(c) the coefficient of =™ in K!”/(D) has order < 2m —r — 3, m — 1),

(d Kix, &) = K/(x, §) for all (x,£) e O X R».

Proof. This is shown in [3, p. 202] and depends only on the fact that the
coefficient of 7 in K/(D) has order < (2m — r — 2, m). (This property of
our K/(D) is immediate from (3.8) and (3.12).) The proof involves only
integration by parts; we omit it.

Lemma 3.7. If KY(D) satisfies Lemma 3.6, then there exists K ¢ R* such
that for all = > 1 and all u e C3(Q),

(3.14) f K"(D)u < -}K[u P(D),ulf + ult..] -

Proof. By (3.12) and (a) of Lemma 3.6, we have
(6)) =K (D) = K.(D) — K(D) — «K!"(D) .

We now bound the terms on the right. By (3.8), Ky(D) has order <(2m—1, m).
By (3.11) we can apply the quadratic differential form lemma to obtain an
Hy(D), of order < 2m — 2, m — 1), with

(ii) f K,(D)u = f HD)u
for all u e C3(Q). Applying (3.3) to H(D) we have, for some K € R*,
(iif) | f H,Du|< K| ulh,_,.. .

By (i) and (iii) we then have, forall ue CZ(Q) and = > 1,
W) | [0n| < Kyule...
By (c) of Lemma 3.6 and (3.4) we have

) c f K"(Du |< K| ulp,_,. .
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Combining (iv), (v) and (3.12) gives the lemma.
From (3.10), (3.11), and (3.13) we also have

(3.15) Ki(x, 8 = %[H,(x, £) + 2Re (P, . (x, )S(z, x, )] .

We recall that in our notation, unlike in [3], K.(x, D) has constant
coefficients, obtiined by evaluating the coefficients of K (D) (which may be
variable) at x € Q. By (d) of Lemma 3.6 and the Plancherel Theorem we have

(3.16) f K'(x, D)u = f K'(x, D)u

for all = and u.

By Lemma 3.2 it is sufficient to prove the inequalities (I;) in some
neighborhood of each fixed x € Q. Now fix x for the remainder of this proof,
and let B(x, §) denote the open ball of radius § > 0 in R?, with center at x.
We shall show the existence of 6 > 0 such that the (I,) hold for all
ue Cy(B(x,0).

We must make a connection between the above inequalities which involve
no fixed x, and information involving the fixed x. This is done by

Lemma 3.8. For each ¢ > O there exists a 6 > 0 such that

G.17) f K”(x, D)u < f K/ D)u + el ulfs_y.

for all t > 1 and all u e C3(B(x, 9)).

Proof. This is proved by the usual variation of coefficients, and occurs in
[3]. So we omit the proof.

For £ € R? and 7 ¢ R* we define first

& D = (ji g+

and then define, for u ¢ C3(Q) and k ¢ Z,

el = | [ 1 1P 186 rag]”.

We shall only use this for k = m — 1 and k = —1. It is then trivial, as in [3],
that there exists K € R* such that

(3.18) el < Klll#|lfa-y,e, HueC(@),z2>1.

Now we use assumptions (4,) and (4,) to have the following lemma by the
same proof as that used in [3, p. 196] to prove (8.4.13).
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Lemma 3.9. If (A)) holds, then there exist K and K, in R* such that for
alueCy(Q), allt > 1, and all £ ¢ R,

1€, ) [Em < KIKL(x, &) + | P, (x, &) P16, D F) + Kye2md

If (A,) also holds, then this inequality holds with K, = 0.

Following [3], we prove Theorems 1 and 2 simultaneously by the fact that
in all the following, K, = 0 if €4,) also- holds. Multiplying the inequality of
this lemma by | (&) |*, integrating on &, amd using the Plancherel theorem, we
have, for all u e C2(Q) and ¢ > 1,

Ga9y Il < K[ K Du 4+ 1P Cx, DYl
+ Koo ulf

The following lemma also comes essentially from [3, p. 198], but we have
changed the details, so we give the proof.

Lemma 3.10. There exist K ¢ R* and 6,e¢ R* such that for all § < §,,
ue Cy(B(x, ) and ¢ > 1 we have

(3200 [P, &, DutllEse S K[ 4 ) [4nss + 1P D

Proof. We have

WP, (x, D)u|lLy,e < 2|(|P, (x, D)t — Py, (D)u]|lZ,
+ 2{[|Py, (D)uliZ,, .

And now we show each term on the right is bounded by one of the terms on
the right of (3.20). First note that

M f I GIT

1
— i 2d.
@ < [Sla@ra
= Lyjup.
T
Hence
(b) 2|||Pp (DI . < %u P, Dul,

which takes care of one of the terms on the right side. So it will now be
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sufficient to show

1P (%, D)t — Py (DI

© 1

< K(o + L) lula. -
T

By the definition of (C(z¢ + ¢D))*, P, .(x, D) — P,, (D) will have the form

2P 2y T P(gp, (X) — 8up)DT
lel=m 55

for certain g,, ¢ C=(Q); hence
|| Py, (x, D) — P, (D)ullZ,.

- ’ 3 Tla-ﬁl(gah(x) — gay,)D’u“

2
lal=m 0<B<a -
and this is then, for some K ¢ R*, independent of u and «,

’
1,7

< K Z Z TZI“_M ” I (gaﬁr(x) - gaﬂr)Dau l “?-l,r .
ol oy

Hence it is sufficient to show, for g e C~(Q), that there exist K and §, in R*
such that for all § < g, 7 > 1, ue C3(B(x,0)), if p< a, |7| =8| < |
= m, then

@ 4 1(60x) — DU, < K (3 + l) #n-sse -

Let 5, be any number in R* such that g can be extended to be C* on B(x, d,).
(We say “can be extended” to cover the case where x ¢ 0,) and M ¢ R* such

that [g(») — 8(2) | < M||y — z| for all y, z ¢ B(x, 5,).
We first prove (d) in case § # 0, using (a), by

=P || (g(x) — g)Drul|L,,
< e (gx) — g)Dru
< gla=fl-D 252 I D’u”z
= ¢@la=fl-DNfrg2p=2m=1=Ir)2(m~1~17]) || Dry ||p

< oMU e, s

which proves (d) in case § # 0.
Now we prove (d) when g = 0. Consider any j such that y; # 0. Then
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[|(e(x) — gDru||l%, .
= [ DI 1166 — 9Drunne) de
= [16€ D111 — 9 + D, — IDrulN@ |
<2 [1166, D171 (e — &) + DDsuln(@) [ d¢
+2 [ D171 et — gDl @ ' de
<2 [I& DI 11 + D)@ — HDr-ss)
— (D(g(x) — @)D ~*ulN§) | d&
+2 [116w) — OD-ul @ f de
<4 [1E DI 17 + &P 1 (6@ — DD i@ [ de
+ 4 [16 D171 1D, 60 — D@ I'de
+ 2 [11e) — D@ de
< 4 11600 — DDl @ 1 de
+ 4[| g0x) — Dr-esu
+2 [180) — g P | Doy
< 8MF ulf, ., + Ml

which proves (d) and the lemma.

We now combine the above inequalities to obtain (I,) and (I,). In the string
of inequalities below the assertion is: there exists K € R* such that for all
7 >1 and all ue Cy(Q), all these hold. Also we suppose ¢ > O has been
given; then that d, is chosen less than the §, of Lemma 3.10 and so that (3.17)
holds. The K will also be independent of ¢. Later one can see the appropriate
choice of ¢, and our K, will always be 0 if (4,) also holds. We indicate at the



158 W. AMBROSE

right at each step, which previous inequality is used. We have then:

| RZ3 -

< Kfjfullfm-1,e (3.18)

< K [(Ki(x, D) + K||[Py 5, D)l s (3.19)
+ KZTZ(m_l) ” u “z

<K f K”(x, D)u + K|||P,. .(x, D)u||[-.. (3.16)
T Ka o up

<K f K”(x, D)u + K(é’ + lz) ... (3.20)

T

+ %an,,(muuz + Kz#mb | ulp

<K f K'(D)u + eK||ulp_,. + K<62 + %) lulpoy. (317

+ 2 K|\ Py (Dl + K™ | u)f
T

<K LI POl + K|ty + Kel[ulfs, (3.14)

+K(F + ) Ul + 2K P O
T
+ KZ.L.Z(m—l) ” u ”2
< kL|PD,ur + K—i—uunz,_l,, + Kelluly, @.1)
T

+ K@+ il + SKIPD)ulP
T T
2 2 2(m-1) 2
+ ?K”u“m—l,r + Koo llalF .

From this it follows, as in [3], that if § is sufficiently small then there exists
7, € R* such that the (I;) hold for all z > ¢, and all u e C5(B(x, §)). Hence
Theorems 1 and 2 are proved.

4. Hormander convexity

We now generalize Hérmander’s notion of pseudo-convexity to our situation,
omitting the word “pseudo”. We use the notation P,, ,, etc. as in the previous
section.
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Let V. be the characteristic vector field of P, ., so that ¥, is a vector field
on an open subset of G,(R?*!). We define W, to be the projection of ¥, into
R#»*, j.e. for each (x, P) e G,(R?*") and lying in the domain of V,, we define
the vector field W, at x (but depending on (x, P)) by W.(x, P) = =,V (x, P).
By (1.7), using the w-coordinates of § 1,

d

p+1

W, =3P, )2+ 3P, Iwi,,
i ou; i

We then define Z, to be the projection of W, into R?, and consider this only
at points of Q. So for each (x, P) ¢ G,(R?*!) such that x e 0, we have, using
(1.8),

0

4.1) Z(x,P) = 3, 1P, )— = ¢ 3 Cy(*P,,),
1] ouy ik

0
ou, ’

where *P,, = *(P,,). We shall write

d

D—=-"_
dr

_d
, D) = d—T(O) .

Definition. 0 is convex with respect to P(D) at x ¢ 0 if
D(0)H (x, P)
is positive at every (x, P) for which Z, is defined such that both
4.2) P, (x,P) =0,

4.3) Im (Zy(x, P), 3 ¢,()=2—(x)> = 0 .
ou;

0 is strongly convex with respect to P(D) if 0 is convex with respect to P(D)
and H.(x, P) is positive at every (x, P) in the domain of Z_ for which both:

4.2) P, (x,P) =0,

4.3) Im (Z,(x, P), 3 ¢,(x)_;7j 0> =0.
By (4.1) we see that (4.3) and (4.3) say

4.3 Im (¢ % gojCj,c("Pm),) =0

for £ = 0 or = >0, and this is the form in which these conditions will be used
below.
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We now prove a local analogy of Theorem 8.6.2 of [3, p. 205] asserting in
the case where the ¢; are imaginary (and noting that this includes Hormander’s
case), that if 0 is convex, or strongly convex, with respect to P(D) then, for
each x e O, there is a neighborhood on which we can alter 0 to obtain another
@ such that (4,), or (4,) and (4,), hold for @ and P(D), on this neighborhood.
In case the differential ¢,du, + --- + ¢,du, is exact then, as in [3], we get
one such @ for the whole of Q.

We now define @° for all z #+ O in C by: if z = u + iv, with 4, v € R then
¢§a=¢ja3 iflS.iSP,ISaSP‘I'l,
¢:,p+l=§os,p+17 ifp+1£SSP+2,

Ppa1,5 = UPpir,; — VPpia,j
Opi2,i = UPprz s + VPpyr ;-
Let f be any C= complex-valued nowhere-zero function defined on Q. From
f and our given 0@ we define a map 0/, with the properties (1.1) of 0, by giving

the C7 = (C{)), ¢, ¢, associated with @/, as the C = (C,;), ¢,, ¢ above were
associated with 0. We define

Cli=Cy of=Tpp ¢ =9,

and it is trivial that there exists a unique such @/ giving rise to these. If Q(D)
is a differential operator Q(D) = Y, q,D* we shall write

Q.; = 2 4.(C(zfo + ¢,

and H,, for the function associated with @/ as H, was associated with 9. If
Q(D) is homogeneous of order k then, trivially,

(4'4) Qrf(" 6) = kar(" ‘e/f) 5

hence, in particular,

P, (-, 8 =P, (-, &/,
4.5 GPr)es(-5 8) = fmGPw).(, /D) ,
(Pp)s(-5 §) = f~'(P).(-, &/f) .
Also
(@O (-, §) = X1 [i(cfp) + (;9)EICL

4.6) =3 O 0 Cru + HEOYO) (-, £/

ou,

@)C" = f(@)NC)(-, &/) .
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Then (4.5), (4.6), and (1.14) give

H (-, &) = 21Im {(Pn). (-, §)
+ (@) C)CP). (-, &)
+ ((B)C)OPR). (-, §), pCCOPR) (-, §))
= 2Im {f™(Pu).(, /)
+ fM@YCO)CPR).(-, £/
+ fM@)C)CP).(-, £/, f*'CCPL).(-, §/H))

4 2Im [f ¥ —a%f-—golclkf"“'((kpm),(',f/f))
Jj

N
BFmC (PRI s/f»]

= 2|f Pt Im [f{GPn).(-, &/
+ (@)YO)PL).(-, &/
+ ((0)C)CPL).(-, /1), gCCPL).(-, §/D)]

+ 2¢|f ™~ Im [«z (z Cooi P, &)

(z emZeric, em))] -

ou,
So
H (-, ) = 2| f P*~{Re HL-, £/)
+21f Pn-(m NBL(-, ¢/f)
@.7) + 26| {7~ Im [ 2 CupuCPC, /1)
(zen aalfj P, em)) ]
where

B, = Re {(;Pn). + (OYC)PL). + (B)C)CP,)., $CCPm).)> -

161

Hence B.(x, &) is C~ and homogeneous of degree 2m — 1 in (&, 7). This also
shows that if P(D) is principally normal with respect to @ and with the same
R and S as for ¢ then it is so with respect to 0/ for real-valued f, since the
homogeneity of these functions B (x, &) shows H,; = H, and P,, ,;, = P, , for

real-valued f.
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Writing
_d _(d
DOHx, §) = - (O, §) = ( - H,) ©, 1,8,

4.7) gives

D(O)H (-, &) = 2|f['™*Re NDOH)(-, &/f)
+ 2|fP™*(Im HB(-, £/

4.8) +2|fPm*Im [s‘b (z Cuoi((P1))

(z cndcrp))|c e,

ouy

where B = D(0)B, and hence this B, as well as D(0)H,, is C~ and homogeneous
of degree 2m — 2 in &.

The object of this section is to prove:

Theorem. Let P(D) be principally normal with respect to 0. Suppose 0 also
has the property that the associated functions ¢,, - - -, ¢, take purely imaginary
values at all points of Q. If 0 is convex (strictly convex) with respect to P(D)
at every x € Q, and X is a point of Q, then there exist a neighborhood Q° of
x* and a C* function f defined on Q" with values in R* such that (A,)((A,) and
(A4,)) is satisfied by P(D), relative to 07 (i.e. using @’ in place of 0 in those
conditions) on Q°.

Remark. We have assumed the condition that the ¢, be imaginary only to
be able to find a real-valued f, and have wanted a real-valued f because only
in that case do we know that @’ is principally normal with respect to 0.
However it seems to us that “principally normal” is too strong a condition,
and will eventually be eliminated. Then it will be natural to use, in place of
(A4,) a condition of the form:

(4) D(O)[H (x, &) + 2Re P, (x, §)S(z, x,§)] > 0,

when P, (x, &) = 0. Then one can prove as below that, if 0 is convex, there
exists a complex-valued f such that (4}) holds, without this extra assumption

on the ¢;.
Proof of Theorem. We now choose a particular f, depending on a real

number 2 > 0. First we define
8(x) = ip(x") Zj} o, (x)(x; — x5)

and then define, for 1¢ R+,

fx::e‘a .
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Note that g is real-valued, the values of f are in R*, f,(x*) = O for all 2 and

= i/w’(xo)?j(xo)fx .

of
ouy

Now (4.8) becomes

D(O)H. (-, & = f(DOH)(-, &)
4.9) + 22f, Re [p(x)P(X Crpi(Pr)o)
(X CipsX)CPLDIC-, ) .
Lemma 1. Under the assumptions of the above theorem there exist 1, in
R* and for each 2 > 2, a neighborhood Q, of x° such that 9/ will satisfy (A,)
with respect to P(D) for all x in Q,.

Proof. We shall show, for all 1 greater than some 2,, that for f = f, we
have

hf[ol [Hrf(x, 'S) + 2 RC Pm,rf(x’ E)S(T’ x’ 5)]

is positive whenever P, ,,(x, §) = O for all x in Q,. Because, by elementary
calculations,

D(O)Pm,rf =f Z Cjk%(kpm)o

and P(D) is principally normal with respect to ¢/, with the same S as for 9, it
will be sufficient to show:

[DOH,;, + f,2Re T} Cyip;(*Pr)eS(O, -, )I(x, &)

is positive whenever 2 > 4,, x € Q,, and P, ,(x, &) = O for appropriate choices
of 2, and the Q,. Using this and (4.9) we see that it is now sufficient to show
the existence of neighborhoods Q, of x° and a 1, such that

D(O)H (x, &) + 2Re [} Cjup,(*P,)S(0, -, )1(x, &)
(4.10) + 22Re [¢(X)P( ] Crrpi(*Pr)y)
‘(Z Cjnaj(xo)("Pm)g)](x, &)
is positive whenever all the following hold: P, ((x,8) =0, 2> 4, xeQ,,

§eRr,
We now choose Q; to be any neighborhood of x° such that the following
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both hold for all x in Q, and all &£ with |§| = 1:

|f1—1|<%,

(4.11) 1
| 22 Cupi(®Pr)i(x, €) — 30 Cui(*Pr)o(x’, §) | < 7

Now we suppose the lemma false and obtain a contradiction. Then there
exist 4, 1 oo and for each 1, an (x", £") such that

xeQ,, [§&=1, P,(&"&)=0,

and the expression (4.10) is < O at each (x", £&*) (we can suppose |§*| =1
by homogeneity). Hence x* — x° and the & have a limit point £°. We now
consider two cases, (a) and (b), according as Y, ¢,(x")C,,(x)(*¥P,,),(x°, &%) is
or is not 0.

Contradiction in Case (a): Because 0 is convex with respect to P(D) we
have D(0)H (x°, £&") > 0; hence D(O)H (x*, &™) > ¢ > 0 if n is sufficiently
large. The second term in (4.10) tends to O by continuity (in Case (a)) and
the last term in (4.10) tends to O by the choice of the Q,. These facts together
contradict the fact that (4.10) is < 0 at each (x*, &»).

Contradiction in Case (b): The last term in (4.10) is positive at x°, so it
tends to « as n — oo. Since the other terms are bounded, this contradicts the
fact that (4.10) is < 0. Hence the lemma is proved.

One proves similarly the other half of the theorem.
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