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THE DEGREE THEOREM IN HIGHER RANK

CHRISTOPHER CONNELL & BENSON FARB

Abstract

Let N be any closed, Riemannian manifold. In this paper we prove that,
for most locally symmetric, nonpositively curved Riemannian manifolds M,
and for every continuous map f : N — M, the map f is homotopic to a
smooth map with Jacobian bounded by a universal constant, depending (as
it must) only on Ricci curvature bounds of N. From this we deduce an
extension of Gromov’s Volume Comparison Theorem for negatively curved
manifolds to (most) nonpositively curved, locally symmetric manifolds.

1. Introduction

The problem of relating volume to degree for maps between Rieman-
nian manifolds is a fundamental one. Gromov’s Volume Comparison
Theorem [14] gives such a relation for maps into negatively curved man-
ifolds. In this paper we extend Gromov’s theorem to locally symmetric
manifolds of nonpositive curvature. We derive this as a consequence of
the following result, which we believe to be of independent interest.

Theorem 1.1 (Universal Jacobian bound). Let M be a closed, lo-
cally symmetric n-manifold with nonpositive sectional curvatures. As-
sume that M has no local direct factors locally isometric to R,H?, or
SL3(R)/SO3(R). Then for any closed Riemannian manifold N and any
continuous map f : N — M, there exists a constant C > 0, depending
only on n and the smallest Ricci curvatures of N and M, so that f is
homotopic to a C* map F : N — M satisfying

| Jac F| < C.
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Remark. By scaling the metrics it is easy to see that the depen-
dence of the constant C on the smallest curvatures cannot be removed.
Actually, we determine the constant explicitly in terms of the symmetric
space and the volume entropy of N (see §2.1).

Theorem 1.1 together with a simple degree argument (see §6) gives
the following generalization of Gromov’s Volume Comparison Theorem.

Theorem 1.2 (The Degree Theorem). Let M be as in Theo-
rem 1.1. Then for any closed Riemannian manifold N and any contin-
wous map f: N — M,

Vol(N)
deg(f) < CVOI(M)

where C' > 0 depends only on n and the smallest Ricci curvatures of N
and M.

Remarks.

1. As tori have self-maps of arbitrary degree, it is easy to see that
the theorem would be false without the “no R factors” hypothesis.
We believe that the “no H? or SL3(R)/SO3(R) local factors”
hypothesis is unnecessary; we show in Example 4.6 below and in
§6 of [10], however, that the issue is rather delicate.

2. As with Theorem 1.1, the dependence of the constant C' on the
smallest curvatures cannot be removed; this dependence is deter-
mined explicitly in §2.1.

3. In §6.2 we extend Theorem 1.2 to the case where N and M have
finite volume (with “bounded geometry”) but are not necessarily
compact, and where f is a coarse Lipshitz map.

When dim(M) = 2 the conclusion of the theorem follows easily from
the Gauss-Bonnet Theorem. More generally, when M is any closed man-
ifold with positive Gromov norm, Gromov has shown (see [14], p. 8 and
the Main Inequality on p. 12) that a degree theorem as in Theorem 1.2
holds for M. Positivity of the Gromov norm for closed, locally sym-
metric M as in Theorem 1.2 is still an open question. However, this
positivity was proved by Savage [21] for closed M locally isometric to
SL.(R)/ SO, (R).
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When rank(M) = 1, Besson-Courtois-Gallot [2] proved the stronger
entropy rigidity theorem, giving the exact best constant C. Entropy
rigidity is still open in higher rank ! ; this would correspond to the above

h(g) )"’

h(go)
where h(g) and h(gp) are the volume entropies of N and M (see [2]),

with equality being obtained iff N is a Riemannian cover of M after an
appropriate rescaling.

The Besson-Courtois-Gallot technique is a central ingredient here;
indeed the main idea in our proof of Theorem 1.1 is to establish a higher
rank version of the “canonical map” of [2], and to give an a priori bound
on its Jacobian. Obtaining this bound is the hardest part of the present
paper (see §4 and §5). Our estimates in §4 and §5 can be viewed as a
first step towards proving higher rank entropy rigidity.

theorem with the constant C' in the inequality being C' = (

The Minvol invariant. One of the basic invariants associated to
a smooth manifold M is its minimal volume:

Minvol(M) := ir;f{Vol(M, 9): |K(g9)] <1}

where g ranges over all smooth metrics on M and K(g) denotes the
sectional curvature of g. The basic questions about Minvol(M) are: for
which M is Minvol(M) > 0? When is Minvol(M) realized by some
metric g7

When a nonpositively curved manifold M has a local direct factor
locally isometric to R, it is easy to see that Minvol(M) = 0. By taking f
to be the identity map (while varying the metric g on M), Theorem 1.2
immediately gives:

Corollary 1.3 (Positivity of Minvol).  Let M be any finite vol-
ume, locally symmetric n-manifold (n > 2) of nonpositive curva-
ture. If M has no local direct factors locally isometric to R,H?, or

SL3(R)/SO3(R), then Minvol(M) > 0.

For compact M, Corollary 1.3 was proved (without the H? and
SL(3,R) restriction) in [15] (see also [21] for the case manifolds lo-
cally modelled on the symmetric space for SL(n,R)). When M ad-
mits a (real) hyperbolic metric, Besson-Courtois-Gallot [2] proved that
Minvol(M) is uniquely realized by the hyperbolic metric. It seems pos-
sible that this might hold in general.

'"Entropy rigidity has recently been proved [4, 9] for manifolds locally modelled
on products of rank one symmetric spaces with no H? factors.
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Self maps and the co-Hopf property. As deg(f") = deg(f)",
an immediate corollary of Theorem 1.2 is the following.

Corollary 1.4 (Self maps). Let M be a finite-volume locally sym-
metric manifold as in Theorem 1.1. Then M admits no self-maps of
degree > 1. In particular, m (M) is co-Hopfian: every injective endo-
morphism of w1 (M) is surjective.

Note that Corollary 1.4 may also be deduced from Margulis’s Super-
rigidity theorem (for higher rank M). The co-Hopf property for lattices
was first proved by Prasad [20].

More generally, if N and M are as in Theorem 1.2 and f: N — M
and g : M — N are two maps of nonzero degree then |deg(f)| =1 =
|deg(g)| since f o g is a self map of M.

Outline of the proof of Theorems 1.1 and 1.2. As noted
above, a simple degree argument shows that it is enough to prove Theo-
rem 1.1. Given f : N — M as in the hypothesis of the theorems, we use
the method of [2, 3] to construct a “canonical” map F : N — M which
is homotopic to f (hence degF = degf) and has universally bounded
Jacobian.

Step 1 (Constructing the map): First consider the case when the
metric on N is nonpositively curved. Denote by Y (resp. X) the uni-
versal cover of N (resp. M). Let M(9Y), M(0X) denote the spaces of
atomless probability measures on the visual boundaries of the universal
covers Y, X.

Morally what we do, following the method of [3], is to define a map

FY — M@OY) S MOx) ™ x

where ¢, = Of: is the pushforward of measures and bar is the “barycen-
ter of a measure” (see §3). The inclusion Y — M(9Y'), denoted x — i,
is given by the construction of the Patterson-Sullivan measures {1z }zex
corresponding to m1(N) < Isom(Y) (see §2). An essential feature of
these constructions is that they are all canonical, so that all of the
maps are equivariant. Hence F descends to a map F: N — M.

One problem with this construction outline is that the metric on
Y may not be nonpositively curved. So we must find an alternative
to using the “visual boundary” of Y. This is done by constructing a
certain family of smooth measures ps on Y itself, pushing them forward
via f, and convolving with Patterson-Sullivan measure on X. Maps
F, are then defined by taking the barycenters of these measures; it is
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actually these maps which are considered instead of F'. This idea was
first introduced in [2].

Two new features of F' appear in higher rank. First, the non-
strictness of convexity of the Busemann function (see §3) must be over-
come to define F. Second, and more importantly, a theorem of Albu-
querque shows that the support of each of the measures p, is codimen-
sion rank(X) — 1 subset of X called the Furstenberg boundary of X
(see §2). This fact and its implications are crucial for later steps.

Step 2 (The Jacobian estimate): The heart of the paper (§4 and
§5) is obtaining a universal bound on F', independent of f. For this, we
first realize the Jacobian of F' as the ratio of determinants of two matrix
integrals. We then show that whenever there are small eigenvalues in
the denominator there are a sufficient number of small eigenvalues in
the numerator with which to cancel them. The key is to find these
eigenvalues independently of the integrating measure (which depends
on i), therefore reducing the problem to a problem about semisimple
Lie groups.

Step 3 (Finishing the proof): Once a universal bound on | Jac(F')| is
found, a simple degree argument finishes the proof. In the case when M
and N are not compact, the main difficulty is proving that F§ is proper.
This is quite technical, and requires extending some of the ideas of [5]
to the higher rank setting.

2. Patterson-Sullivan measures on symmetric spaces

In this section we briefly recall Albuquerque’s theory [1] of Patterson-
Sullivan measures in higher rank symmetric spaces. For background on
nonpositively curved manifolds, symmetric spaces, visual boundaries,
Busemann functions, etc., we refer the reader to [6] and [11].

2.1 Basic properties

Let X be a Riemannian symmetric space of noncompact type. Denote
by 0X the visual boundary of X; that is, the set of equivalence classes
of geodesic rays in X, endowed with the cone topology. Hence X U 90X
is a compactification of X which is homeomorphic to a closed ball.

The volume entropy h(g) of a closed Riemannian n-manifold (M, g)
is defined as

h(g) = Jim —log(Vol(B(z, R))

23
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where B(z, R) is the ball of radius R around a fixed point z in the
universal cover X. The number A(g) is independent of the choice of z,
and equals the topological entropy of the geodesic flow on (M, g) when
the curvature K(g) satisfies K(g) < 0. Note that while the volume
Vol(M, g) is not invariant under scaling the metric g, the normalized
entropy

ent(g) = h(g)" Vol(M, g)
is scale invariant.

Let T' be a lattice in Isom(X), so that h(gg) < oo where (M, go) is
I\ X with the locally symmetric metric.

Generalizing the construction of Patterson-Sullivan, Albuquerque
constructs in [1] a family of Patterson-Sullivan measures on 0X. This
is a family of probability measures {v;},cx on 0X which provide a par-
ticularly natural embedding of X into the space of probability measures
on 0X.

Theorem 2.1 (Existence Theorem, [1]).  There exists a family
{vz} of probability measures on 0X satisfying the following properties:

1. Fach v, has no atoms.
2. The family of measures {v,} is I'-equivariant:
Velg = Vqg for all v € T.
3. For all z,y € X, the measure v, is absolutely continuous with

respect to v,. In fact the Radon-Nikodym derivative is given ex-
plicitly by:

(1)

dﬁ(g) — M90)B(z,y.8)

dvy

where B(x,y, &) is the Busemann function on X. For points x,y €
X and & € 0X, the function B : X x X x 0X — R is defined by

B(z,y,§) = lim dx(y,7(t)) — ¢
where ¢ is the unique geodesic ray with v(0) = x and y(co) = &.

The third property implies no two measures are the same as mea-
sures. Thus the assignment x — v, defines an injective map

v:X — M(0X)

where M(0X) is the space of probability measures on X. Such a map-
ping satisfying the above properties is called an h(go)-conformal density.
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2.2 Symmetric spaces of noncompact type

Before we present Albuquerque’s theorem we will need some necessary
background about higher rank symmetric spaces.

By definition, the symmetric space X is G/K where G is a semisim-
ple Lie group and K a maximal compact subgroup. Fix once and for
all a basepoint p € X. This choice uniquely determines a Cartan de-
composition g =t @ p of the Lie algebra of G where t is the Lie algebra
of the isotropy subgroup K = Stabg(p) of p in G and p is orthogonal
to € with respect to the killing form B(-,-) on g. Therefore, p is also
identified with the tangent space 71, X.

Let a be, once and for all, a fixed maximal abelian subalgebra of g.
It follows from the Cartan decomposition that a C p. The set exp(a) - p
will be a maximal flat (totally geodesically embedded Euclidean space
of maximal dimension) in X. Recall, a vector v € T'X is called a regular
vector if it is tangent to a unique maximal flat. Otherwise it is a singular
vector. A geodesic is called regular (resp. singular) if one (and hence all)
of its tangent vectors are regular (singular). A point £ € 0X is regular
(singular) if any (and hence all) of the geodesics in the corresponding
equivalence class are regular (singular).

Let a* be the dual to a, then for each o € a* define

go ={Y €gladaY = a(A)Yfor all A € a}.

We call « a root if g, # 0. Therefore the roots form a finite set A.

If 0, is the Cartan involution associated to the point p, which is Id
on ¥ and — Id on p, then we may define a positive definite inner product
¢p on g by ¢p(Y,Z) = —B(6,Y,Z). With respect to ¢,, the folowing
root space decomposition

g=00+ ) fa
aeA

is orthogonal.
The following is proposition can be found in 2.7.3 of [11].

Proposition 2.2. Some properties of the roots and root space
decomposition are:

1. [8a,88) C gatp if a+ B € A or is O otherwise.

2. Ifa€ A then —a€ A and 0, : go — g—n s an isomorphism.
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3. If o is mot an integer multiple of some other A € A then the only
possible multiples of a in A are £a and +2a.

4. We have go = (go N €) + a.

5. If a, 8 € A then 8 — 2§zﬂa € A where (-,) is the dual inner

’a>
product to ¢, on a*. Furthermore, 2%’53 s always an integer and

if a and B are not collinear then it is +1.

We call a subset A C A a base for A if:
1. The elements of A form a basis (over R) for a*.

2. Every root in A can be written as a linear combination of of ele-
ments in A with coefficients being either all nonnegative integers
or all nonpositive integers.

If we choose an regular element A € a then define the set of positive
roots corresponding to A,

Ay ={a€A[a(4) >0}

The subset Az C Ajg consisting of elements which cannot be written as
a sum of two elements in Ajg is a base for A. Sometimes Aj is called a
fundamental system of positive roots.

For A € a the associated (open) Weyl chamber W (A) is the con-
nected component of the set of regular vectors in a which contains A.
We also call the set exp W(A) C exp(a), as well as exp(W(A)) -p C X,
a Weyl chamber which we again denote by W (A) using the context to
determine where exactly it lies.

The union of all the singular geodesics in the flat exp(a) - p passing
through p is a finite set of hyperplanes forming the boundaries of the
Weyl chambers. This provides another description of the Weyl chamber
W(A) as

W(A) ={Y €a|a(Y)>0foral a € A%}

For each subset I C A% the set Wi(A4) = Naer(kera N W(A) is called
the Weyl chamber face corresponding to the set I, and we designate
Wy(A) = W(A). The subgroup of K which stabilizes the face W;(A)
we denote by K7j.
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2.3 The Furstenberg boundary

The Furstenberg boundary of a symmetric space X of noncompact type is
abstractly defined to be G/P where P is a minimal parabolic subgroup
of the connected component G of the identity in Isom(X).

The Furstenberg boundary can be identified with the orbit of G
acting on any regular point v(co) € 0X, the endpoint of a geodesic
tangent to a regular vector v. of a Weyl chamber in a fixed flat a. This
follows from the fact that the action of any such P on 90X fixes some
regular point.

Because of this, for symmetric spaces of higher rank, behaviour on
the visual boundary can often be aptly described by its restriction to the
Furstenberg boundary. Here we will use only some very basic properties
of this boundary. For more details on semisimple Lie groups and the
Furstenberg boundary, see [23].

For a fixed regular vector A € a and associated set of positive roots
A} the barycenter b of the Weyl chamber W (A) is defined to be

b= Z maoHe

+
aEl

where m, = dim g, is the multiplicty of o and H, is the dual vector
(with respect to ¢,) of a. Set bT = b/|[b]|.

Define the set 9p X C X to be OpX = G - b"(c0). Henceforth we
will refer to the Furstenberg boundary as this specific realization. We
point out that for any lattice I' in Isom(X), the induced action on the
boundary is transitive only on dpX. That is, I'- b (c0) = G - bt (0),
even though for any interior point € X we have I -z = 0X.

2.4 Albuquerque’s Theorem

Theorem 7.4 and Proposition 7.5 of [1] combine to give the following
theorem, which will play a crucial role in our proof of Theorem 1.2.

Theorem 2.3 (Description of v;).  Let (X,g0) be a symmetric
space of noncompact type, and let I' be a lattice in Isom(X). Then:

L. h(go) = [bll-
2. b (00) is a regular point, and hence Op X is a regular set.

3. For any x € X, the support supp(vy) of v, is equal to Op X .
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4. v, is the unique probability measure invariant under the action on
Op X of the compact isotropy group Stabg(x) at x. In particular,
vp 18 the unique K-invariant probability measure on Op X .

Note that when X is has rank one, 0p X = 0X. In general 9p X has
codimension rank(X) — 1 in 0X.

2.5 Limits of Patterson-Sullivan measures

We now describe the asymptotic behaviour of the v, as x tends to a
point in 9.X.

For any point £ of the visual boundary, let Sy be the set of points
¢ € Op X such that there is a Weyl chamber W whose closure W in X
contains both 6 and £. Let Ky be the subgroup of K which stabilizes
Sp. Ky acts transitively on Sy (see the proof below).

Theorem 2.4 (Support of v,). Given any sequence {x;} tending
to 6 € 0X in the cone topology, the measures vy, converge in M(OrpX)
to the unique Kg-invariant probability measure vy supported on Sy.

Proof. Let x; = g;-p, for an appropriate sequence g; € G. Recall that
Vg, = (9i)«Vp. Then combining part (4) of Theorem 2.3 with Proposition
9.43 of [13] have that some subsequence of the v,, converges to a Ky-
invariant measure vy supported on Sp.

Note that in [13], the notation I refers to a subset of a fundamental
set of roots corresponding to the face of a Weyl chamber containing
f in its boundary. If g; - p = k;a; - p converges then both £ = lim k;
and a! = lim; a! exist (note the definition of a! in [13]). Again in the
notation of [13], Kj is the conjugate subgroup (ka!)K?(ka!’)~! in K.
Moreover, Sy is the orbit ka! K1 - b+ (c0).

By Corollary 9.46 and Proposition 9.45 of [13] any other convergent
subsequence of the v,, produces the same measure in the limit, and
therefore the sequence v, itself converges to vy uniquely. q.e.d.

In the case when 6 is a regular point, the above theorem implies
that Sy is a single point and the limit measure vy is simply the Dirac
probability measure at that point point in OpX.

3. The barycenter of a measure

In this section we describe the natural map which is an essential
ingredient in the method of Besson-Courtois-Gallot.
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Let ¢ denote the lift to universal covers of f with basepoint p € Y’
(resp. f(p) € X), ie.,, ¢ = f : Y — X. We will also denote the
metric and Riemannian volume form on universal cover Y by g and dg
respectively. Then for each s > h(g) and y € Y consider the probability
measure j,; on Y in the Lebesgue class with density given by

d,LL; e_Sd(y7Z)
Tg(z) - [y e=sdw2)dg’
The pj, are well-defined by the choice of s.

Consider the push-forward ¢.pu;, which is a measure on X. Define
‘75 to be the convolution of ¢*M§ with the Patterson-Sullivan measure
v, for the symmetric metric.

In other words, for U C 90X a Borel set, define

70 = [ v )G
Since ||v;|| = 1, we have
logl = lluyll = 1.

Let B(x,0) = B(f(p),g:,&) be the Busemann function on X with
respect to the basepoint f(p) (which we will also denote by p). For
s> h(g) and z € X,y € Y define a function

Bsy(x) = B(z,0)doy(0).
o0X
By Theorem 2.4, the support of v, hence of oy, is all of 9p X, which
in turn equals the G-orbit G - b (c0). Hence

Bsy(z) = oo B(z,0)doy(0) = /G.H(OO) B(z,0)doy,(0).

Since X is nonpositively curved, the Busemann function B is (non-
strictly) convex on X. Hence B,, is convex on X, being a convex
integral of convex functions. While B is strictly convex only when X is
negatively curved, we have the following.

Proposition 3.1 (Strict convexity of B). For each fized y and s,
the function x — By s(x) is strictly convex, and has a unique critical
point in X which is its minimum.
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Proof. Tt suffices to show that given a geodesic segment ~y(t) between
two points (0),v(1) € X, there exists some £ € dp X such that function
B(v(t),&) is strictly convex in ¢, and hence on an open positive -
measure set around &. We know it is convex by the comment preceding
the statement of the proposition.

If B(y(t),€) is constant on some geodesic subsegment of -y for some
&, then v must lie in some flat F such that the geodesic between £ € 0F
and 7 (which meets v at a right angle) also lies in F. On the other
hand, £ € 0rX is in the direction of the algebraic centroid in a Weyl
chamber, and ~ is perpendicular to this direction. By the properties of
the roots, 7 is a regular geodesic (i.e., v is not contained in the boundary
of a Weyl chamber). In particular, 7 is contained in a unique flat F.
Furthermore, 0p X NOF is a finite set (an orbit of the Weyl group). As
a result, for almost every £ € Op X B(v(t),§) is strictly convex in t.

For fixed z € X, by the last property listed in Theorem 2.1, we see
that

/ B(z,0)dv,(0)
orX

tends to oo as x tends to any boundary point £ € 9X. Then for fixed y
and s > h(g), By,s(z) increases to oo as x tends to any boundary point
& € 0X. Hence it has a local minimum in X, which by strict convexity
must be unique. q.e.d.

We call the unique critical point of By, the barycenter of the measure
oy, and define a map Fs : Y — X by

F,(y) = the unique critical point of Bs.y.
Since for any two points p1,ps € X
B(plam)e) = B(p27x79) + B(p17p279)

we see that B, only changes by an additive constant when we change
the basepoint of B. Also, B, only changes by a multiplicative constant
when we change the basepoint in the definition of p,. Since neither
change affects the critical point of B, s, we see that F, is independent
of choice of basepoints.

The equivariance of fand of {4, } implies that F, is also equivariant.
Hence 155 descends to a map Fs : N — M. It is easy to see that F is
homotopic to f.
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Proposition 3.2. The map ¥y: [0,1] x N — M defined by
Vs(t,y) = Foy . (y)

is a homotopy between ¥4(0,-) = Fs and V4(1,-) = f for any s > h(g).

Proof. From its definitions, Fy(y) is continuous in s and y. If (s;, y;)
is a sequence converging to (sg,y) for sop > s and y € M then from the
definition it is easy to verify that ﬁsi (yi) converges to ﬁSO (y). If on the
other hand s; — oo, then observe that lim; .. 052 = Vg(y)- If follows

that lim; .o Fs, (yi) = ¢(y). This implies the proposition. q.e.d.

As in [2], we will see that Fy is C1, and will estimate its Jacobian.

4. The Jacobian estimate

Let X be expressed as a product of its irreducible factors X =
X1 x---x Xg, and let g; denote the restricted symmetric metric on each
factor X;. As above, h(g;) denotes the volume entropy of (X;, g;). The
main estimate of this paper is the following.

Theorem 4.1 (The Jacobian Estimate). For all s > h(g) and all
y € N we have

| Jac Fy(y)| < C <h(gl)h(92) . h(%))

for some constant C, depending only on dim M.

Dependence of constants. Up to scaling of the metric, there are
only a finite number of irreducible symmetric spaces of noncompact type
in a given dimension. Therefore it is sufficient to show that C' depends
only on the individual symmetric spaces (Xj, g;). Furthermore, when
we apply Theorem 4.1, we will take the limit as s — h(g) so that the

n
quantity C (m) is the constant appearing in Theorem 1.2.

It is evident then that the right-hand side of inequality of Theorem 1.2
is scale invariant with respect to the metrics g and g;.

We claim that the quantities h(g) and h(g;) can be bounded by Ricci
curvatures. The Bishop Volume Comparison Theorem ([7]) states that
if the Ricci curvatures of (Y, g) are all greater than (n — 1)k for some
k < 0 then for any y € Y and r > 0,

Vol B(y,r) < Vi (r)
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where Vj(r) is the volume of the ball of radius r in the space form of
constant curvature k. In particular this implies that

h(g) < lim log Vie(r)

r—00 r

= (n—1)v—k.

Similarly, in the course of the proof of Theorem 4.1 we will see
explicitly that

h’(gl) =Tr \/_Rz(b+7 B b+7 )
where R; is the curvature tensor on (Xj, g;). In particular
h(g;) > min{1, — Ricci(b™,b")}.

Therefore the constant C' in Theorem 1.2 depends only on the Ricci
curvatures of N and M.

We will prove Theorem 4.1 in several steps.

4.1 Finding the Jacobian

We obtain the differential of Fy by implicit differentiation:
0= Dx:FS(y)B&y(x) = / dB(Fs(y)ﬁ)()dU;(e)
opX

Hence as 2-forms

0= Dwa:Fs(y)B&y(l‘)

= DdBr,(y),0)(DyFs(+), -)doy (0)
Or X

—s /Y /8 - AB(F,(5),0) () (Vyd(y, 2), ) dvge (0)dps (2).

The distance function d(y, z) is Lipschitz and C! off of the cut locus
which has Lebesgue measure 0. It follows from the Implicit Function
Theorem (see [3]) that Fy is C! for s > h(g). By the chain rule,

det (fy Jowx AB(Fu().0) () (Vyd(y, 2), ) dvg(.) (H)dui(2)>
det  fox DAB(r ) (- )dor(6)) |

Jac Fy = s™
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Applying Hélder’s inequality to the numerator gives:
| Jac F|
det ( [y, x ABP ) 0 do3(0)) 2 det (fy (Vydly, 2), % duy (2))
det (faFX DdB(r,().0) (" ')dai(e))

1/2

<s

Using that Tr (V,d(y, 2),-)*> = |V,d(y, z)|> = 1, except possibly on
a measure 0 set, we may estimate

et ([ (@ydt0.2) ->2du2(2)>1/2 <(5)"

Therefore

1/2
. >n det ( Jox ngFs(y)ﬂ)da;(e))

2 JacF| < | — :
2 | | = <\/ﬁ det ( Jomx DdB(FS(y)ﬁ)(.’.)da;(H))

4.2 Reduction to the irreducible case

In this subsection we make, following [9], a reduction to the case when
X = M is irreducible.

If X = X7 x---x X}, is the irreducible expression for X as a product,
the group G = Isom(X) can also be written as a product G = G X
Go - -+ X Gp, where each G; # SL(2,R),SL(3,R) is a simple Lie group.
Theorem 2.3 implies that for all y € Y, the measure oy, is supported on
the G-orbit

G- b+(OO) = {(Gl X G2 e X Gk) . b+(oo)}

Hence
8FX =G- b+(OO) = 6FX1 X - X 8FXk

Since each X; has rank one, 0 X; = 0X; so that
8FX:8X1 X Xan

Let B; denote the Busemann function for the rank one symmetric
space X; with metric g;. Then for 0; € 0X; C 0X and z,y € X; we
have B(z,y,0;) = B;(x,y,6;). Since the factors X; are orthogonal in X

33
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with respect to the metric go, the Busemann function of (X, gg) with
basepoint p € X at a point § = (1,...,0;) € OpX is given by

(1'9 fZB x;, 0 z

The Schur estimate for the determinant of symmetric semidefinite
block matrices states,

det ( 2 g) < det(A) det(C).

Applying the dual form of this estimate to our symmetric tensors we
have

2
/ (Zd (i Fu(y)m:0 )) doy(0)
X
2 .
< Hdet </ (d(Bi) (rs s (9).05)) d(m)w;,(@)) ;
O X

where m; : X — X; and 7; : 9p X — OpX; are the canonical projections.
Since DdB(FS(y),O) = ﬁ E?:l DdBi(mFS(y),me)a the denominator al-
ready splits as,

det < DdB(Fs(y),O)('; )dJZ(Q))
opX

ﬁ det ( /a (DB ra0) d(m)*a;(«%)> |

Putting these together we obtain,
| Jac Fy(y)|

- (S)n k det (faFXi (d(Bi)(mFS(y)vgi)fd(mﬁoé(@ﬂ)l/z
— VRS det (fy o, (PAB) wp 00) AT (6))

Therefore we only need to bound each term in the product seperately. It
suffices then to prove that for an irreducible symmetric space (X, go) #
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H2, SL(3,R)/SO(3,R), and for any measure x4 on 9 X, that

1/2
det (faFX dB%Fs(y),a)dﬂ(Q)) c
det (faFX DdB(F,y)0) (- ')du(e)) h(go0)

We will continue to write o, instead of y or (m;).0,. The only
property we use of oy from this point on is that it is fully supported on
OrX. Since supp((m;)«0y) = mi(supp(oy)) = O X; there is no harm by

Y
this imprecision.

4.3 Simplifying the Jacobian

As stated above we need only now consider irreducible (X, go). For each
point x € X, we let F, denote the canonical flat passing through x, i.e.,
F. = exp(a) - z. We denote the tangent space to F, simply as F with
the base point suppressed since it is naturally isomorphic to the Lie
algebra exp(a).

We wish to bound the quantity

9 s 1/2
det ( Jopx 4B Fs(y)ﬁ)day(e))
det [y, x DAB(r0) (- )y (6) )

Let F denote the tangent space to the flat Fp (). Choose an or-
thonormal basis {e;} for the tangent space T F.(y)X such that eq,...,
€rank(x) 18 a basis for F with e1(o0) = b (00). We may write the term

(3) DdB(F,(y),0)(-;-)doy(0)
opX

0 0
0 0 do (0
/8FX 9<0 DA) o d7y(0)

where Oy is the orthogonal matrix in the e; basis corresponding to the
derivative of the unique isometry in K = Stabg(Fs(y)) which sends e;
to v(p,(y),6) (the vector in the tangent space of the point Fy(y) in the
direction 6 € OpX). In the above expression, the upper left zero matrix

in matrix form as
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sub-block has dimensions rank(X) x rank(X), and D, has the form

A 0 L 0
Dy — 0 X 0
0o . 0
0o ... 0 )‘n—rank(X)
where {A1, ..., Ay _rank(x)} is the set of nonzero eigenvalues of

DdBF,(y)9)- Since DdB(,g) is G equivariant, its eigenvalues do not
depend on x but only on which K-orbit in X the point 6 lies in. In
particular, DdB ;) is flow invariant and hence the Ricatti equation
shows that it is simply related to the curvature tensor by

DdB(a;,G) = \/_R(U(acﬁ)a 5 U(x,0)> )

On the other hand in a symmetric space R(v,-,v,-) = —(ad,)?|,.
Therefore the eigenvalues of Dd B, (,) ) are those of DdB;, j+ (o)) Which
in turn are those of \/adla lp- (Note that while ad,+ does not preserve

p, (ady+)?|p is a symmetric endomorphism of p.) Recall, b+ = b/||b]|
where b =35 At maHp for any choice of A € a (the choice of A only
determines the Weyl chamber containing b). Setting

Poa=pN (goc 2] g—oz)v

we have po = {X —6,X : X € g}
By definition of g, for each o € AJAf we may write

2

1
(ady+)?|g. = a(bT)?1d = ol > a(mgHg) | 1d.
BeAT

The same expression clearly holds for (ad,+)?|;_,. Therefore, for any
a €A, /(ady+)?|p, = |a(bT)|. For po = a the same formula holds with
a = 0. In particular, the ratio of the largest eigenvalue (denoted by
Amax) among the A;’s in D) to the smallest nonzero eigenvalue (denoted
by Amin) only depends on X.

Furthermore, since a(b*) > 0 for all @ € AY and dimp, = Mmq, we
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have
Tr \/adl |, = Z mea(b™)
aEAX
1
= W Z mamgpa(Hpg)
a,ﬁEAX
1 ]
=l Y msHs, Y moHa )= Il = h(go)
BeA] AT

where the last equality follows from Theorem 2.3. As a result, there is
a constant ¢ only depending on X such that

h(g0)

c

(4) < Ai < ¢ hlgo)

fori=1,...,(n —rank(X)). We now use the following.

Lemma 4.2. The determinant of a sum of n X n positive semidefi-
nite matrices is a nondecreasing homogeneous polynomial of degree n in
the eigenvalues of each summand. Furthermore, if the sum is positive
definite, then the determinant is strictly increasing in the eigenvalues of
the summands.

Proof. Let M be the sum of positive semidefinite matrices. Then
there exist fixed orthogonal matrices O; and real numbers ); ; such that
M may be written as

N1 O 0
M=>"0 0 Ao 0 O;
l : 0 . 0
0o ... 0 N

Then we have the differentiation formula (see, e.g., Prop. 2.8 of [8]):

det M = Tr ( M) Madi

dA; dN

where M2 is the adjunct matrix of M. Now,

d
N ;

M = OE(; 5 0;
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where E(; ;) is the elementary matrix with 1 in the (4, j) position and

zeros elsewhere. Therefore, by cyclically permuting O; in the trace

above we find that ﬁ det M is the (j,7) the entry of Ol*MadJOl which
3]

is nonnegative since M is positive semidefinite. Lastly, if M is positive
definite then O M adj, is also, which means that ﬁ det M is positive.
»J

The lemma follows. q.e.d.

Applying Lemma 4.2 to the Riemann sums for the integral (3) above,
using the bound in Equation (4), and taking limits, gives

det DdB(FS(y),G)('7 )dUZ(@)
orX

h(go)>" / (0 0 > .
> det 0] O, doi (0
o < c ¢ O X ? 0 In—rank(X) 0 Jy( )

where I, _aqk(x) is the identity matrix of dimension n — rank(X).

Next we observe that, relative to the orthonormal basis {eq,...,
erank(x)} for Tp, ()X, the expression

dB? dos(0
/8FX (£ (),0)10y (9)

may be written in the form

1 0 o
Q1= / Oy <0 0 (n=1)x1 ) Oy do, (0)
o X 1x(n—1) (n—1)x(n—1)

where Oy is the same matrix as above. Let

0 0
Qo = / O ( )o* do®(0).
2 O X o 0 In—rank(X) o y( )

We have just shown that, to prove Theorem 4.1, it suffices to prove
that

det Ql <C

(5) (det Q2)2 B

for some constant C. The rest of this section will be devoted to proving
this.
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4.4 Eigenvalue matching

Here is the general idea of our proof of Theorem 4.1, which we have
reduced to showing (5) above. Since the numerator is bounded above,
we consider when the matrix ()9 in the denominator has any eigenvalues
smaller than a certain constant depending only on the dimension of
X. When this occurs, Theorem 4.4 below will show that each such
eigenvalue is matched by at least two smaller (up to a universal constant)
eigenvalues of the matrix ()1 in the numerator.

Let {v;} be an orthonormal eigenbasis for the symmetric matrix Q2,
and recall that {e;} is a basis for the tangent space F to the fixed, chosen
flat. Note that the i-th eigenvalue of the matrix ()2 may be written as

n

Li = v} Qov; = / Z (Op.ej,v1)* dog(6).
IpX j=rank(X)+1

We first argue that no L; equals zero. Since s > h(g) we have that
the measures p; is a finite measure in the Lebesgue class (dg). Since
the v, for x € X are positive on any open set (with respect to the
cone topology) of drX, it follows that o is as well. In particular,
{O¢|0 € supp(oy) = Op X} is isomorphic to the group K and therefore
there is no nonzero subspace V' C T, )X such that OgV C F for all
0 € OrX. Hence none of the eigenvalues L; are 0.

Let e = 1/(rank(X) + 1). Note that € is a constant depending only
on n, as there are only finitely many symmetric spaces of a given rank
and given dimension. Suppose k of the eigenvalues are strictly less than
€. Since each L; < 1, and since

ZLZ- = Tr Q2 = n — rank(X)

it follows easily that k& < rank(X). By rearranging the order we may
assume that L; <efori=1,... k.

Let H be an inner product space over R, and denote by SO(H)
the special orthogonal group of H. Scale the bi-invariant metric on
SO(H) so that SO(H) has diameter 7/2. Define the angle between two
subspaces V,W C H as

LV, W)
= inf {dSO(H)(I, P): P € SO(H) with PV C W or PW C v}.
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Let 7y (W) represent the orthogonal projection of W onto V. Then
it is routine to verify the following properties of the angle:

1 ZL(V,W) < 2.
2. L(V,W) = 2Z(WH, V).
3. L(V,W) = Z(W, V).

4. If V C U and dimU < dim W then Z(V, W)
if VCU and dimV > dim W then Z(V, W)

5. f ZV,W =0then V CW or W C V.
6. f U CW then L(my(U),U) < ZL(my (U), W) < L(V,W).

For a 1-dimensional subspace V' spanned by a vector v, our definition
of angle agrees with the usual definition:

7. V =span{v} = cos(L(V,W)) = %
Finally, £ satisfies the following form of the triangle inequality.

Lemma 4.3 (Triangle inequality for £). Let U, V,W be subspaces
of a fized inner product space H. Suppose that dimU = dimW < dim V.
Then
LV,W) < LU, V) + ZL(U,W).

Proof. By definition of Z there exist P;, P2, Py € SO(H) with:
o PIW CV and L(V,W) = dsom) (I, 1)
e PRUCV and Z(U,V) = dsom) (I, I%).
o P3U =W and Z(U,W) = dsom)(I, P3).
Now P2P3_1W C V so that
d(I,P) <d(I,P,P;?')

= d(P27P3)

< d(I,Py) +d(I, P3)

and we are done. q.e.d.

One of the main ingredients in the proof of Theorem 4.1 is the fol-
lowing.
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Theorem 4.4 (Eigenvalue Matching Theorem). For any k-frame

given by orthonormal vectors vy, ..., v, of T, X with k < rank(X) there
is an orthonormal 2k-frame given by vectors vy, vy ..., vy, v, each per-

pendicular to span{vy, ..., v}, such that fori=1,...,k and all h € K,
there is a constant C, depending only on dim X, such that

Z(hl, F) < CL(hw;, F)

and
Z(hl!, FYY < CL(hwy;, F)

where hv represents the linear (derivative) action of K onv € T, X.

We will prove Theorem 4.4 in Section 5; its proof is independent of
the rest of the paper.

4.5 Proof of the Jacobian estimate

Assuming Theorem 4.4 for the moment, we now complete the proof of
Theorem 4.1.

Proof of Theorem 4.1. From Equation (2) and the reduction in §4.3
we see that it is sufficient to show that

detQ1 <C

(det Q2)2 B
for some constant C' depending only on n.

As before let Ly, ..., L be the k < rank(X) eigenvalues of Q2 which
are strictly less than e = 1/(rank(X) + 1). If no such eigenvalues exist,
then there is a lower bound on Q2 depending only on rank(X). As there
is an upper bound on @)1, we are done (see the discussion on dependency
of constants above). So we assume k > 1.

Let vy, ..., vr be an orthonormal set of associated eigenvectors. Re-
call that {e;} denotes the chosen orthonormal basis for the T, () X such
that e, ..., €rank(x) spans the tangent space F to the fixed maximal flat.

For any vector v € T, (,) X let

r)= Y {e)’

j=rank(X)+1

so that
L; :/ 7(Ogvi) doy,(0).
o X
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Since €1, ..., €rank(x) form an orthonormal basis for F, for any unit
vector v we have

cos(£(v, F)) = (v,mx(v)) /|mF(v)]
= <U,Z (v, €5) €j> / (Z <v,€j>2)
(S )

1/2

so that
rank(X)
cos(Z(0, F)2= 3 (v,e)?.
j=1
Hence
rank(X)
r(v)=1- Z cos?(Lv, ej)
j=1
=1 — cos®(Lv, F)
= sin?(Lv, F).
Similarly
rank(X)
(v,e1)? < Z (v,e)? = sin®(Lv, F1).
j=1
For eachi =1,...,k, let v} and v} be the pair of vectors correspond-

ing to v; produced by the Eigenvalue Matching Theorem (Theorem 4.4).
That theorem together with the concavity of sin?  for 0 < 6 < /2 gives,
for all # € OpX and for each w; = v} or v, that

sin?(LO0jw;, F1) < sin?(C£O}v;, F) < C%sin?(LO}v;, F)
where C' > 1 is the constant in the Eigenvalue Matching Theorem.

Furthermore, @ is the integral (against a probability measure) of
matrices with all eigenvalues less than 1 so no eigenvalue of ()1 is greater
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than one. Hence we may estimate

k
det Q1 < H(vg.Ql.vé)(vél.Ql.vgl)

i=1

/ sin(L O, FL) da;(9)>
/ sin?(Z0p.0l, F1) da;(e))
C?sin® (L0} i, F) da;(6)>
. ( - C? sin®(L0}.v;, F) da;(9)>

k
i=1

= C% det Q3 H L2
i=k+1
< C?F det Q3 (rank(X) + 1)2("F),

The last inequality follows from the definition of k, whereby L; >
1 .

W for each 7 > k.
The constant C' in Theorem 4.1 may be taken to be the product

(over factors X; of X with dimension n;),
1 rank(X) nj (nj)
7HC» c;” (rank(X;) + 1)\
n J J J
Vit L

where C; > 1 is the constant C' from Theorem 4.4, c; is the constant c
in Equation (4) and k; is the constant k above. This combined constant
depends only on n = dim X. q.e.d.
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4.6 A cautionary example

In the general method of [2] as well as here, one is solving a minimiza-
tion problem without regard to the measure. However, at least in the
SL3(R)/SO3(R) case, to get a bound on the Jacobian of Fs one must
use further properties of the measure, as indicated by the example we
now give.

If for a single flat F, and a sequence of y; € F,, the measures o2

Yi
tend to the sum of Dirac measures %6b+(oo) + %6wb+(oo) where w is in

the Weyl group for F,, then we claim that Jac Fy(y;) — oo. First note
that the sum
2 2
AB (p, (o) b+ (00)) T B (y) bt (00))

has only a 3-dimensional kernel, while

DdB(p,(y,),b+(o0)) T DAB(p, (y;),wbt (o))

has a 2-dimensional kernel. Furthermore

2 s = y
Q1 = /3FX dB(Fs(yi)ﬁ)dayi and Q2 = /8FX DdB(F,(y,).0)d0y,

degenerate in the same way, so that det(Q;)/det(Q2)? is unbounded.
This can be easily verified explicitly in the case of a sum of five Dirac
measures for which both integrals are nonsingular degenerating to the
sum of the two Dirac measures given above.

A similar problem occurs when there are H? factors. These and
other examples are worked out in full detail in Section 6 of [10].

5. Proof of the Eigenvalue Matching Theorem

In order to prove Theorem 4.4 we will need a series of lemmas.

5.1 Dimension inequalities

For any x € X and any subspace V C T, X, denote by Ky the elements
of K which stabilize V' (i.e., leave V invariant). For V' C F, if Fixg (V')
is the subgroup of K which fixes V' pointwise then Ky = U - Fixg (V)
where U is the subgroup stabilizing V' of the (discrete) Weyl group which
stabilizes F (see [11]).

The following lemma is a basic algebraic ingredient in the proof of
Theorem 4.4.
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Lemma 5.1 (Dimension inequality, I). With the above notations,
dim (span{KV -.7:}J‘> > 2dim(V).

Proof. First we show that Ky - F is itself a subspace hence equal to
its span.

Recognize that Ky -F is the union of all tangent spaces to flats which
contain V. Pick a basis v1,...,v of V note that Ky - F = Nl_,; F(v;)
where F(v;) is the union of all the tangent spaces to flats containing
v; using the notation of [11]. Proposition 2.11.4 of [11] states that
F(v;) = R" x X; for some symmetric space of noncompact type and
r < rank(X). In particular it is a manifold and the tangent space to it
corresponds to K,, - F, which is a vector space. Then Ky - F is a vector
space.

Let K be the stabilizer of 7 in K. Then Ky C W - Ky where W
denotes the Weyl group (a finite group). Hence dim K = dim(Kx N
Ky). Hence

dim Ky - F =dim Ky +dim F — dim K r.
Since X = K - F we obtain
dim M = dim K + dim F — dim K r.
Putting this together we obtain,
(dimspan{Ky - F})* = dim M — dim Ky - F = dim K — dim Ky .
But Lemma 5.2 below gives that this final term is > 2dimV, as

desired. q.e.d.

The following lemma was used in the proof of Lemma 5.1. Recall
that, at this point, we are assuming that the symmetric space X is
irreducible and has rank(X) > 2.

Lemma 5.2 (Dimension inequality, IT). Assume that X # SL3(R)/SO3(R).
Then for any subspace V. C F, we have

dim K > 2dim V + dim Ky,.

This lemma is the only place where X # SL3(R)/SO3(R) is used.

Proof. For a root o € A in F, define ¢, = (Id +6,)g,, where 6, is
the Cartan involution at p = Fy(y). Then by Proposition 2.14.2 of [11]
we have that ¢, =g. P g_o Nt €, =8 _,, and dimég, > 1.
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Note that from the definition of g, it follows immediately that
t, ={Y € ¢[X,Y] =0 for all X € kera}.

Note that in G the normalizer mod centralizer is finite for any flat
subspace. Therefore for any V' C F we may write the Lie algebra &y of
Ky as,

by ={Y €¢[X,Y]=0for all X € V}.

It then follows from the previous statements that,

bty =8+ Z t..

aEA
V Cker

Consequently, we may assume that V' in the statement of the lemma
is mazximally singular: V may be written as the intersection of the
kernels of the greatest number of roots among all subspaces of dimension
dim V. Otherwise dim Ky = dim &y is strictly smaller than it would be
if V' were maximally singular.

Recall that we have the invariant inner product ¢, on a and hence
on F. Let A denote the collection of roots. For o« € A, let H, € F
denote the dual root vector (with respect to ¢,) corresponding to c.
For any subset V' C F we define the function

1
cardr(V) = 3 card{aw € A|H, € V}.
Since root vectors lying in a subspace always come in opposing pairs,
cardp is a positive integer.
Let a be any root. Note that if a subspace V C ker «, then H, lies
in VL. Therefore the statement of the lemma reduces to showing that

&m%+§:&m%22&mv+&m%+ demm

a€el acA
V Cker a

or more simply,
> dime, > 2dim V.
Hoeg\V+

Swapping V1 for V and vice versa, and using dim#&, > 1 for each
«a, it is sufficient to prove that

(6) cardp(F \ V) > 2(rank(X) — dim V).
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Since we are assuming that G is simple, we could check this condition
by using a classification of root vectors in the simple algebras such as
n [22]. However, because this would be tedious we will instead give a
synthetic proof.

For each i = 0,...,rank(X), we say that W; C F is a maximally
rooted subspace of dimension i if

cardr(W;) = max{cardr(V) : V C F with dimV = i}.

In other words, W; is maximally rooted if Wf is maximally singular.

We claim that if 0 = Wy, Wi,..., Wy x) = F are any maximally
rooted subspaces of F with dim W; = 4, then for 0 < ¢ < rank(X),

(7) cardr(W;) > i + cardr(W;_1).

This is true for ¢ = 1 since W7 is one dimensional it contains a root
vector pair and the trivial subspace Wy contains none. By induction,
assume the claim holds for all maximally rooted subspace W; of dimen-
sion ¢ < j. In particular, for such a space W;_; and for any subspace
Z C Wj_1 of codimension one, cardr(Z) < cardr(W;_2) so

cardr(Wj_1 \ Z) = cardgr(Wj_1) — cardr(Z) > j — 1.

We claim that there exists a root vector H, which is not in W;_; or
its perpendicular Wj{ 1 (with respect to ¢,). If not, then every root
vector either lies in W)_1 or Wj{ 1 which implies the root system is
reducible (e.g., Corollary 27.5 of [18]), and hence G is reducible, contrary
to assumption.

Therefore, H;- NW;_1 is a codimension one subspace of W;_; and by
inductive hypothesis there are at least j — 1 distinct pairs of root vectors
+Hoy, ooy EHo,  in Wi\ (H: N W;_1). For each of these we have
¢p(Hu, Hy,) # 0. By the standard calculus of roots (e.g., Proposition
2.9.3 of [11]) this implies that for each 1 <1 < j —1 either +(H, + Hy,)
or +(Hy — Hy,) is a pair of root vectors lying in W;_; & (H,) which
does not lie in W;_;. Including H,, these form at least j pairs of
root vectors which are contained in Wj_; @ (H,) \ Wj—1. Therefore
cardr(Wj_1 ® (Ha)) > cardr(W;_1) 4+ j. Since by definition of W},
cardr(W;) > cardp(W;—1 @ (Hq)), the claim follows.

Recursively applying Equation (7) shows that for 0 < i < j <
rank(X),

j . o
cardp(W;) — cardp(W;) > Zk = ](];1) B (i —2|— 1).
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Now to prove the inequality (6), as noted before we may assume V' of
dimension ¢ is maximally rooted, since then V- is maximally singular.
Since F is a maximally rooted space, the above expression reads

cardr(F \ V) = cardg(F) — cardg(V)
_ rank(X)(rank(X) +1)  q(q+ 1).

2 2

This is readily seen to be greater that 2(rank(X)—q) unless rank(X)
=2and ¢ =0 (V = F). However, every irreducible Lie algebras of rank
two other than s[(3,R) has at least four pairs of roots (see [17], p. 44,
Figure 1), and hence the inequality (6) is satisfied in all of the required
cases. q.e.d.

5.2 Angle inequalities

Lemma 5.3 (Angle inequality, I). For any subspace V- C F there is
a subspace V! C V* with dim V' > 2dim V' and a constant C' depending
only on the symmetric space X such that for all k € K,

LRV, FY)y < CL(kV, F)

where KV represents the linear (derivative) action of K on V C T, X.

Proof. For any subspace V' C F, let Uy, Us,...,Uyy) be the maxi-
mally singular subspaces of dimension dim V' which have minimal angle
with V. Define Sy = Uy @ ... ® Uyyy C F. If G(r, F) denotes the
Grassmann variety of subspaces in F with dimension r, then the set
of V€ G(r, F) for which {(V) is constant has codimension {(V) — 1 in
G(r,F).

For any subspace V C F we define a subspace V' C F* by

V' = (span{Ks, - F})*

where Kg,, is the subgroup of K which stabilizes Sy. By Propo-
sition 5.1, V' has dimension at least 2dimV since we always have
Kg,, C Ky for some U C F with dimU = dim V.

If no such constant C' as in the lemma exists then there is a sequence
k; € K and V; C F with dim V; = r such that

L(ki‘/%,f)
L(k; V!, FL)

— 0.

(8)
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Now since Sy and hence V' varies upper semicontinuously in V
(thinking of the map V — V' as a self-map of G(r,F)), it follows from
the continuity of the / function that

Z(kV,F)
is lower semicontinuous in V.

However since both K and G(r,F) are compact, for some subse-
quence of the k;V;, the k; converge to kg € K and the V; converge to a
fixed subspace V) C F. Furthermore, koVy lies in F since Z(koVp, F)
must be 0. It follows that kg € W - Ky, where W is the Weyl group
stabilizing F.

By construction, Ky, C KVo' and for any w € W,

L(wVg, Fr) = L(Vg,w ' Fh) = Z(Vg, F).

Therefore, we also have Z(koVy,F+) = 0. Continuity of Z along
with the fact that W C K acts isometrically implies that it is sufficient
to show that for any fixed subspace V C F the quantity

L(EV,F
lim inf LRV F)
k—Ky Z(kV' FL)
is bounded away from 0. Note that since this quantity is lower semicon-
tinuous in V, and since G(r,F) is compact, it is unnecessary to show
that the bound is independent of V.
First we handle the denominator. Using the bi-invariance of the

metric on SO(n), the properties of the angle function, and the fact that
for all ky € Kg,, we have ko k E1F C Kg, F, it follows that

dsom)(k, Ks,)

= dsom (k™" Ks,)

= dso(m (Ksy - k, 1d)

> inf{dso(n)(Id, P) : P € SO(n) with Pk™'F C Kg, F}
= Z(span{Kg, F}, k_l.?’:)

= /(kKg, F,F)

=/ ((kKSVf)i,P)

= Z(kV',FL).
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So it remains to show that for any sequence k; — kY € Ky in
any fixed neighborhood U of Ky, that Z(k;V,F) > Cdgo)(ki, Ksy, )
Furthermore, since Z(k;V,F) = Z(ki(k}Y )=V, F) for any k! € Ky, we
may assume that k; — Id.

By Theorem 2.10.1 of [22], in a sufficiently small neighborhood of Id
we may uniquely write k; as k; = exp(k;") exp(k?) where k7 € tg,, and
ki € %Vo' Furthermore k? — 0 and ki* — 0.

Bi-invariance of the metric on SO(n) implies that for [kj-| < 7,

dsom) (ki, Ksy,) = dsom)(exp(ki), Ks, ) = [k;"|.

Now Ky is the only subgroup of K which both leaves V' in F and also
intersects all sufficiently small neighborhoods of the identity. Therefore,
in order to show that Z(k;V, F) > C|k;"|, we need only show that

dso () (ki, Kv)/|k;| 7 0.

Well, the Cambell-Baker-Hausdorff formula implies that
exp(kt) exp(kF) = exp (ki + K + O(kH| - [F]) ).

Since the definition of Sy implies that €5, D £y and kil is perpendicular
to €g,,, we have

dsom) (ki Kv) = ki | + Ok | - k7).
Since we had |k{| — 0 this finishes the lemma. q.e.d.

Lemma 5.4 (Angle inequality, II). For any subspace V' of T, X
with dimV < rank(X), there is a subspace V' L V with dim V' >
2dim V', and a constant C' depending only on n, such that

LKV, FHY < CL(kV,F) forallk € K.

Proof. The first step of the proof is to reduce to the case when V is
a subspace of F, so that Lemma 5.3 may be applied.

We first observe that the lemma is true if and only if it is true with
V replaced by koV for any fixed kg € K. Since K is compact we may
therefore choose V' among all kV, k € K so that Z(V,F) < Z(kV,F) for
all k € K.
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With this assumption, consider the projection W = 7p(V') of V onto
F. By Lemma 5.3, we obtain a subspace W' such that

LW, FH) < CL(kW, F)

for all k € K. Then we let V' be the projection of W’ onto V+. By the
properties of the angle function (see 4.4), it follows that

LKV, FYY < Z6W',FL) + Z(kV',kW’) by Lemma 4.3
< CLEW! , FLY+ 2V, W)
< CLEW,F)+ £V, W) since (WH)L D W
< CLEW,F)+ LV, F for same reason
= CL(kW,F)+ £L(V,F) since W = mp(V).

Thus it suffices to bound Z(kW,F) by a constant times Z(kV, F).
But

LKW, F) < ZL(kV,F)+ £(kV,kW) by Lemma 4.3
= L(kV,F)+ L(V,WV)
= ZL(kV,F)+ £(V,F) as W =mp(V)
< Z(kV,F)+ £(kV,F) by minimality
=2/(kV,F)
and we are done. q.e.d.

5.3 Finishing the proof of the Eigenvalue Matching The-
orem

Armed with the lemmas of the previous two subsections, we now prove
Theorem 4.4.

We begin by noting that the construction of V'’ from V above re-
spects subspace inclusion. Le. if U C V then U’ C V’. This follows
from the definition of V'’ and the fact that for two singular subspaces
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Ui and Uz with Uy C Us, we have Ky, - (W N Ky,) D Ky,, where W is
the Weyl group.

Now we simply proceed by induction on the number of vectors k.
For k =1 we set V' = v; the statement of the proposition follows from
Lemma 5.4. Order the vectors by increasing angle with F. Assume
the proposition for k — 1 vectors, then set Vi = span{vi,...,vx}. By
Lemma 5.4 we have an orthogonal subspace of twice the dimension of
Vi, namely V/, which we may write by the preceeding paragraph as
Vi =V/_, & W' where W' is two dimensional. The same lemma also
guarantees that /W', F+ < CZvy, F, since Lvy, F = £V}, F.

This completes the proof of Theorem 4.4.

6. Finishing the proof of the Degree Theorem

We will break the proof of Theorem 1.2 into the compact and non-
compact cases.

6.1 The compact case

Suppose M and N are compact. Since for s > h(g), Fy is a C! map,
using Proposition 3.2 and elementary integration theory yields,

(9) [deg(f)| Vol(M) = [deg(/)] /M dgo

For the last inequality we have used the principal estimate from
Theorem 4.1. Rearranging terms gives us the inequality in Theorem 1.2
n

since C' depends only on the dimension and (%) depends only on

n and the smallest Ricci curvatures of M and N.
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6.2 The noncompact case

We now consider the case when N (and/or M) has finite volume but
is not compact. In this setting, it is not known whether the limit in
the definition of h(g) always exists. For this reason we will define the
quantity h(g) to be

h(g) = inf {5 >0 ‘ 3C > 0 such that Vy € Y, / e W) dg(2) < C} .
Y

In fact this agrees with the previous definition for hA(g) when N is com-
pact. In the case of the symmetric space (M, go) this definition of h(go)
agrees with the previous definition for compact manifolds.

For the finite volume case, the main difficulty is that, in order for the
proof given above to work, we need to know that Fy is proper (and thus
surjective since deg(Fs) = deg(f) # 0). For this, we will need to prove
higher rank analogs of some lemmas used in [5] for the rank one case.
For the basics of degree theory for proper maps between noncompact
spaces, see [12]. We will need to assume that the geometry of N is
bounded in the sense that its Ricci curvatures are bounded from above
and that the injectivity radius of its universal cover Y is bounded from
below. These are the specific assumptions implied in the third remark
after the theorem.

We will show that Fy is proper by essentially showing that the
barycenter of oy lies nearby a convex set containing large mass for this
measure. This convex set is in turn far away from ¢(p) whenever z is far
from p € Y. We achieve this by first estimating the concentration of the
mass of oy in certain cones which will be our convex sets. One difficulty
that arises in the higher rank is that these cones must have a certain
angle when restricted to a flat. Another difficulty is that the ends of M
can have large angle at infinity. In fact our methods breakdown unless
we control the asymptotic expansion of f down the ends (see Remarks).

First, we localize the barycenter of the measure oy. Let v, g) be the
unit vector in S, X pointing to § € 9.X.

Lemma 6.1. Let K C X andy €Y be such that (¢«p;)(K) > C

for some constant 1 > C > % Suppose that for all x € X there exists
v € S X such that for all z € K:

1
e, 0) s () > = — 1.
[ o) o) 5
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Then N
z # Fs(y).
Proof. 1f Fy(y) = x then VBsy(z) = 0. However, V,Bs ,(x) may

be expressed as
[ [ @i
X JopX

where v, g) is the unit vector in S, X pointing to § € OpX. Then we
have

1D2Bs y

- H/X /aFX V(w.0) W= (0)dpry (2)
= H/K /aFX V(z,0)AV=(0) A iy (2)

B H/ / U(Ive)dyz<9)d¢*,u;(z)
X-K JopX
> /K /aFX (V(2,0),0) Av(0)dpupiy (2) — Papiy (X — K)

1
> o) (G 1) = 1 o)
1
>C<C—1>—1+C=O.

The strictness of the inequality finishes the proof. q.e.d.
For v € SX and « > 0 consider the convex cone,
E(v,a) = €XDPr(v) {w € Tﬂ’(U)X ‘ 471'(11) (U(OO), w(oo)) < 04} 5
where 7 : T X — X is the tangent bundle projection.

Denote by 0F, o) C 0X its boundary at infinity.

Lemma 6.2. There exists To > 0 and ag > 0 such that for all
t>To, allz € X, allv € 5;X and all z € E(gty o),

/ (V(z,0),v) dv=(0) > @
O X 3

Proof. Since the isometry group of the symmetric space X is transi-
tive on X and for any isometry v, d)(E(y 0)) = E(ay(v),a) it is sufficient
to prove the lemma for a fixed x and all v € 5. X.
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For now choose oy < m/4. Take a monotone sequence t; — 0o, and
any choice z; € Egt;, o) for each t;. It follows that some subsequence
of the z;, which we again denote by {z;}, must tend to some point
0 e aE(v,a)-

Let vy be the weak limit of the measures v,,. From Theorem 2.4, vy
is a probability measure supported on a set Sy satisfying

Z.(0,6) < Ve € Sy.

T
4
Therefore we have,

V2
(10) /59 (V(w6)> V(,0)) Ao (€) > -5

Now whenever 6 € 0E(, 4 then v = v(, g) + ev’ for some unit vector
v" and € < sin(«a). Using either case above we may write

/8FX (V(w,6)» v) dvg(§) > /a . <v(x7£),v($,9)> dvg(§) — sin(a).

F

So choosing « small enough we can guarantee that:

1. Any two Weyl chambers intersecting E(4t, o) for all £ > 0 in the
same flat must share a common face of dimension rank(M) — 1.

2. For any 0 € 0E(, o),

oS
(G281 V)

/ (V(a,e),v) dvg(€) >
orX

Let
E(y(00),0) = Ni>00E gty q)-

By the first property used in the choice of o above, for any two points
01,02 € E(y(c0),a), either 01 and 62 are in the boundary of the same
Weyl chamber, or else there is another point 6’ in the intersection of the
boundaries at infinity of the closures of the respective Weyl chambers.

By maximality there is some 0y € E(y(c0),a) Intersecting the bound-
ary at infinity of the closure of every Weyl chamber which intersects
E(gty,q) for all £ > 0. Hence, for every 6 € E(,(x),a), the support of the
limit measure vy satisfies Sy C Sp,. (While 6y is not necessarily unique,
the support Sy, of the corresponding limit measure vy, is.)
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As t increases, for any z € E(4t, ), the measures v, uniformly be-
come increasingly concentrated on Sp,. Then applying the estimate (10)
to 6 = 6y, we may choose Ty sufficiently large so that for all z € E
with ¢ > Tp,

g'v,)

V2
/8FX (V(z,6), V) dv2(€) > 2.

Proposition 6.3. F; is proper.

Proof. By way of contradiction, let y; € Y be an unbounded se-
quence such that {Fs(y;)} lies in a compact set K. We may pass to
an unbounded subsequence of {y;}, which we again denote as {y;},
such that the sequence ¢(y;) converges within a fundamental domain
for 71 (M) in X to a point §y € 0X. Since K is compact, the set

A= ﬂ E(QTOU(I,GO),GO)
zeK

contains an open neighborhood of 6y and dx (A, K) > Ty. Notice that
A is itself a cone, being the intersection of cones on a nonempty subset
of 0X.

We now show that A contains the image ¢(B(y;, R;)) of increasingly
large balls (R; — o). However, we observe from the fact that A is
a cone on an open neighborhood of Ay in X that A contains balls
B(¢p(yi),r;) with r; — oo. By assumption f, and hence ¢, is coarsely
Lipschitz:

dx ¢z, ¢y) < Kdy (z,y) + C

for some constants C > 0 and K > 1. Therefore ¢~1(B(¢(y;),7:)) D
B(y;, R;) where KR; + C > r;. In particular R; — oc.

Hence, there exists an unbounded sequence R; such that B(y;, R;)
C ¢ 1(A). Furthermore, since the Ricci curvature is assumed to be
bounded from above and the injectivity radius from below, we have that
Vol(B(y;,injrad)) is greater than some constant independent of y; and
hence [, e=*d¥i*)dg(z) > @ for some constant @ > 0. By choice of s
there is a constant Cs depending only on s such that fY e_Sd(y’z)dg(z) <
CsforallyeY.
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In polar coordinates we may write,

/e'Sd(va)dg(z):/ 67StV01(S(y7t))dt
Y 0
S
_ —st
_/0 et S NOI(B(y, )t
o 4 s
__/0 = (e7) Vol(B(y, t)dr

= s/ e ** Vol(B(y,t))dt.
0
Using this we may estimate, using any § < s — h(g),
pg, (971 (A)) > py, (Blyi, Ri))

f;j e St Vol(B(y;, t))dt
[ estVol(B(y;, t))dt
- e OR: f;j e~ 5=t Vol (B(y;, t))dt
= [ e stVol(B(y;,t))dt
. ef(st‘ 08—5 )

Q

Therefore for all sufficiently large 4,

py (971 (4)) >

> 1

3
3+V2

is the constant C from Lemma 6.1 such that % —-1=

3
The constant YRy

NG
3

Set v; = gTOJrlv(ﬁg(yi)ﬂo). Recalling that A C E(y, o) for all i, we
have that for sufficiently large 1,

3
(b*:uzi(E(vi,ao)) > 31 ﬂ
but dx (Fs(ys), E(v;.00)) > To, contradicting the conclusion of Lemma 6.1
in light of Lemma 6.2. q.e.d.

Remarks.

1. In the proof of the above proposition, we used that injrad is
bounded from below and Ricci curvature is bounded from above
only to show that the volume of balls of any fixed radius are
bounded from below.
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2. Ideas from coarse topology can be used to remove the coarse Lips-
chitz assumption on f in the case that the ends of M have angle at
infinity bounded away from 7/2. However, M may have ends con-
taining pieces of flats with wide angle (consider the product of two
rank one manifolds each with multiple cusps, or for a classification
of higher rank locally symmetric ends see [16]). For products of
such surfaces it is possible, by expanding a family of infinite cones,
to construct a proper map f : M — M such that for a radial se-
quence y; — § € 0X, ¢ maps the bulk of the mass of pj, into
a set (almost) symmetrically arranged about a point p € X thus
keeping Fs(y;) bounded. This explains the need for a condition
on f akin to the coarse Lipschitz hypothesis.

The last proposition actually shows that d(Fj,(z), f(z)) is bounded
rs; > s > h(g). In particular, the homotopy in Proposition 3.2 is

proper. The inequality in Theorem 1.2 now follows as in the compact
case, with deg(f) and deg(Fs) suitably interpreted.
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