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CONVEXITY OF PARTIAL DIFFERENTIAL OPERATORS

W. AMBROSE

In [3, Chapter VIII], Hormander has proved some inequalities for some
partial differential operators by assuming certain convexity conditions. We
shall obtain some generalization of these inequalities under more general
convexity conditions. However, our primary aim has been to insert some
geometric meaning into the formulas of Chapter VIII of [3] via the
concept of the characteristic vector field of a function on a Grassmann bundle.
This geometric interpretation suggests our generalization whose proof then goes
via the analytic techniques of Hormander. The core of the proof is the same
as in [3], but the modifications needed to treat the more general case are non-
trivial.

Let Q be a bounded open subset of Rp. Hormander's convexity condition,
for a linear partial differential operator defined on β, involves a real valued
function φ on Q. We replace φ by a map 0 which assigns to each x in Q a
nonsingular linear transformation of Rp+1 into Rp+2 (where R% is the tangent
space of RQ at x € Rq). In the case considered in [3], our 0 is obtained from
the φ of [3] by

^ *> ^ ^
(1 < i < P) ,

We explain here why a 0 of our type gives an appropriate generalization of
the ψ which occurs in [3]. Let P(D) be an m-th order linear partial differ-
ential operator defined on β, and Pm the symbol of P(D). P m is usually
considered as a function on Q X O , but instead, we shall consider it as a
function on a subset of Gp(Rp+2), where Gp(Rq) denotes the Grassmann bundle
of all p-planes at all points of Rq. Then 0 induces, in an obvious way, a map 0'
of GP(RP+1) -> Gp(Rp+2). We consider the function P m o 0', defined on a subset
of Gp(Rp+ι), which has a characteristic vector field V. We assert that the
essential function which enters into the convexity conditions of Chapter VIII
of [3] is the function H, defined on a subset of GP(RP+1), by

Received August 19, 1968. This research was partially supported by the National
Science Foundation.



126 W. AMBROSE

Since this function can be defined for our type of 0, and corresponding ine-
qualities can then be proved, we feel that this is a natural generalization.
There is a parameter r, which enters into these inequalities but occurs
naturally here too, when we consider a certain 0Γ associated with 0.

Throughout this paper we make the conventions: Q is a bounded open
subset of Rv, and "differential operator" means a linear partial differential
operator, with complex-valued C°° coefficients, defined on Q.

1. The relation between Hτ and Hormanders's Gτ

In this section we suppose given a 0 with properties (1.1) below and an
ra-th order partial differential operator P(D). From these we first define the
functions Hτ mentioned above; they are defined directly from 0 and the usual
function Pm associated with such a P(D). On the other hand, using Hδrmander's
quadratic differential form lemma [3, Lemma 8.2.2, p. 189] 0 and the
quadratic differential form (in the sense of [3, p. 187]) \P(D)u\2 give rise, in a
different way, to certain functions G r . The main purpose of this section is to
establish the relation between Hτ and GT given in (1.30). We would like to
have an intrinsic approach to these Gτ in the same spirit as that we have for
the Hr, and then would like a coordinate-free demonstration of (1.30) but as
yet we do not know how to do it. Most of the work of this section does not
involve the parameter r, which enters later after we associate the family 0T

with 0.
For each x € Q we henceforth suppose we have a fixed non-singular linear

transformation 0(JC) of Λ£+ 1 -> Rp

x

+2 such that both:

(a) 0 e C ~ ,
(1.1) a s

(b) 0(JC) (x) is a linear combination of — — ( J C ) and
dup+1 dup+1

Define (<pha{x)) to be the (p + 2) X (p + 1) matrix of 0 with respect to the
usual cordinate systems of R*+ι and R%+2, i.e.*

Q(x)J-(x) = V£ φbi(χ)JL-(χ) , 1 < / < p ,
dU 6=i dub

(1.2)
loup+1 oup+2

= 0 , 1 < i < p ,

where u19 , up+ι and u19 , wp+2 are the usual coordinate systems of Rp+ι
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and Rp+2. So in Hδrmander's case

Ψu = 8ij9 φp+2yi = — £ - , Pp+ifp+i = 1 (1 < /, 7 < b),

ψp + l,i — 0 > ψp + 2,p + l = 0 , p < f p + 1 = 0 .

We now use this 0 to define a map 0' of the subset π~\Q X i?), denoted by
E, of Gp(/t*+1) into Gp(Rp+_2).

Let (JC, P) € E, i.e., j c e β x i ^ and P be a p-dimensional subspace of u*+1.
First suppose JC = (JC1, 0) e Q X (0). We then define 0'(JC, P) = (0(JC), 0P).
We extend the definition to the rest of E by translation along the (p + l)st
axis, i.e., if x = (JC1, ή g β x f i and L is the translation of Rp^0) to Λf/Λ,,
then we define t/(x9 P) = (JC, L&L'Ψ).

The function P m usually associated with P(D) = ΣpaD
a is the function

defined on Λ* X Λ̂ > by Pm(a, ξ) = Σ Pa(x)ξa (where fa = ίί 1 . . {y , if
f = (ξ19 . . . fp)). We wish instead to consider P m as a function on the above
subset E of Gp(Rp+ι). The reason is that we wish to express our concepts in
terms of the structures associated with Grassmann bundles. Similarly, if the
usual function P m is extended to a function Pm(x, ξ + ίy) on Q X O , as in
[3], we wish to replace this by a P m defined on the subset E of Gp(Rp+2) where
E — Q X R X R. So we now define our P m on E by

Λ* = Σ pJy\+ι + ίyp+a)'1 (yj+i + ^? + 2 ) α ί > ,
|α|=m

where yx, , yp + 2, ?p+19 , yj+1, yi+2, , yJ+2 is the coordinate system of
GP(RP+2) naturally associated with the usual coordinate system u19 , MP + 2

of JR*+2.
Let IV!, - -, wp+ι, Wp+i, , wf+i be the coordinate system of Gp(Rp+1)

associated with the usual coordinate system ul9 , up+1 of u ' + 1 , We now
express P m o 0 7 in terms of this w-coordinate system. For this we must first
express the y{ o07 in terms of the w-coordinate system, via the formulas (1.3)
and (1.5) of [1] (see also [2]). In all which follows we shall write / for the
function / o π, if / is a function defined on a subset of jR*>+1 or Rp+2, and π is
the projection of Gp(Rp+1) -» Rp+1 or Gp(Rp+2) -> Rp+2.

We define functions A9i9 Bij9 Ciό (recalling that in our case φJtP+ι = 0 if
1 <j<p) by

Att = φsi + p fP+iWp+1 (1 < i < p, p + 1 < s < p + 2) 9

(1.3) Bji = φjί ( l < / , / < p ) ,

2 BuCis = δkj (1 < U h * < P) >
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and the formula (1.5) of [1] gives

(1Λ) y{°β=£AsίCίi

= Σ (<P*i + φs,P+iK^Cij (1 < / < P> P + 1 < s < P + 2 ) >

since φJiP+ι = 0. In Hormander's case these become

Bij = Cij = δtj ,

A i A ^Ψ

and hence

The reason for assumption (b) in (1.1) was to make the Cij independent of
the M>p+1; hence the y{°W, and consequently the Pm°0', are polynomials in
the Wp+i> which is necessary in order to use later the techniques of Hormander.
We have no conceptual meaning or justification of this assumption (b). From
(1.4) we have

pmo&= Σ (
|α|=m

I ?!(1.5)

We introduce the notation:

Ψi =

so (1.5) now becomes

= Σ (
|α|»m

[έ +
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In Hόrmander's case these become

Now we wish to consider the characteristic vector field of P m 0 (see [1]), so
we briefly recall this vector field. If F is any C°° function defined on an open
subset of GP(RP+1) we shall use the notation

Then the characteristic vector field of F (with respect to a certain lift form
which is not important here) is the vector field VF, defined on the domain of
F9 whose coordinate expression is

(1.7)

(this holding on the intersection of the domains of F and this coordinate
system). We now apply this with F = Pm 0, and write V for this VF. What we
wish for now is the coordinate expression for the function F(Fm 0).

We first note that if P(D) is any partial differential operator then (using
that P0 does not depend on wp+1), elementary calculations give

(1.8) +Σ(ψι + M+i)GCι*)) α < / < P) ,

= ΨΣΣ

To express V(P~^) conveniently we introduce the following matrix notation.
First we define the p X p matrices of functions WC and ψC' by

<fiθ,t = Σ
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If B — (Bjk) is any p X p matrix with the Bjk e C, and zeC, we define
Bz € C by

(Bz)j = fj

We also introduce the notation:

P being any C°° function on a subset of GP(RP+1). Then (1.8) becomes

t(P0) = (,P)0 + (£KO( P), + (0CO('P)0 ,
*(P0) = 0C(*P)0 .

We shall also write <z, w> for the usual scalar product of z, w € Cp, i.e.,

<z, w> = 2 ^w^. By (1.7), (1.8), and (1.9) we obtain (using that Pm0 does
ΐ = l

not depend on wp+1)

= Σ

-
(1.10)

= -2/Imf: [/

= -2iIm< l(Pm |),*(P«#»

where »Pm = *(Pm) and t P m = } (P m ).
We define

i n n β 0 = iV(F^ = 2 I m <t(Pnί)'KPmi)>

= 2 Im <(,Pm), + (0"C)( Pm),, + (0O( PJ,,
Now we introduce the parameter r. For each τ eR+ we define, from 0, a

0' having also the properties (1.1) of 0. We define 0 through its associated
matrix (^ o ), where the ψ\a are defined by

Ψh = Ψia (1 < / < P, 1 < a < p + 1) ,

(1.12) Ψl,p+ι = ψs,P+1 (P + ί<s<p + 2),

Ψ\ι = τψ*Λ (P + 1 < s < p + 2, 1 < i <; p) .
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So 0Γ is defined by

It is clear that each 0T satisfies (a) and (b) of (1.1). And each 6τ(x) is non-

singular because if 6T(x)v = 0 and v = Σ ca (JC) then, defining

dua

vτ = Σ re, (JC) + cp+ι (JC), it is easily seen that 0(x)vT = 0; hence

t;r = 0, and v = 0. We now define, for each τ e R+,

p p p
r x 0r > x TO,r * 7710* 5

»r = Hύτ = 2 Im <#(Pm,r), *(PTO,r)>

This expression, if divided by τ, becomes, in Hormander's case, the left side
of his formulas (8.5.5) and (8.6.4).

Now we turn to the other expression we need to calculate in order to obtain
(1.30). This calculation will be based on Hormander's Quadratic Differential
Form Lemma [3, Lemma 8.2.2, p. 189]. But before doing that we need some
preliminaries which we now develop.

Let G — (Gij) may be any p X p matrix of complex numbers. As usual, if
ξ — (ξj, , ξp) € Rp, we let ξa — f;1, , ξy. For each multi-index a let
φa be the function defined on Q by

ΦM = ξΓ ?7 .

So, trivially, the <pa with \a\ = m are, for fixed integer m, linearly independent

over C. We define a matrix Gm = (Gβa), where a, β run through the multi-

indices such that |α | = \β\ — m by

(1.15) ( έ GtΔ
βί. . ( έ Gipξt) °P = Σ G>.£' , V? β RP .

(These Gβa are uniquely determined because the φa with \a\ = m are linearly
independent.) Let e{ be the multi-index defined by
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Lemma 1.1. Suppose ad > 0. Then

(1.16) G^Σ'GtjGr,.^ ,

where Σ / denotes the sum over all (β\ i) such that β' + εt = /}.

P/ΌO/. (Σ Gn^)αi (Σ G^fJ-p

= (Σ G<if<)KΣ GuξiΓ1 (Σ <?<j£i)aj (Σ ^zpfi) PJ

where the second sum is over all β' with \β'\ = m — 1. For given β with
|j8| = m and βά > 0 the coefficient of ξβ in this last expression will be

which gives the lemma.
Lemma 1.2. // {da} is any sequence of complex numbers, indexed with

the multi-indices a such that \a\ — m, and we define dβfJ for each j and βf

such that \β'\ — m — 1 by

β',j LΛ ^Jij β' + j '

then

(1.17) Σ Gβtm.+Ίdβ = Σ Gβ>,a>
dβ>j V*', j w i t h \a!\ = m - l ,

over all β and βf such that \β\ = m and \βf\ = m — 1.

By (1.16),

Σ ί Σ ' GtJGβ. }dβ = 0 , if α, > 0 .

Hence

Σ ίΣ' GiSGβ^Ίdβ^ = 0, XajX),

where Σ ' again denotes the sum over all i such that β' + ε4 = β. But this is

where this sum is over all ()3', ί) with |jS'| = m — 1. That is,

Σ G ί ..-./*#',ί = 0 , if α, > 0 .
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Hence we now have

Σ Gβtβ,+ dβ = Σ Gβ. dβ,j , if aj > 0 ,
β J β , J

which is the same statement as

ΣGβ,a,+edβ

This proves the lemma.
Lemma 1.3. // the given matrix G = (Gtj) is non-singular, then Gm

= (Gβa) is also non-singular.
Proof. We induct on m, using (1.17). We consider Gm as acting on the

space of sequences {da} (with \ct\ = m) in the usual way. So we suppose that

and will show all dβ = 0. By (1.17),

Σ Gβ,ia,dβ,j = 0 Va', ] with |α' | = m - 1 ,

the dβ,j being defined as in Lemma 1.2. By the induction assumption,

i.e.,

Σ GtJdβ,+u = 0 vβ', / .

Because G is non-singular we conclude dβf+H = 0 Vj3', i, i.e., dβ = 0 V]3.
Let G = (G i ;) now be a p X p matrix of complex valued^ functions in

C°°(0, and F15 . . . , Fp also be complex valued functions in C°°(0. We define

( P \ ai / P \ aP

Fι + Σ GiiDi) • \Fv + Σ GipDΛ ,
1 = 1 / \ t=l /

where the product on the right is the usual product of operators. We wish to
break (F + GD)% into a sum of two operators:

(F + GD)% = (F + G£>)« + (F + GZ)), ,

where (F + GD)j consists of those terms in the expansion of (1.18) in which
no Ft or GtJ is differentiated, and (F + GD)a

Δ consists of the remaining terms.
Now we say this more carefully.
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First we use the fact

(ζ + ^ = o£. βl(a-β)l ^ '

and (1.15) to note that if

( F + Gξ)« = ( F x + Σ G π ? , ) β l --(Fp+Σ

then

(1.1* (F + 00- = ^

where these Gr/} are C°° functions, defined at each x $Q from the Go(*) by
(1.15), and F*-* = F ^ - ' ^ Fγ-H,

So we now define

(F + GZ))« =
(120)

(F + GD)°Δ = (F + GD)i - (F +

Now we insert a parameter τ and consider the order of the coefficient of each
τk in the expressions

(rF + GD)%, (rF + GD)% (τF + GD)°Δ ,

i.e., we are replacing the Fi by τF i β

The following two lemmas will not be used until the next section. We prove
them here because their proof depends essentially on the properties of the
Gaβ, and we have had to introduce the Gaβ here. The first is essentially the
associative law for the product (F + GD)a. It is essentially obvious since we
have defined this product via an isomorphism with an associative product of
numbers, but we give a formal proof.

Lemma 1.4. For each multi-index a,

(1.21) (F + GD)°+Ί = Fj(F + GD)a + £ Giά{F + GDYD,.
i

Proof. We shall use the following, which is immediate from (1.17),

(a) Σ GrβGiJDr+u= Σ Grtβ+..Dr.
i,\r\=P lrl=P+i 3

We now compute, for each multi-index η, the coefficient of F 9 on the two sides
of (1.21), and show them equal.
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By definition,

\
F J Σ G τ β ,

β\(a — β)\ i r i - i f i

and if we write η = a — β + ej9 β = a — η + εJ9 then the coefficient of F»

here is

(b) - 4 ^ 7 77 Σ Gr />'.
(a — η

The second term on the right of (1.21) is

and by writing η = a — β, β = a — η, the coefficient of F> here is

which equals, by (a),

* '
(a —

Σ Gr%m_,+./>r.

The coefficient of Fη on the left side of (1.21) is

(d) fc + £ J ) ! V G + Dr .
V ^ (a + Sj - ri)lηl \τ\-&+Ί\

 Γ ' α ~ ^

Since the coefficient of (d) is the sum of the coefficients of (b) and (c), we

have proved (1.21).

Lemma 1.5. (τF + GD)% and (τF + GD)a are operators of order <\a\,

and the coefficient of τk in each of these has order < \a\ — k. (τF + GD)"Δ

has order < \a\ — 1, and the coefficient of τk in (τF + GD)a

Δ has order

Proof. The statements for (τF + GD)% are trivial (formal proof by
induction on |α | ) , and for (τF + GD)a

Δ are even more so. So we turn now to
(τF + GD)a

Δy which we prove by induction on | α | . For \a\ = 1 the statements
are trivial because in that case (τF, GD)*Δ = 0. Now suppose we have these
statements for all a! with \af\ < |α | , and we will prove them for α.
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Let / be the first integer such that aό > 0. Then

(τF + GDYΔ = (τF + GD)% - (τF + GD)°

+ Σ GtjD^τF + GD)%~Ί - {τF + GD)°

j + Σ GijD^jiτF + GD)%-j - [τF, + Σ G^D^τF +

+ [{τFJ + Σ GtjD^iτF + GDY'Ί - (τF + GD)«] .

We now work separately with the expressions { } and [ ], proving separately
that each satisfies the order conditions desired for (τF + GD)a

Δ.
We have

{ } = [τF, + Σ GtiDt) (τF + GD)y'j ,

and, by the induction assumption,

Σ
l<.\a\-l

where At(D) is a differential operator of order < \a\ — 2 — L Hence

= Σ

Σ

where Λ\(D) is a differential operator of order < \a\ — k — 2, obtained by
summing the terms in which the Dt have been applied to the coefficients of
Ak(D). We see then, from the orders of the Aι(D), that each of these sums,
hence also { }, has order < |α| — 1, and in the same way that the coefficients
of τk has order < \a\ — 1 — k.

Now we prove the corresponding fact for [ ]. We know

(τF + GDY-i =

where Bt(D) is a differential operator of order < \a\ —- / — 1. Now we write
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GD)—j

+ Σ Gυ(τF + GDY'ΊD,

- (τF + GDY ,

where B\(Σ>) is a differential operator of order < \a\ — I — 1, obtained by
summing those terms in ( Σ GijDiXΣ τιBL(D)) in which some Dt has been
applied to some coefficient of Bι(D). So the coefficient of τι in Σ τιBι(P) has
order < |α| — 1 — /, which is the desired order, and we need only consider
the remaining terms on the right side. But the sum of those is 0 by the previous
lemma.

Now we turn to the calculation of the function Gr, to be obtained by
Hormander's quadratic differential form lemma from (P(D) and 0, the object
here being the proof of (1.30). We use again the matrix C = (Ci3) and the
functions φl9 , φp, ψ obtained from the given 0. We consider now operators

[C(τφ + φD)]%
(1.22)

the right side being the usual product of operators. If we let

*Fk = τ Σ Cjkψj 9 Gjk = cjkφ ,

then this is the same as the expression (τF + GD)% considered above.
Accordingly, we define, for this choice of the Fk and Gjk

23)
[C(τφ + ψD)YΔ = (τF GD)°Δ = [C(τφ + ψD)]% - [C(τφ + ψD)]° .

Once again, [C{τφ + <f>D)]a is the result of dropping from the expansion of
[C(τφ + φD)]^ all terms in which a CJk9 φj9 or ψ is differentiated.

With Pφ) = Σ VeP* a partial differential operator we then define

P(C(τφ + φD)\ = Σ PalCiτφ + φD)]% ,

(1 24) P{C(τψ + φD)) = Σ Pa[C(τ<P + φ D ) γ '
P(C(τψ + φD))ά = Σ PΛC(τφ + ψD)]a

ά

= P(C(τψ + ψD)\ - P(C(τφ + φD)) .

We note, with this notation, that

Pm(C(τφ + φD))+ = Σ Valdτψ + φD)]% ,
\a\=m
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which is not homogeneous in general; similarly for Pm(C(τφ + ψD)) and
Pm(C(τφ + ψD)Δ. And the reason for writing P(C(τφ + φD)) for the particular
operator defined above is that if we replace each Da by za = z"1 za

p

p in
the expansion of this operator, we get what is usually denoted by
P(C(τφ + ψz)).

Lemma 1.5. [C(τψ + ψD)]% and [C{τψ + ψD)]a are operators of order
< \a\, and the coefficient of τk in each of these has order < \a\ — k.
[C(τ<p + φD)]"Δ has order < \a\ — 1, and the coefficient of τk in (τF + GD)a

Δ

has order < \a\ — k — 1. // P(D) is a partial differential operator of order
< m, then P(C(τφ + φD))% and P(C(τ<p + φD))a have order < m, and the
coefficient of τk in each of these has order < m — k; P(C(τ<p + φD))a

Δ has
order < m — 1 and the coefficient of τk in this has order < m — k — 1.

If Q(D) = 2 qaD
a, we shall use the notation

QΦY = Σ ΆaD
a .

Then clearly

Q(C(τcp + φD)Y = Σ ΆλC{τψ + φD)]« ,

and defining

Q{C{τφ + φD))% = [Q(C(τφ + φD))Jc

we also have

β(C(τp + φD))% = Σ UC(τφ + φD)]% .

Note that trivially,

WGΛCiτφ + φDW = *[Q(C(τφ + φD))c] ,

[(jQ)[C(τφ + φD)]Y - j[Q(C(τφ + φD))c] .

We remark that Q{D)cuc is not the same as [Q(D)u]c because in the former
the Dj are not conjugated. (In our usual case C is real so C = C.) We now
consider the quadratic differential form in the sense of [3], depending on
τ € R+ and defined by

F*D)u = \Pm(C(tφ + φD))uf - \Pm(C(τψ + φD))u\
(1.26)

= \Pm(C(τφ + φD))uf - \Pm(C(τφ

We also use zc, as well as z, for the complex conjugate of zeC, where
C(τφ + φD) and C(τφ + ψD) are defined by replacing, respectively, the

and φ by Tp3 and φ, and the Dj by Dά (i.e. Dά = — /——, Dή = i — — | .
V dUj dUj I



DIFFERENTIAL OPERATORS 139

Hόrmander associates with each quadratic differential form F(D) a function
defined on O (by replacing, in the canonical expansion of F(D), each Dd by
the complex variable Zj) and in this way the associated function of the above
Ft(D) is

Friz) = \Pm(C(τφ + φz))\2 - |Pm(C(r 9 + ψz))\2 >

where for Pm = Σ P«D">

||
Σ

|α|=m

Pm{C(τφ + φzϊ) = Σ P.(C(xφ + φz))°Σ
|α|=m

= Σ PΛΣ Ctxbψi + φZj))'1 (Σ Cjp{τφ, + φz,)Y' .
|α|=m

Clearly Fτ(z) = 0 if z € Λp, so we can apply Hδrmander's quadratic differ-
ential form lemma [3, Lemma 8.2, p. 189] to find a quadratic differential
form Gτ(D), depending on the parameter τ e R+, such that all the following
hold:

(1.27) J Fτ{D)u = J Gτ(D)u (yu € C0~(β))

(1.28) the coefficient of τk in G£D) has order < (2m — k - 1, m)

if z = £ + i? (z € O , £ € Λ*, ? e Λ*), then

(1.29) Gr(α, £) = 1 Σ - π - ( ^ ί + iθ)
2 j dXjdηj

The main purpose of this section is to relate this Gt to our previous Hτ by the
formula:

30)

The only thing which will be important about 2 j(j(Pm,rY) is that it is

homogeneous of degree m — 1 m ίfte wj,+1, , wj+1, τ. To prove this we
note that the second part of (1.8) shows (using 0T in place of 0) that if Q is
homogeneous of degree k in w],+ι, - , w*+ι, τ then JQ is homogeneous of
degree k — 1 in them; the first part of (1.8) then shows that if R is homo-
geneous of degree / in these variables then όR is also homogeneous of degree
Z. Applying these with R = F m r , / = m, then Q = (jPm)T, k = m, gives the
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desired statement. Using (1.8) we could get a more explicit, though complicated,
expression for 2 ^(P T O > r )

c ) , but it would not be useful.

It does not matter for the calculation which we now make whether we work
with the real variables ξl9 , ξp9 ηl9 , ηp as in Hόrmander or whether we
replace these with the coordinates of a Grassman bundle. In the former case
we would transfer our Hτ to a function on Q X Rp, and in the latter would
transfer Gτ to a function on a Grassman bundle. We do the latter for it is
logically more consistent though unnecessarily sophisticated. For this, consider
the space Gc

p of complex p-planes to Rp+\ a space which will have, for the
w-coordinate system previously used, a system of coordinates of the form
Wi, , wp+ι, wp+1, , wj+ 1, wp+2, , w%+2. Each 0 r induces an imbedding
7r of G% -> GP(RP+2) and we define

(1 31)
= Σ PΛΣ Cjfrφj + φ(wρ+ι + iwP+2)))*>

\a\=m

• (Σ c ^(^i + ί ^ + . + wί+i)))"*

Let / be the transformation, which carries wJ

p+ι —» w£+1 and w^+2 —» — wJ

p+2,
on the space of polynomials in the wp+ι and wp+2 wiΛ coefficients which are
functions of w,, , w p + 1. One verifies, for S and T any such polynomials,
that 7(5 +T) = J(S) + J(T), and J(ST) = J(S)J(T), and

= — j <

In these terms (1.29) says, at points where all wp+i = 0:

GXw,, , wp+u wp+1, •••, w | + ι )

(1.32) j , 2

y Σ a ! , q P m . T P | P m . , o / | ^ .
2 i-i dWjdwp+2

Now we calculate with (1.32) to prove (1.30). First note, at all points where
all wρ+2 = 0,

dQ _ U(JQ) if Q is a polynomial in the wρ+ι + iwJ

p+2 ,

dwJ

p+2 \—iV0 if β is a polynomial in the wj+ 1 — iwJ

p+2 .

Hence, using (1.32) we have, at all points where all wJ

p+2 = 0,
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Gτ = 1 ±^—I—^J—\pmj - («sL|PWit|>) oC J

[> 12

m,τl

— y 9 ( d (P )(P )

Σ

which gives (1.30) by comparison with (1.14).

2. Statement of inequalities

We use the same notation as in the previous section with P{D) & C°° differ-
ential operator of order < m defined on Q X Rp and with a fixed 0 as in § 1.
In dealing with functions such as our P m , Hτ, etc. we shall usually consider
them now as defined on Q X Rp (instead of a subset of Gp(Rp+ι)) via the
obvious correspondence for here we are only making some variations on the
analytic techniques on Hδrmander, and the conceptual aspect is not important.

If r € Z+ and τ € R+ we use the norms || ||r r on Q ° ( 0 defined by

\a\<.r J

We have the following three inequalities, the first two being trivial (P(D) being
of order < m), and the third following from Lemma 1.5: there exists K e R+

(depending on P(D) and 0) such that for all u e Q°(β) and all r > 1,

(2.D \\P(C(φ + φD))*u\\ < K\\u\\mtV ,

\\P(C(ψ + φD))Δu\\ < K\\u\\m_hτ .

The following definition gives a routine generalization of Hδrmander's
notion of principally normal, except for one minor difference. Our definition
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is in terms of a function S (we write S where Hόrmander writes Q) whereas
the definition in [3, p. 199] is in terms of a differential operator and its
associated function. We take care of this difference in the proofs below,
through (2.1).

Definition. P(D) is principally normal with respect to 0 iff there exists a
function R, defined on Q X Rp, of the form

(2.2) R(x,ξ)= Σ ra(x)ξa ,
l«l=m-l

where the ra e C°°(β), such that if 5 is the function defined on R+ X Q X R*
by

(2.3) S(τ, ,ξ) = iΣ ί(PJQC(τφ + φξ))) + R(C(τφ + ψξ)Y

(for all τeR+,ξeRp), then

(2.4) #,(.,£) + 2 Re (Pra(C((ty + ^))S(0, , £))

is 0 on β X i?i". We note that

Pm(C(OP + # ) ) = PJC^f) = φ* Σ P.(Σ Cntj)"1 (Σ CifSj)'p .
|α|=m

It is easily seen that if we expand j(Pm(C(τφ + ψξ)) by (1.8), then 5(r, , ?)
will noί, in general, be of the form T(C(τφ + ξ)) for some T defined on
Q X RP.

The following are extensions of (8.5.3) and (8.5.5) of [3, p. 200].

lim 1 [Hτ(x, ξ) + 2 Re (Pm(C(x)(τφ(x) + ψ(x)ξ))S(τ, x9 ξ))]
(Aj) τ

is positive whenever Pm(C(x)ψ(x)ξ) = 0.

Hr(x, ξ) is positive whenever τ Φ 0 and
( A 2 > = 0.

The aim of this paper is to prove the following five theorems. The first
two are generalizations of Theorems (8.5.1) and (8.5.2) of [3, p. 200]. The
third is an independent fact which is used to obtain the fourth and fifth from
the first and second. The fourth and fifth are also generalizations of the same
Theorems (8.5.1) and (8.5.2) of [3], but differ in that more is assumed
(Condition B below) but a better conclusion is obtained (the inequalities proved
do not contain the matrix C). Theorems 4 and 5 are immediate from Theorems
1, 2, 3. Now in this section we state all five of these theorems and prove
Theorem 3, so it will remain only to prove Theorems 1 and 2 in the following
section.
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Theorem 1. Let P(D) be principally normal with respect to 0. // (Aλ)
holds, then there exist K and τ0 in R+ such that

di) r || u | | i_ l i Γ < K[\\ P(C(τφ + φD))*u ||2 + τ2™"11| u ||2]

for all u e C"(β) and αZ/ τ > τ0.
Theorem 2. Let P(D) be principally normal with respect to 0. // (A^ and

(A2) hold, then there exist K and τ0 in R+ such that

for all u <= C0°°(β) and all τ > r0.
Taking CtJ = δtj, ψ — 1, and supposing there exists a ^ such that

ψj =z dφ/duj, (Ij) and (I2) become the inequalities stated by Hδrmander, if
one uses the identity

and makes the substitution v = ueψ. Our Theorem 4 and 5 below in the same
way give the inequalities as stated by Hδrmander, even without assuming
Ctj — δij, if we suppose again the existence of a ψ such that ψό = dφ/duj9

and φ = 1. In this way they are more clearly a generalization of those of
Hδrmander, for they give his conclusion with more freedom in the choice of
C = (Cij), as well as in cases where there is no such ψ.

Theorem 3. Let P(D) = Σ paD% and G = (G^) be a p X p matrix of
\a\<.7Λ _ __

complex-valued C°° functions defined on Q, and suppose that for each x € Q
the matrix G(x) — (Gtj(x)) is non-singular. Let Gm(x) = (Gβa(x)) be the
associated matrix defined in § 1 (by 1.15), where a, β run through all multi-
indices with I a I = I β | = m, and suppose that

Σ PatoGβa(x)ξ = 0 for all (x, ξ)εζ)X R*> for which
(B) ι«ι-»

Σ pa{χ)ξa = o .
l l

Then there exists a K in R+ such that

\\P{G(τψ + φD))^ < K[\\P((τφ

for all u e C0°°(β) and allτ>l.
Theorem 4. Under the assumptions of Theorem 1 and that (B) holds with

G = C, there exist K and τ0 in R+ such that

dϊ) τ || u | | i - l t r < K\\\ P((τφ

for all u e C0°°(β) and all τ > τ0.
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Theorem 5. Under the assumptions of Theorem 2 and that (B) holds with
G = C, there exist K and τQ in R+ such that

for all u € C~(β) and all τ > r0.
For the proof of Theorem 3 we need the following lemma which is, like

Lemma 1.4, essentially obvious, but we give a formal proof based on Lemma
1.4.

In the proofs of these theorems we pass back and forth between the
operators P(C(τφ + φD))^ P(C(τφ + φD)), and the constant coefficient
operator defined, for fixed x € β, by

P(x, C(x)(τφ(x) + ψ(x)D))
ι

= Σ Pa(x) Σ Cj^xXτψjix) +

' (Σ Cjp(xXτΨj(x)

(Note that, in opposition to the notation of [3], when x does not appear—e.g.
in P(C(τφ + φD))—the coefficients are variable and when x does appear the
coefficients are constants, obtained by evaluating the variable coefficients at
the fixed x. \Ve follow the same convention in the next section in dealing with
quadratic differential forms.)

The operator P(C(τφ + φD)) serves as an intermediary between
P(C(τφ + φD))^ and P(x, C(x)(τ<p(x) + ψ(x)D)). Hδrmander does not need
the distinction between P(C(τ<p + ψD)) and P(C{τψ + φD))^ because he
makes a change of coordinates so that his ψ becomes linear and then (in his
case) these operators are the same. But our 0 depends on more than a single
real-valued function so we cannot do that. Hence we need to pass back and
forth between P(C(τφ + φD))^ P(C(τφ + ψD)), and P(x, C(x)(τφ(x) + φ(x)D)).
Our proofs of Theorems 1 and 2 are obtained from that of Hδrmander by
adjoining the complications necessary for these passages.

Lemma 2.1. For any multi-index a,

(2.2) (C(τφ + φD))a = Σ CβΛ(χφ + Φ&Y

Proof. By induction on \a\. For \a\= 1 it is trivial so it is sufficient to
show that if it holds for a then it holds for a + εj. We show this by using
Lemma 1.4 with first choosing

and then Fj = τφj9 Gjk = δJkφ, and also by using (1.16) at the last step. We
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have

(C{τφ

= (* Σ (.C(τψ + ψD))° φD))°Di

= (r Σ CkίΨk) Σ Cβm{τψ + φDY + Σ φCu Σ Cfm(τφ + φDYDt

= Σ CkjCβa[τψk(τφ
k,\β\ = \a\

= Σ CkJCβm(τφ +
fc,l^l-l«l

ψ(τφ

φD)r

proving the lemma.
Proof of Theorem 3. By (2.1) it is clearly sufficient to prove (with the same

conditions)

(Γ) \Pm(G(τφ + φD)u)\f < K[\\Pm((τΨ + φD)u)f

Let Qf be a neighborhood of Q on which the pa and 0 have been extended
so as to be in Q(βO.

From (B) it follows in standard fashion that there exists K in R+ such that
for all (JC, ξ) in Q X R?

|σ|-lίl=m
Pa(x)Gβa(x)ξβ K Σ P.WI1

lo|=m

Hence replacing ξj by (τφj(x) + ψ(x)ξj), multiplying by ύ(ξ), where ue Co(Q'),
and integrating on ξ give

J | Σ P.W Σ Gβa(x)(τφ(x) + φ(x)ξ)βύ(ξ) [ dξ

<K Γ
J

+ dξ .

Hence, for all u € Q(βO and all r € Λ+,

(a) || Pm(x, G(x)(τφ(x) + ψ(x)D)u) ||2 < K \\ Pm((τφ(x) + φ{x)D)u) ||2 .

We note now that (I1) is of local character, i.e. for each x e Q there is a
neighborhood Qx such that if (Γ) holds for all u € C0°°(βx) then it holds for all
w e CQ{Q) whose support is in a sufficiently small neighborhood β " of β.
For if we have such {β^}, then some finite number of them, Q19 - -, Qk, cover
β. Let «!, - , uk be a Q° partition of the identity for β, subordinate to these
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Qit Then

\\Pm(G(τφ + φD)u)\\2

= Σ Pm(G(τψ + φD^u)
i

<2Σ\\Pm(G(τφ + ψD)(uiU))\\>

Now note that

- ψD)u) + AtΛφ)u ,

where Ari(D) is a differential operator of order < m — 1 and the coefficient
of τk in Aτi(D) has order < m — 1 — k (this is proved for (τφ + ψD)a by
induction on | α | , then follows for Pm((τφ + ψD)). Hence, from the above
inequalities, with possible changes in the value of K,

\\Pm{G{τψ + ψD)u)\f

<K[Σ (||MiP«((ty + ^ ) ) W | | 2 + \\Arii(D)uf) + ||iι|t-i,r]

< K(\\Pm(ίτφ + φD))u\\> + | |«| | i. l i r) .

If (I1) is false then, by the local character, there exists an x € Q (using
compactness of Q) such that for every neZ there is a un β CQ(B(X, 1/ri)) and
τn > 1 with

(b) || Pm{G{τnψ + φD))un ||2 > n[|| Pm((τnφ + φD))un ||2 + || un ||^_1>TJ .

By Lemma 2.1 we have

Pm(G(τ<p + φD)) = Σ P«Cβa(τ<p +
\\ \β\

From this and the definition of Pm(G(x)(τφ(x) + ψ(x)D)) we see that
Pm(G(τφ + φD)) has the form

Pm(G(τΨ + φD)) = Σ r*β.«D" ,

where

PJx, G{xKτφ(.x) + ψ(x)D)) = Σ ^
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Hence, if

δn = max \qak(y) - qak(x)\ ,
l/6B(j7,l/n)
a,k

then ^->0as«-^oo. We have

||Pm(G(τnφ + φD))un - Pm(XιG(x)(τnφ(x) + ψ(x)D))un\\

Σ Γ
|+Jfc£mJ

where L is the number of α, k with | α | + k < m.
We also have, by (d) in the case where G(x) is the identity for each x,

(e) || Pm((τnφ + ψD))un - Pm(x, (τnφ(x) + φ(x)D))un \f < Lηl ,

where ηn -^ 0 as n —> c».
Hence

|| Pm(G(ΐnΨ + ψD))un ||2

< 2[ | |P m (G(r n ί 0 + ίW»K - P n(GW(r 8p(x) + ψ(.x)D))unf

+ \\Pm(G(x)(τnΨ(x) + ^ W ^ u J H

< 2Un + K\\Pm((τnφ(x) + φ(x)D))un\f

< 2Lδn + K[\\Pm(x, (τnψ(x) + ψ(x)D))u - Pm((τψn + ψD))u\\*

+ \\Pm(.(τφn + φD))u\\>]

< 2Lδn + 2KLVn + K\\Pm((τnφ + φD))un f ,

which, letting n—*oo, contradicts (b). This proves Theorem 3.

3. Proof of Theorems 1 and 2

The proof given here is essentially that of Theorems 8.5.1 and 8.5.2 of [3,
p. 200], but with many changes in details. Where the details are essentially
the same as in [3], we include them when we feel it makes our treatment
more intelligible, but generally omit them. We try to give an exposition which
is complete except for a limited number of references to [3]. In this section
we use the notation:

= P{C{τψ +

PAD) = P{C{.τψ + φD)) ,

PAD), = PAD)* - PAD) ,

PAx, ξ) = P(C(τφ + φξ)) .
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Lemma 3.1. // inequality (/,) holds for P(D) (of order m) and if Q(D)
= P(D) + R(D), where R(D) is a differential operator of order < m — 1,
then the same inequality holds for Q(D) (with a possibly different k and r0).

Proof. Qτ(D)* = PAD)* + RAD)* so, by (2.1),

> \

with K19 K2 € R+, independent of u e CjJ°(β) and τ > 1. From this the lemma
follows.

Lemma 3.2. Suppose that for each x € Q there exists a neighborhood Qx

of x such that (I3) holds for all u € C%(QX Π β), with some Kx, τx (in place
of K, r0). Then P(D) satisfies (Ij).

Proof. This proof is essentially the same as the proof of the local character
of [2] given in §2 (the proof is taken from [3, Lemma 8.3.1, p. 190]). Let
*i> , ** be a finite number of points Q such that the Qx cover and (Ij) holds
for each QXi. Let u19 , uk be a partition of the identity of Q subordinate to
the Qx.. Then by writing

u + At)i(D)u

as in § 2 and making the same calculation, we get

which easily yields the lemma.
We recall that we use the notation Q(D)C for £ qaD« if Q(D) = £ qaD

a.
Let

S(D) = Σ τk$k(D) , T(D) = Σ

where Sk(D) is a differential operator of order < s — k — c, and Tk(D) a
differential operator of order < t — k — d. Then the coefficient of τk in the
quadratic differential form LAD), defined by

LAD)u = (S(D)u)(T(D)u)c ,

has order < (s + t — c — d — k, max (s — c, ί — d)). It follows that there
exists KeR+ such that for all τ > 1 and u e Cj"(β),

(3.1) ||Lr(D)w|| < ^||«||2

r,Γ , r = max(s - c, t - d) .

If we define the quadratic differential form MAD) by

MAD)u = Re
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then by (3.1),

(a) | | M τ φ ) u \ \ < K \ \ u | | Γ f r , r = max(J - c, r - d) .

Clearly MT(x, ξ) = 0 if ξ € R? so, by Hδrmander's quadratic differential form
lemma [3, Lemma 8.2.2, p. 189] there exists a quadratic differential form
NT(D) with the properties:

(b) The coefficient of τk in NT(D) has order < (s + t — c — d — k — 1,
max (s — c, t — d)), and if 2(max (s — c, t — d)) > s — t — c — d then
Nr(D) can be further chosen so that the coefficient of τk has order
<(s + t — c — d — k — 1, ( m a x (s — c,ί — d)) — 1) .

(c) J Mτ(D)u = J Nτ(D)u for all w € C0"(β) .

Lemma 3.3. Let R(D) be the part of P(D) of order < m — 1, and
Rm_ι(D) the part of R(D) of order m — 1. Then there exists a quadratic
differential form Nτ(D) (depending on the real parameter τ) of the form

with Nk a quadratic differential form of order < (2m — k — 2, m — 1) such
that for all real r and all u e C^(β),

| | , τ

(3.2) r+ 2J

+ J iVr(

Proof. Note, for differential operators S and Γ, that

( i ) I Su + Tu | 2 = I Su | 2 + I Tu | 2 + 2 Re ((SM)(Γ«)*),

(ii) |5u + 7 w | 2 - \S°u\>

= 15« I2 - I S°u | 2 + I Tu | 2 + 2 Re (CSM)(Γ«)C) ,

(iii) I 5M + Tu |2 - | Seu + Γu |2

= I 5M I2 - I 5CM |2 + I Tu |2 - I Tcu \2

+ 2 Re [(5u)(7«)° -

Hence, using (iii),
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+ 2 Re UPt(D\u - Λ._ l f,(D)H)(Λm. l f r(D)iι)e]

+ \Rm.hXD)u\> - \Rm_

+ 2 Re [(PTtf»*«)(*»-i,,O»«)e - (Pτ(D)$,H)(Λw_lfr(D)eu) ]

+ |Λm.,,τ(ί>)«|2 + 2Re[(P,φ)M)(GRm_1;t(Z))«)<)]

+ 2 Re [(Pτ(D)jt - /?m-I,XD)M)(/?m_1,r(£>)«)c] .

Now we write

+ Rt(D)u ,

and apply (iii) again, to the first term above, with

5 = Pro,r(Z>), T = Pm,r(£>), + Rτ(D)

so the above becomes

|P m , r (D)M| 2 - |P m , r (Z»<u| 2

+ I Pmt,(P)jU + i?r(D)« |2 - I Pm,T(D)°,u + RτφYu I2

+ 2 Re t(Pm>τ(ί>)M)(Pm,r(D)JM + RXD)U)°

+ \Rm_Ur(D)u\> - \Rm_

+ 2 Re [(Pf(Z))!)!«)(i?m.lit(£>)M) - (Pr(£>)5cM)(/?m_lir(D)«M)«]

I2 + 2 Re

+ 2 Re [(PXD)Au - Rm_lttφ)uXRm_lttφ)uy] .

Let

M'£D)u = I Pm, r(D)/ί + RτΦ)u |2

- |P», rφ)Siι + RXDYuf + \Rm_h£D)u\*

+ 2 Re [(Λr(Z>)«)(i?m_I)r(Z»«)<]

+ 2 Re [(P r(D) j M - Λm_1,,(D)«)(Jlm_Itr(Z>)κ)eL

M : ' ( D ) « = 2 Re [(Pm<τφ)u)(Pmtτφ),u + R,φ)Uy
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So we have

I Pτφ\u |2 - I PT(D)%u -

= \Pm,T(D)u\>-\Pm

+ 2 Re [(Pm,r(D)«)CRm_1)T(D)W)c]

+ Mf

τ(D)u + M'τ'(D)u .

From statements above about Lτ(D) we see that each term of M'r(D) satisfies
the order conditions desired for Nτ(D). From statements made above about
M£D) we see that M'T'(x, ξ) = 0 for all ξ e RP, SO by (b) above there exists
N"(D) satisfying the order conditions desired for NT(D) and such that, by (c),

(e) JM'r'(D)u= JN:XD)U

for all u e Q°(0 and all r > 1. We now define

Nr(D) = M'XD) + M'x'φ) ,

and by (d), (e) and remarks made above about order, we see that the lemma
is proved.

Lemma 3.4. Let Mr(D) = 2 τkMk{D) where each Mk(D) is a

quadratic differential form of order < (2m — k — 2, m — 1). Then there
exists KzR+ such that for all u e Co°°((2) and all τ > 1,

(3.3) I JM T (D)u I <K || i ι | | i _ l t r .

// each Mk(D) has order < (2m — k — 3,m — 1), then we can improve this
to

(3.4) JMτ(D)u

Proof. This occurs in [3] and the proof only involves the Schwartz
inequality, so we omit it.

Lemma 3.5. Let R^^iD) be the part of P(D) of order equal to m — 1.
There exists Kε R+ such that for all r > 1 and all u e

(3.5) + 2 Re (PmiXD)u)(Rm_uXD)uy]
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Proof. Immediate from Lemmas 3.3 and 3.4.
We shall use that P(D) is principally normal with respect to 0, and follow

the argument of [3, p. 201]. By definition, there exist functions R and S
satisfying (2.2)-(2.4). By Lemma 3.1 our desired inequalities are independent
of the lower order terms in P(D), so we henceforth assume, without loss of
generality, that the part of P(D) of order m — 1 is R(D), where this R(D) is
obtained from the above function R by replacing ξ" by Da in (2.2). Clearly
then

(3.6) Λm-ifr( > f) = R(C(τφ + ψξ)) ,

where Λm_liΓ is defined from R(D) as usual.
In § 1 we applied Hδrmander's quadratic differential form lemma to the

FT(D) defined by

Fτ(D)u = I Pmiτ(D)u |2 - I Pm,XD)ΰ |2

to obtain a Gτ(D) satisfying (1.27)-(1.30). With this Gτ(D) we now define the
quadratic differential form Kτ(D) (depending on τ e R+) by

(3.7) Kτ{D)u = Gτ{D)u + 2 Re {(Pm^D)ύ)(Rm_h£D)ΰy) .

So Xf(D) has the following properties:

(3.8) The coefficient of τk in Kτ(D) has order < (2m - k — 1, m)

(by (1.28)),

( 3 9 )

(by (1.27)),

Kτ(x, ξ) = Hr(^, f) + 2 Re ((Pm,r(jc, ξ))
(3.10)

(by (1.30)),

(3.11) K0(x, ξ) = 0 on β X RP (by (2.4) and (3.6)) .

There exists K € R+ such that for all τ > 1 and u e C2°(Q),

(3.12) \Pv(D)*u \*

(This is just a restatement of (3.5).)
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KTΦ) =

K'T(D) = -i(£ r(Z» -
T

Let

(3.13)

and note that X0(Z>) =
Lemma 3.6. There exist quadratic differential forms {depending onτe R+)

K'r'φ) and K'τ"φ) such that
(a) K'T(D) = K'/φ) + K'τ"φ),
(b) the coefficient of τr in K'/φ) has order < (2m — r — 2, m — 1),
(c) *Ae coefficient of τT in K'v"φ) has order < (2m — r — 3, m — 1),
(d) K'£x, ξ) = K'/(x, ξ) for all (JC, f) € Q X Λ^.
Proo/. This is shown in [3, p. 202] and depends only on the fact that the

coefficient of τ r in K'vφ) has order < (2m — r — 2, m). (This property of
our K'τφ) is immediate from (3.8) and (3.12).) The proof involves only
integration by parts we omit it.

Lemma 3.7. // K"φ) satisfies Lemma 3.6, then there exists Ke R+ such
that for allτ>\ and all u € Q ( β ) ,

(3.14) |ιι|t_lfJ .

Proof. By (3.12) and (a) of Lemma 3.6, we have

(i) τK'/(D) = Kτ(D) - K.φ) - τK't"{D) .

We now bound the terms on the right. By (3.8), JK0(Z>) has order <(2/n— 1, m).
By (3.11) we can apply the quadratic differential form lemma to obtain an
#„(£>), of order < (2m — 2, m - 1), with

(ϋ)

for all M e C " ( 0 . Applying (3.3) to H0(D) we have, for some K e R+,

By (ii) and (ϋi) we then have, for all u e Cj°(β) and τ > 1,

(iv) I Jκo(D)u

By (c) of Lemma 3.6 and (3.4) we have

(v)
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Combining (iv), (v) and (3.12) gives the lemma.
From (3.10), (3.11), and (3.13) we also have

(3.15) K'£x9 £) = 1 [Hv(x, ξ) + 2 Re (P m j r (*, f)S(r, x,
τ

We recall that in our notation, unlike in [3], Kr(x, D) has constant
coefficients, obtained by evaluating the coefficients of K£D) (which may be
variable) at x e Q. By (d) of Lemma 3.6 and the Plancherel Theorem we have

(3.16) J*:(JC, D)u = fκ't'(x, D)u

for all τ and u.
By Lemma 3.2 it is sufficient to prove the inequalities (Iy) in some

neighborhood of each fixed x € β. Now fix x for the remainder of this proof,
and let B(x, δ) denote the open ball of radius δ > 0 in RP, with center at x.
We shall show the existence of δ > 0 such that the (Iy) hold for all
ueC7(B(x,δ)).

We must make a connection between the above inequalities which involve
no fixed x, and information involving the fixed x. This is done by

Lemma 3.8. For each ε > 0 there exists a δ > 0 such that

(3.17) JV/(*, D)u < fκ'τ'(D)u

for allτ>\ and all u e C0~OB(JC, <5)).
Proof. This is proved by the usual variation of coefficients, and occurs in

[3]. So we omit the proof.
For ξ € Rp and τ e R+ we define first

1/2

and then define, for u e Cj"(β) and k e Z,

We shall only use this for k = m — 1 and Λ = — 1. It is then trivial, as in [3],
that there exists K € R+ such that

(3.18) \\u\\l-hr<K\\\u\\\l_lit, if «€CΓ(β),r > 1 .

Now we use assumptions G4j) and G42) to have the following lemma by the
same proof as that used in [3, p. 196] to prove (8.4.13).
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Lemma 3.9. // (Aλ) holds, then there exist K and K2 in R+ such that for
all u € Q°(Q), allτ>\, and all ξ € R*>,

II (ξ, r) f*-" < K[K'r(x, ξ) + I Pmtr(jc, ξ) 1711 (ξ, r) ||2] + K2r«*-» .

// (A2) also holds, then this inequality holds with K2 = 0.
Following [3], we prove Theorems 1 and 2 siiiiultaneously by the fact that

in all the following, K2 = 0 if (A2) also holds. Multiplying the inequality of
this lemma by | ύ(ξ) \2, initegratiiig on ξ, aiad usiag the Plaac&erel theorem, we
have, for all u € Cj°(β) and τ > 1,

(3.19) \M\L-^ < K[JK'XX, D)u + |||Pm>r(αc,

The following lemma also comes essentially from [3, p. 198], but we have
changed the details, so we give the proof.

Lemma 3.10. There exist KzR+ and <50 € R+ such that for all δ < β0,
u € Q°(B(jt, δ)) andτ>\ we have

(3.20) | | |Pm, rU,ί))W | | |2_1 ) r < κ(δ2 + i ) | | κ | | U l t r + ~ | | P ,

Proof. We have

| | |P m i r (*, D)u\\\^τ < 2\\\Pm^x,D)u - PWfT(D)iι|||i1|T

And now we show each term on the right is bounded by one of the terms on
the right of (3.20). First note that

(a) < f~\u(ξ)\2dξ

= - i l l all2

Hence

(b) 2|||PmfT(D)«|||ϊ.ι>τ < \\\P
τ

which takes care of one of the terms on the right side. So it will now be
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sufficient to show

\\\Pm,τ(x, D)u - Pmiΐ(D)u\\\lhτ

( 0

By the definition of (C(τφ + ψD))% Pm,£x, D) - Pm,r(£>) will have the form

y p y r'α~ '̂G? a (x) g )Όr

| α | = m 0<i8<r

for certain gaβr e C°°(Q) hence

| | | P m ) r ( ^ D ) W - P m ) r ( D ) W | | | 2 _ 1 > r

I 112
— y V r | α -^'(V D (r) Q )DrU
— / ' / i *• \Oaβr\ / Oaβγf^

\a\ =m 0<.β<.a

and this is then, for some K 6 R+, independent of u and r,

< KiaΣm. Σ τ2*-" III feίrW - 8.h)D"» I IP.i.r

Hence it is sufficient to show, for g e C°°(0, that there exist K and <50 in JR+

such that for all δ < <50, τ > 1, u e C0°°(B(JC, 5)), i f j 3 < α , | r I = I £ I < I«I
= m, then

(d) r»»-

Let <50 be any number in R+ such that g can be extended to be C°° on B(x, δ0).
(We say "can be extended" to cover the case where x € Q,) and M e R+ such
that I g(y) - g(z) \ < M \\ y - z \\ for all y, z e B(x, δ0).

We first prove (d) in case β Φ 0, using (a), by

which proves (d) in case β Φ 0.
Now we prove (d) when β = 0. Consider any such that γs Φ 0. Then
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\\\(g(x) - g)C«||P_lft

= J ii (f. *) ii'11 κ*oo - ?)or«]A(i) i2 #

= JII <£, τ) II"21 [(*<*) - g)(χ + DS- t)D'-Ίur(ξ) I2 dξ

< 2 J | | (£, r) ||-» I [(«(*) - g)(τ + DJD'-juJHξ) \2dζ

+ 2 J | | (ξ, τ) V I [(g(x) - gfrDr-juMξ) \2dξ

< 2 J | | ({, r) II"21 Kr + DjKWfi) - g)Dr-ju)

- φj(g(x) - g))D>-'mΠξ) fdξ

+ 2 J | l(g(x) - g)Dr-mr(ξ) \>dξ

< 4 J | | (ξ, τ) \\-2 \τ + ξj\2\ [(g(x) - g ^ - ί u ^ ί f ) |2 df

+ 4 J | | (f, r) i r I [(D/g(Jc) - ί))i>-iu]Λ(f) \*dξ

+ 2 J | [(gW - g)O'-/«]Λ(f) \2dξ

< 4 J | [(«(*) - g)Z)̂ -V«]Λ(f) \2dξ

+ 4r"2 J | φ /

+ 2 J|g

< 8ΛίW||u|E,_liΓ + 4MV 2 | |« | | 2

Λ_ l ) r ,

which proves (d) and the lemma.
We now combine the above inequalities to obtain (I,) and (I2). In the string

of inequalities below the assertion is: there exists KeR* such that for all
τ > 1 and all u 6 C"(β), all these hold. Also we suppose ε > 0 has been
given then that δ0 is chosen less than the δ0 of Lemma 3.10 and so that (3.17)
holds. The K will also be independent of ε. Later one can see the appropriate
choice of ε, and our K2 will always be 0 if (A2) also holds. We indicate at the
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right at each step, which previous inequality is used. We have then:

II «L-...
< K\\\u\\\l_itτ (3.18)

< K Jκ't(x, D)U + K\\\PmJx, D)u\\fLltt (3.19)

K Jκ'/(x, D)u + K\\\Pm,τ(x, D)u\\lltt (3.16)

+ K2r
2"»-» IMf

K JK'r'(x, D)u + K(δ* + 1 ) || u | | i . l i r (3.20)

+ \\P

K JK'/(D)u + εK\\u\\l_UT + K(δ2 + 1 ) | | u\\*m_h, (3.17)

K I | |P r 0» # « | f + κλ\\u\\l_lίT + Ke||«||L-M (3.14)
T τ

r2

(2.1)

From this it follows, as in [3], that if d is sufficiently small then there exists
τ0 6 R+ such that the (I,) hold for all τ > r0 and all u a C0°°(J?(JC, 5)). Hence
Theorems 1 and 2 are proved.

4. Hormander convexity

We now generalize Hormander's notion of pseudo-convexity to our situation,
omitting the word "pseudo". We use the notation Pm f, etc. as in the previous
section.
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Let Vτ be the characteristic vector field of P m r so that Vτ is a vector field
on an open subset of Gp(Rt>+1). We define Wr to be the projection of Vτ into
RP+1, i.e. for each (x, P) e GP(RP+1) and lying in the domain of Vt9 we define
the vector field Wτ at x (but depending on (*, P)) by Wr(x9 P) = π+V£x9 P).
By (1.7), using the ^-coordinates of § 1,

We then define Z r to be the projection of WT into R?, and consider this only
at points of β . So for each (JC, P) € Gp(R

p+1) such that JC € β, we have, using
(1.8),

(4.1) Z rU, P) = Σ ^( pm,,)^- = # Σ CJk(*PJv-2- ,
i 3wy i.fc 3ί/y

where fcFm = *(P m ). We shall write

D=J-9 D(0)=-l(0).

Definition. 0 is convex with respect to P(D) at Λ: € β if

D(β)Hr{x, P)

is positive at every (JC, F) for which Z r is defined such that both

(4.2) Pm,00t, P) = 0 ,

(4.3) Im <Z0(JC, P), Σ ^ i « 4 - <*» = °

0 is strongly convex with respect to P(D) if 0 is convex with respect to P(D)
and Hτ(x, P) is positive at every (JC, P) in the domain of Z r for which both:

(4.20 Pm,r(*,P) = 0,

(4.30 Im <Z,(*, P), Σ ̂ ω - | ~ W> = 0 .
i 3«;

By (4.1) we see that (4.3) and (4.30 say

(4.3") l

for T = 0 or r > 0, and this is the form in which these conditions will be used
below.
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We now prove a local analogy of Theorem 8.6.2 of [3, p. 205] asserting in
the case where the φά are imaginary (and noting that this includes Hormander's
case), that if 0 is convex, or strongly convex, with respect to P(D) then, for
each JC € Q, there is a neighborhood on which we can alter 0 to obtain another
0 such that (AJ, or (Aλ) and (A2), hold for 0 and P(O), on this neighborhood.
In case the differential φ^^ + + ψvduv is exact then, as in [3], we get
one such 0 for the whole of Q.

We now define Φz for all z Φ 0 in C by: if z = u + iv, with u,veR then

<pzja = ψja , if 1 < J < P, 1 < a < p + 1,

<PZP+2,J = UΨP+2J +

Let / be any C°° complex-valued nowhere-zero function defined on Q. From
/ and our given 0 we define a map 0/, with the properties (1.1) of 0, by giving
the Cf = (CQ, <pfj, ψf, associated with 0f, as the C = (Ctj), φj9 ψ above were
associated with 0. We define

Cij = C i P ? ί = fψj> <f>f = Ψ ,

and it is trivial that there exists a unique such 6f giving rise to these. If Q(D)
is a differential operator QiP) = 2 ^α^* w e s^all write

Qrf = Σ <Ia(C(τfφ + φ)Y ,

and Hrf for the function associated with 0 / as Hτ was associated with 0. If
β(Z)) is homogeneous of order k then, trivially,

(4.4) Qrf( ,ξ) = fkQτ(

hence, in particular,

(4-5) ( , F m ) r / ( , ξ) = MjPJX ,ξlf),

Also
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Then (4.5), (4.6), and (1.14) give

2 Im</%Pm)r( •,?//)

X -,?//)

2Im

= 2|/r- 2Im[/<(,Pm) t( ,f//)

+ ((0')C')(*PJr( , f//),

+ 2r I /12™"2 Im [^ ( Σ CuίOί((*PJr( , ?//)))

So

»,/( , f) = 21 / |2™-2(Re «flr( , ξIf)

(4.7) + 2r I /12™-2 Im [^ ( Σ Clkψι(ί«Pm\{•, ξ/f))

where

β r = Re <(,Pra)τ + ((0')'C)(*Pro)r + ((0')C)(*Pm)t,

Hence B£x9 ξ) is C°° and homogeneous of degree 2m — 1 in (£, r). This also
shows that if P(D) is principally normal with respect to 0 and with the same
R and 5 as for φ then it is so with respect to 0f for real-valued /, since the
homogeneity of these functions Bτ(x, ξ) shows Hof = Ho and Pm,0/ = ΛΛ,O f°Γ

real-valued /.
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Writing

W)H£x, ξ) = J-(fi)HAx, ξ) = (-^-H)(0, x, ξ) ,
dτ \dτ I

(4.7) gives

D(0)Hτ/(., £) = 2 | / |2»-2(Re /)(£>(0)#r)( , ξ/f)

(4.8) + 2 | / r- 2 Im [^ ( Σ ClkΨι((kPm\)

. V C

where B = D(0)Bτ and hence this 5 , as well as D(0)HT, is C°° and homogeneous
of degree 2m — 2 in ξ.

The object of this section is to prove:
Theorem. Let P(D) be principally normal with respect to 0. Suppose 0 also

has the property that the associated functions φl9 , φp take purely imaginary
values at all points of Q. If β is convex (strictly convex) with respect to P(D)
at every x € Q, and x° is a point of Q, then there exist a neighborhood Q° of
x° and a C°° function f defined on Q° with values in R+ such that (AJdAJ and
(A2)) is satisfied by P(D), relative to 0 / (i.e. using Qf in place of 0 in those
conditions) on Q°.

Remark. We have assumed the condition that the φs be imaginary only to
be able to find a real-valued /, and have wanted a real-valued / because only
in that case do we know that Qf is principally normal with respect to 0.
However it seems to us that "principally normal" is too strong a condition,
and will eventually be eliminated. Then it will be natural to use, in place of
(AJ a condition of the form:

(AD D(O)[Hτ(x, ξ) + 2 Re Pm > τ(*, ξ)S(τ, x, ξ)] > 0 ,

when PTO)0C*> ?) = 0. Then one can prove as below that, if 0 is convex, there
exists a complex-valued / such that (A\) holds, without this extra assumption
on the ψj.

Proof of Theorem. We now choose a particular /, depending on a real
number λ > 0. First we define

g(x) = iψ

and then define, for λ € R+,

U =
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Note that g is real-valued, the values of / are in R+, fλ(x°) = 0 for all λ and

- J L = iλφ(xQ)Ψj(x«)fx .

Now (4.8) becomes

(4.9) + 2λfλ Re [φOWφiΣ CimCPJo)

Lemma 1. Under the assumptions of the above theorem there exist λ0 in
R+ and for each λ > λQ a neighborhood Qλ of x° such that 0Λ will satisfy (Ax)
with respect to P(D) for all x in Qλ.

Proof. We shall show, for all λ greater than some λ0, that for / = fλ we
have

lim [Htf(x, ξ) + 2 Re Pm,τf(x, ξ)S(τ, x, ξ)]
r i O

is positive whenever PTO)0/(*> f) = 0 for all x in Qλ. Because, by elementary
calculations,

D(O)Pm,τf = f Σ C > , ( * P J ,

and P(D) is principally normal with respect to Qf

9 with the same S as for 0, it
will be sufficient to show:

[D(O)Htfλ + /,2Re Σ CjkΨj(*Pm)QS(O, -, .)](*, f)

is positive whenever ^ > λ0, x € Qx, and Pm,0(x, ξ) = 0 for appropriate choices
of Λo and the Qλ. Using this and (4.9) we see that it is now sufficient to show
the existence of neighborhoods Qλ of x° and a Λo such that

ϊ r ( * , ξ) + 2 Re [ Σ C,^,( f ePJo5(O, , .)](*, f)

(4.10) + 2Λ Re [0(

is positive whenever all the following hold: Pm 0(x, ξ) = 0, λ > Λo, * € & ,

We now choose Qλ to be any neighborhood of x° such that the following
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both hold for all x in Qλ and all ξ with | ξ \ = 1 :

IΛ — 1 1 < -5- '
(4.11)

IΣ clkφ^pj0(x, ξ) - Σ clk(
kPmUA ξ) \< ± .

Now we suppose the lemma false and obtain a contradiction. Then there
exist λn f oo and for each λn an (xn, ξn) such that

rn a O I £ w I — 1 P (xn £n} — 0

and the expression (4.10) is < 0 at each (xn, ξn) (we can suppose | ξn \ = 1
by homogeneity). Hence xn —> Λ:0 and the fn have a limit point ξ°. We now
consider two cases, (a) and (b), according as £ φι(xo)Clk(xo)(kPm)o(x0, ξ°) is
or is not 0.

Contradiction in Case (a): Because 0 is convex with respect to P(D) we
have D(0)Hτ(x°, ξ°) > 0; hence D(0)Hr(xn, ξn) > ε > 0 if n is sufficiently
large. The second term in (4.10) tends to 0 by continuity (in Case (a)) and
the last term in (4.10) tends to 0 by the choice of the Qλ, These facts together
contradict the fact that (4.10) is < 0 at each (jcn, ξn).

Contradiction in Case (b): The last term in (4.10) is positive at x°, so it
tends to oo as n —> oo. Since the other terms are bounded, this contradicts the
fact that (4.10) is < 0. Hence the lemma is proved.

One proves similarly the other half of the theorem.
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