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Abstract
Symmetry group of Lie algebras and superalgebras constructed from (ϵ,δ) Freudenthal-Kantor triple systems has 

been studied. Also, the definition and examples of hermitian triple systems is introduced in this note.
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Introduction
It seems that the concept of a triple system (or called a ternary 

algebra) in nonassociative algebras started from the metasymplectic 
geometry due to Freudenthal. After a generalization of the concept has 
been studied by Tits, Koecher, Kantor, Yamaguti, Allison and authors 
([1,2] for many earlier references on the subject). Also it is well known 
the object of investigation of Jordan and Lie algebras with application to 
symmetric spaces or domains [3] and to physics [4,5]. 

 Nonassociative algebras are rich in of mathematics, not only for 
pure algebra differential geometry, but also for representation theory 
and algebraic geometry. Specialy, the Lie algebras and Jordan algebras 
plays an important role in many mathematical and physical objects. As a 
construction of Lie algebras as well as Jordan algebras, we are interested 
in characterizing the Lie algebras from view point of triple systems [6-
9]). These imply that we are considering to structure of the subspase 
L1of the five graded Lie (super)algebra L (ϵ,δ) = L-2 ⊕ L-1 ⊕ L0 ⊕ L1 ⊕ L2 
satisfying [Li, Lj] ⊆ Li+j,,  associated with an (ϵ,δ)  Freudenthal-Kantor 
triple system which contains a class of Jordan triple systems related 
3 graded Lie algebra L-1 ⊕ L0 ⊕ L1. For these consideretions without 
untilizing properties of root systems or Cartan matrices, we would 
like to refer to the articles of the present author and earlier references 
quoted therein [1,2,10,11]. 

In particular, for an characterizing of Lie algebras, an applying to 
geometry and physics, we will introduce couple topics about a symmetry 
of Lie algebras (section 1) and a definition of hermitian triple systems 
(section 2) in this note, which is a survey and an announcement of new 
results. 

 More precisely speaking, first, the symmetry group of Lie algebras 
and superalgebras constructed from (ϵ,δ)  Freudenthal-Kantor triple 
systems has been studied. Especially, for a special (ϵ, ϵ)  Freudenthal-
Kantor triple, it is  SL(2) group. Secondly, we will give a definition of 
hermitian * generalized Jordan triple systems and the examples of their 
tripotents defined by elements c  of triple systems satisfying  CCC=C. 

Symmetry of Lie algebras associated with triple sytems 
A triple system V is a vector space over a field F  of characteristic 

≠  2 or 3 with a trilinear map V V V⊗ ⊗  V→ . We denote the 
trilinear product ( or ternary product) by juxtaposition (xyz) ϵ 
V(or<xyz>,[xyz],etc).

 A well studied triple system is the (ϵ,δ) Freudenthal-Kantor triple 
systems ( abbreviated hereafter as to (ϵ,δ)   FKTS) with ϵ and δ being 
either +1 or -1 [1,2,9,12].

Since (ϵ,δ) Freudenthal-Kantor triple systems offer a simple 
method of constructing Lie algebras (for the case of (δ=+1)) and Lie 
superalgebras (for the case of δ = -1) with 5-graded structure, it may be 
of some interest to study its symmetry group in this note. In order to 
facilitate the discussion, let us briefly sketch its definition. 

We introduce two linear mappings L and K:V⊕V →End V   by 

L (x,y) = xyz, K (x,y)z= - δyzx(1.1) 

for δ = +1 or -1 If they satisfy 

[L(u,v), L(x,y)] = L(L(u,v)x,y)+ ϵL(x,L(v,u)y), (1.2)

K(K(u,v)x,y) = L(y,x)K(u,v)- ϵ K(u,v)L(x,y)(1.3)

for any  u,v,x,y ϵ  V and ϵ =+1we call the triple system to be (ϵ,δ)  FKTS. 

One consequence of Eqs.(1.2) and (1.3) is the validity of the 
following important identity (see [Y-O.] Eqs.(2.9) and (2.10)) 

 K(u,v)K(x,y) = ϵ δL(K(u,v)y,x- ϵL(K(u,v)x,y)(1.4)

= L(v,K(x,y)u) – δL(u,K(x,y)v) (1.5)

We note that (-1,1)FKTS is said to be a generalized Jordan triple 
system of second order [12] in section 2, becaue that is a generalization 
of concept of Jordan triple systems. 

 We can then construct a Lie algebra for δ =+1 and a Lie superalgebra 
for δ =-1  as follows: 

Let W be a space of  2 × 1matrices over V

=
V

W
V
 
 
 

and define a tri-linear product: 

W ⊕ W ⊕ W→ W  by 

31 2

31 2

, , =
xx x
yy y

     
     
      

31 2 2 1 1 2

31 2 2 1 1 2

( , ) ( , ) ( , )
.(1.6)

( , ) ( , ) ( , )
xL x y L x y K x x
yK y y L y x L y x

−   
  − −  

δ δ
ε ε εδ
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 Then, it defines a Lie triple system for δ =+1  and an anti-Lie triple 
system for δ =-1  We then note 

0

( , ) ( , )ˆ = s | , , , , , (1.7)
( , ) ( , )

L x y K z w
L pan x y z w u v V

K u v L y x
δ

ε ε
  

∈  −  

is a Lie subalgebra of Mat2(End(V))- where B- for an associative algebra 
B implies a Lie algebra with bracket; [x,y] = xy-yx We note also then 

( , ), ( , )ˆ = ( , )(1.8)
( , ), ( , )

L x y K z w
D L W W

K u v L y x
 

∈ − 

δ
ε ε

is a derivation of the triple system. Setting 

1 = s = | , (= ), (1.9)
x

L pan X x y V W
y

  
∈  

  
then L defined by 

0 1= (1.10)L L L⊕

gives a Lie algebra for δ =+1 and a Lie superalgebra for δ =-1 where 

0 = { | i }, (1.11)L D D s a derivation of L
i.e., D satisfies 

= D[X1,X2,X3]

[DX1,X2,X3]+ [X1, D X2,X3]+ [X1, X2, D X3] (1.12a)

and hence induces also 

[D,[X,Y]] = [DX,Y]+[X,DY], (1.2b)

if we define the bracket by 

[D1⊕X1,D1⊕X2] = ([D1,D2] + L(X1,X2)) ⊕ (D1X2 - D2X1). (1.13)

where 

[D1,D2] = D1,D2 – D2,D1

and 

1 2
1 2 1 2

1 2

( , ) = [ , ] = , =
x x

L X X X X
y y

    
    
    

1 2 2 1 1 2

1 2 2 1 1 2

( , ) ( , ) ( , )
.(1.14)

( , ) ( , ) ( , )
L x y L x y K x x

K y y L y x L y x
− 

 − − 

δ δ
ε ε εδ

  Note that the endomorphism  L (X,Y) is then an inner derivation 
of the triple system. 

 Since 0 0
ˆ ,L L⊃  we will mainly discuss a subsystem L̂  of L, given by 

rather than the larger L . Then, L̂  is 5 -graded 

2 1 0 1 2
ˆ = (1.16)L L L L L L− −⊕ ⊕ ⊕ ⊕

where 

2

0 0
= s | , (1.17 )

( , ) 0
L pan x y V a

K x yε−

  
∈  −  

1

0
= s | (1.17 )L pan x V b

x−

  
∈  

  

0

( , ) 0
= s | , (1.17 )

0 ( , )
L x y

L pan x y V c
L y xε

  
∈  

  

1 = s | (1.17 )
0
x

L pan x V d
  

∈  
  

2

0 ( , )
= s | , .(1.17 )

0 0
K x y

L pan x y V e
δ  

∈  
  

Here, we utilized the following Proposition for some of its proof. 

Theorem 1: ([K-O.], [K-M-O.])   Let (V, (xyz))) be a (ϵ,δ) 
-Freudenthal-Kantor triple system with an endomorphism P such that  
P2 = - ϵδId and P(xyz) = (PxPyPz) Then, (V,[xyz)] is a Lie triple system 
(for δ=1) and anti-Lie triple system (for δ=-1) with respect to the product 

[xyz]=(xPyz)- δ(yPxz)+ δ(xPzy)-(yPzx).

In passing, we note that the standard 2
= 2

ˆ = i iL L−Σ ⊕  is a result of 
Theorem 1 immediately with 

0,
= .

, 0
P and x X etc 

→ − 

δ
ε

 Next, we introduce ˆ, ( ) E ( )nd L∈θ σ λ  for any λ ϵ F (λ ≠ 0), being 
non-zero constant by 

= (1.18 )
x y

a
y x

−   
   
   

ε
θ

δ

( ) = (1.18 )1
xx

b
y y

           

λ
σ λ

λ

in  1 11= = .W L L L− ⊕ We may easily verify that they are automorphism of 
[W,W,W], i.e, we have for example 

θ ([X,Y,Z]) =[ θ X, θ Y, θ Z]

for X,Y,Z ϵ W We then extend their actions to the whole of L̂  in a 
natural way to show that they will define automorphism of ˆ.L  They 
moreover satisfy 

(i) σ

σ (1)=Id, θ4 = Id(1.19a)  

where Id is the identity mapping

(ii) 

2 2
1 0= f = f (1.19 )Id orL but Id or L b−θ εδ θ

(iii)	

σ(µ)σ(v)= σ(µv) for µ,v ϵ F, µv ≠ 0

(iv)  

σ(λ) θ σ(λ) = θ for any  λ ϵ F, λ ≠ 0. (1.19d)

We call the group generated by σ(λ)  and θ satisfying these 
conditions simply as D (ϵ,δ) due to a lack of better terminology. If the 
field F contains ω ϵ F  satisfying ω3 = 1 but ω ≠ 1, then a finite sub-group 
of D (ϵ,δ)  generated by θ and  σ (ω ) defines DiC3 group for ϵ = δ but S3 
for ϵ = -δ, as they have noted already [13]. 

Conversly any 5 -graded Lie algebra (or Lie superalgebra) with 
such automorphism θ and σ(λ)  satisfying Eqs.(1.19) lead essentially to 
a (ϵ δ) FKTS in L1 with a triple product defined by {x,y,z} = [[x, θ y,]z] 
for  x,y, z ϵ L1 [6]. 

We note that the corresponding local symmetry of D (ϵ,δ)  yields a 
derivation of ˆ,L  given by 

1 0
= (1.20)

0 1
h  

 − 
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which satisfies 

h[X,Y,Z] =[ hX,Y,Z]+[X,hY,Z]+[X,Y,hZ](1.21a)

as well as	 [h,[X,Y]] = [hX,Y] + [X,hY] (1.21b) for X,Y,Z ϵ W . 

We can find a larger automorphism group of ˆ,L  if we impose some 
additional conditions. First suppose that K(x,y) is now expresed as 

K(x,y) = ϵ δ L(y,x) - ϵ L(x,y) (1.22) 

for any x,y ϵ V. We call then the triple system to be a special (ϵ, δ) 
FKTS [13]. Moreover for the case of special (ϵ, ϵ) FKTS (i.e. ϵ = δ), the 
automorphism group of L̂  turns out to be a larger SL(2,F)(=Sp(2,F)) 
group which contains  D(ϵ,ϵ) as its subgroup. In this case, the triple 
system [W,W,W] becomes invariant under 

(1.23 )
x x

U a
y y

   
→   

   

for any 2×2 SL(2,F) matrixU,i.e. 

= ,D = = 1.(1.23 )U et U b 
− 

 

α β
αν βµ

µ ν
Also, the associated Lie algebras or superalgebras are BC1-graded 

algebra of type C1. 

Finally, we consider a ternary system ( , , )V xy xyz  (V,xy,xyz) where 
xy and xyz are binary and ternary products, respectively, in the vector 
space V. Suppose that they satisfy 

(1) the triple system (V,xyz) is a (-1,1) FKTS. 

(2) The binary algebra (V,xy)  is unital and involution ( = )xy yx  
with the involutive map = ( ) ( ) ( ) .(1.24)xyz zy x zx y xy z− +

 

(3) The triple product xyz is expressed in terms of the bi-linear 
products by 

= ( ) ( ) ( ) .(1.24)xyz zy x zx y xy z− +
We may call the ternary system (V,xy,xyz) to be Allison-ternary 

algebra or simply A -ternary algebra, since  A= (V,xy) is then the 
structurable algebra [14-16]. This case is of great interest, first because 
structurable algebras exhbit a triality relation [16,17], and second 
because we can construct another type of Lie algebras independently 
of the standard construction of  (-1,1) FKTS, which is S4-invariant and 
of BC1 graded Lie algebra of type B1. The relationship between the Lie 
algebra constructed in the new way and that given as in Eq.(1.17) is by 
no means transparent. Note that the group D(-1,1) contains S3 but not 
S4 symmetry. We may show that if the field F contains the square root 

1 ,F− ∈  of-1, then Eqs.(1.17) can be prolonged to yield the Lie algebra for 
the structurable algebra. 

The Lie algebras constructed as in Eqs.(1.13) and (1.14) is also a 
BC1-graded Lie algebra of type B1 without assuming 1 ,F− ∈  ([6]). 
Also, if F is an algebraically closed field of characteristic zero, then any 
simple Lie algebra is known to be S4-invariant and can be constructed 
by some structurable algebra, so that any such Lie algebra is also a BC1-
graded Lie algebra of type B1, (as well as of type C1). Of course, the 
underlying sl(2) symmetry is different for both B1 and C1 cases. Roughly 
speaking, it seems that these concept are a version of Lie algebras theory 
corresponding with a Galois group of algebraic numbers theory. 

 The contents of this section is a cowork with Prof. Okubo, and the 
details will be discussed in other papers.   

Hermitian triple systems
 For a geometrical object based on triple systems in this section, 

first we note that the symmetric bounded domains are a one to one, 
correspondence to hermite Jordan triple systems, such that a certain 
trace form is positive definite hermitian. Hence as a generalization 
of these triple systems, we are interesting to investigate for structure 
theory of hermitian generalized Jordan triple systems, in particular, the 
case of hermitian generalized Jordan triple systems of second order (i.e. 
hermitian (-1,1) -Freudenthal-Kantor triple system ). 

We shall concerned with algebras and triple systems which are 
infinite over a complex number field, unless otherwise specified in this 
section. 

  Definition:  A triple system V is said to be a *-generalized Jordan 
triple system of second order if relations (0)--(iv) satisfy; 

 0)  V is a Banach space, 

 i) [L(a,b),L(c,d)] = L(<abc>,d) –L(c,<bad>),

 ii) K (<abc>,d)+K(c,<abd>)+K(a,K(c,d)b)= 0,

  where  L<(a,b)c = <abc> and K(a,b)c =<acb>-<bca>,

 iii) <xyz>is C-linear operator on x,z and C-anti-linear operator on y, 

 iv) <abc> continuous with respect to a norm  ║║that is, there exists 

  K>0 such that 

║<xxx>║≤K║x║3 for all x ϵ V.

 Furthermore a *-generalized Jordan triple system of second order 
is said to be hermitian if it satisfies the following condition, 

 v) all operator L(x,y)  is a positive hermitian operator with a 
hermitian metrix 

(x,y) = trace L(x,y),(2.1) 

that is, (L(x,y)z,w) = (z,L*(x,y)w),  and ( , ) = ( , )x y y x .  In particular, 
if a triple system V satisfies the condition (o),(i),(iii),(iv) and (v), then it 
is said to be a hermitain *-generalized Jordan triple system. 

 Furthermore, as a generalization of the generalized Jordan triple 
system of second order, it is said to be a . (ϵ,δ) -Freudenthal-Kantor 
triple system if the following relations satisfy; 

  i) ' [L(a,b),L(c,d)] = L(<abc>,d) ϵL(c,<bad>)

  ii) 'K(<abc>,d)+K(c,<abd>) + δK(a,K(c,d)b) =0,

 where K(a,b)c = <abc> -δ<bca>, ϵ= ±1, δ = ±1. 

 We note that these identities (i)' and (ii)'  are equivalent to the 
identities (1.2) and  (1.3) in section 1 [2,7]. 

 Example 1:  Let V be a J*-triple (for the definition, to Loos [3].  
Then V is a hermitian *-generalized Jordan triple system of second 
order, because they satisfy the condition (i) and a special case of (ii) 
, that is, 

K (x,y)z = <xyz> - <yzx>≡0

(identicallly zero).   

Example 2: Let T*n,n be the space of diagonal matrix of n×n with 
element of the complex number. Then T*n,n is a *-generalized Jordan 
triple system of second order, with respect to the product and the norm 

║║

< >= T T Txyz xy z zy x yx z+ −
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for all  x,y,z ϵ T*n,n

|| ||= m (| |,| |)i ix ax λ µ
where = ( 1 ),i i i ix e eΣ + −λ µ  ,i i R∈λ µ  (real number) and ei are matrix 
unit element of T*n,n and xT is the transpose of x. 

Next let V be a *-generalized Jordan triple system. Then we may 
define the notation of a tripotent and a bitripotent as follows. 

Definition:  It is said to be a tripotent of V if 

<ccc> = c,c ϵ V(2.2).

Definition:  It is said to be a strongly bitripotent of V if a pair (c1,c2) of 

<c1c1c2> = -1/2c2, < c1c1c2> = -1/2c1,

and other porducts are zero. 

Definition: It is said to be a bitripotent of V  if a pair 1 2( , )c c  of 
the tripotens satisfy the relations 

<c1c1c2> = αc2,  <c2c2c1> = αc1 ,

< c1c2c1> =βc2,< c2c1c2>=βc1,

<c2c1c1> = γc2, <c1c2c2> = γc1,

and other products are zero, where 

α2+ β2+γ2 ≠ 0,α,β,γ ϵ R (real number).

For *-generalized Jordan triple system V, we can define a norm 
║║as follows; 

║x║= max |λi|,ifx = Ʃ λiei ϵ V,

where ie  are tripotents or bitripotents. We note that 

║x║ ≥ 0and ║x+y║≤║x║+║y║.

Example 3: (a generalization of Example 2.2)  Let  D*n,kbe the set of 
all n×k matrices with operation 

< >:= , (2.3)T T Txyz xy z zy x yx z+ −

where xT  and x  mean transpose and conjugation of x respectiverly. 

Then *
nkD  is a hermitian *-generalized Jordan triple system of 

second order. In fact, the conditions (i),(ii) and (iii) are evident, by 
straightfoward calculations. 

For (v) considering, we have  (x,y): = tr (x,y) linear on x and anti 
linear on y by the condition (iii). Thus we may get ( , ) = ( , )tr L x y tr L y x  
as follows. 

From the relations; 

( ( , ) ( , )) = T T T T T TL x y L y x z xy z zy x yx z yx z zx y xy z+ + − + + −

= ( ) ( ) ( ),T T T T T Txy yx z xy yx z z y x x y+ − + + +

( ( , ) ( , )) = T T T T T TL x y L y x z xy z zy x yx z yx z zx y xy z− + − − − +

= ( ) ( ) ( ),T T T T T Txy yx z xy yx z z y x x y− + − + −

= ( ) ( ) ( ),T T T T T Txy yx z xy yx z z y x x y− + − + −

it follows that L(x,y)+L(y,x), and L(y,x)-L(y,x) have are a real trace form 
and an imagenary trace form respectively. Thus we have ( , ) = ( , ).x y y x  

To prove positive definite, we consider 

( , ) = = ( ) .T T T T T TL x x z xx z zx x xx z xx xx z zx x+ − − +

Since = ,T Ttr xx tr xx  we get ( , ) = ,Ttrace L x x k trace x x  this 

means that the trace from  (x,y) is positive definite. It is enough to show 
the condition (iv). By means of result of the property of matrix, we can 
write 

x=Ʃµiei, ║x║ = max |µi|,

ei are tripotents or bitripotens if ei is the unit element of matrix.. 

Moreprecisely speaking, we have 

|| ||= m (| |,| |) = ( 1 ),ij ij ij ij ij ijx ax for x E EΣ + −λ µ λ µ

where the notations are denoted by λij,µij ϵ R (real number field) and 
also Eij means that  (i,j) element is 1 and othere element is zero. Eij and 

1 ijE−  are tipotents, i.e.,  <EijEijEij> = Eij , and < 1 1 1 >= 1 .ij ij ij ijE E E E− − − −  

Furthermore, we note ( , 1ij ijE E− ) are bitripotents. 

Then we have 
3||< >||=|| 2 || 2 || || || || 3 || || .T T T Txxx xx x xx x xx x xx x x− ≤ + ≤

These show that *
,n kD  is a hermilian *- generalized Jordan triple 

system of second order, that is, a hermitian (-1,1)-FKTS.  

Examples 4:  Let S*2n,k be the set of all  2n ×k matrices with operation 

< >= ( ) ( ) ( ) ( ) (2.4)T T TXYZ X Y Z Z Y X Y X Z+ −φ φ

where 1

2

= ,
x

X
x

 
 
 

 xi is an n×k- matrix, and ( ) = .
 
 
 

 

Then S*2n,k  is a hermitian *-generalized Jordan triple system of 
second order. 

In fact, the elements 
(1)

*
2 ,(2)

1
2

ij
n k

ij

E
S

E
 

∈  
 

 are tripotents. 

For any element X of  S2n,k,we may represent as follows; 

(1) (1) (1) (1) (2) (2) (2) (2)= ( 1 ( 1 )ij ij ij ij lm lm lm lmX E E E EΣ + − +Σ + −λ µ λ µ

and the norm is defined by 
(1) (2) (1) (2)|| ||= m (| |,| |,| |,| |)ij lm ij lmX ax λ λ µ µ

where  Eij 
(1) is the matrix unit of ,

0
n kS 

 
 

 and (2)
lmE  Elm (2)  is the matrix unit 

of 
,

0
.

n kS
 
 
 

 

By straightforward calculations as well as Example 2.3, we can show 
that S*2n,k is a hermitian *-generalized Jordan triple system of second 
order. 

Example 4: Let A*
kn ⊕ A*

nl A
*
kn  be the set fo all pairs 1

2

= ,
x

X
x

 
 
 

 
where x1 is a k×n matrix and x2 is a

n × l matrix with operation given by foumula 

1 1 1 1 1 1 1 2 2

2 2 2 2 2 2 1 1 2

< >= .(2.5)
T T T

T T T

x y z z y x z x y
XYZ

x y z z y x y x z
 + −
 

+ − 
Then A*

kn ⊕ A*
nl is a hermitian *-generalized Jordan triple system 

of second order. 

In fact, for 1

2

= .
u

X
u
 
 
 

 we have 

1 1 2 2( , ) = ( , ) = ,T TX X traceL X X n trace u u l trace u u+

hence it follows that the trace form ( , )  is positive definite. 

For any element of A*
kn ⊕ A*

nl , we may represent as follows; 

(1) (1) (1) (1) (2) (2) (2) (2)= ( 1 ) ( 1 )ij ij ij ij st st st stX E E E EΣ + − +Σ + −λ µ λ µ
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and (Eij
(1), Ejt

(2)) ϵ A*
kn ⊕ A*

nl  is a tripotent. 

Furthermore, the norm is defined by 
(1) (2) (1) (2)|| ||= 2 (| |,| |,| |,| |).ij st ij stX max λ λ µ µ

Example 6: Let C*nn ⊕ A*nl be the set of all pairs 1

2

= ,
x

X
x

 
 
 

 where x1 

is a skew-symmetric n×n matrix and x2 is a column,i.e.,is a n ×1 matrix, 
with operation given by formula, 

1 1 1 1 1 1 2 2 1 1 2 2

2 2 2 2 2 2 1 1 2

< >:= (2.6)
T T T T

T T T

x y z z y x y x z z x y
XYZ

x y z z y x y x z
 + − −
 

+ − 
Then C*nn ⊕ A*nl  is a hermitian *-generalized Jordan triple system 

of second order. 

In fact, we put :=ijc  the matrix of (i,j) -element is 1,(j,i) -element 
is -1 and other element is zero (1≤ i ≤ n),  further more ek := (0- - - ,1, - 
- - 0)T,(k th element is 1). Then 1 2

0
ijc 

 
 

 are tripotents and also 0
1 2

ke
 
 
 

 are 

tripotents but these are not bitripotents. For any element of C*nn ⊕ A*nl, 

we may represent as follow; 

(1) (1) (2) (2)= ( 1 ) ( 1 )ij ij ij ij k k k kX c c e eΣ + − +Σ + −λ µ λ µ

and the norm is defined by 

(1) (1) (2) (2)|| ||= 2 (| |,| |,| |,| |).ij ij k kX max λ µ λ µ

In the end of this section, we note a Peirce decomposition as follows 
([12] for the case of δ = 1). 

Theorem 1:    For δ =±1 and hermitian (-1, δ) Freudenthal-Kantor 
triple system V with a tripotent C s.t. <ccc> = c we have 

0 1/2 1=V V V V⊕ ⊕

where denoted by 
0 = { | = 0, = 0 },V x N Tδ δ

 
1/2 = { | 0, = 0 }V x N T≠δ δ

,   

1 = { | = 0, 0 }V x N T ≠δ δ
 and also defined by R(x,y)z=<zxy>, Nδ  = L (c,c) 

– δR(c,c) and Tδ = (1+δ)L(c,c)-R(c,c)+Id.,  

This section is a cowork with Dr M.Sato with an application to 
physics and the details will be considered in future paper [18].  

Concluding Remark 
In this section, we shall briefy describe a correspondence with the 

triple systems and the Lie algebras or superalgebras of simple classical 
type associated with their triple systems [1,2,7,10,11].

Let V be the matrix set of  Mat(m,n;F) and the triple product is 
defined by 

<xyz> = xyTz+ δ (zyTx-µzxTy) x,y,z ϵ V.(*) 

Then there exists 4 cases of  (-1, δ)-Freudentahl-Kantor triple 
systems with µ=0 or 1. and δ =±1. 

The standard embeding Lie algebras or superalgebras 
ˆ = ( , )L L W W W⊕ , where W = V ⊕ V (cf. section 1) associated with the 

triple product (*)  are appeared by 4 types as follows; 

(i) 5 graded Lie algebra  (δ =1,µ =1)

Bm+1 = so(2m+2l+1) (n= 2l+1), Dm+1 = so(2m+2l) (n=2l).

(ii) 3 graded Lie algebra (δ =1,µ =0) 

An+m-1 =sl(n+m).

(iii) 5 graded Lie superalgebra (δ =-1,µ =1) 

. . .B(l,m) =osp(2l+1|2m) (n =2l+1), D(l,m) = osp(2l|2m) (n=2l).

In particular, if m=1, then the triple product 

<xyz> = <x,y> z-<z,y> x+<z,x> y

is a (-1,-1)-Freudentahl-Kantor triple system satisfying 
K(x,z)=<xyz>+<zyx>=2<x,z>y,  and so  dim{(x,z}span =1 (called a 
balanced triple system), where <x,y> = x1y1+. . . +xn yn. 

(iv) 3 graded Lie superalgebra  (δ=-1,µ=0)

A(m-1,n-1) = sl(m|n) (m≠n), A(m-1|m-1) = psl (m|m) (m= n).
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