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Abstract: In this paper an estimate of the Kakeya maximal operator on the high

dimensional Euclidean spaces is given, that is, the Kakeya maximal operator is of restricted weak

type ðd=ðd� 1Þ; d=ðd� 1ÞÞ for the Lebesgue space Ld=ðd�1ÞðRdÞ; d � 2 with the norm bounded by a

constant times ðlogNÞ1=d.
Key words: Kakeya problem.

1. Introduction. The purpose of this paper

is to give an estimate of the Kakeya maximal

function on the high dimensional Euclidean spaces.

Let f be a function on the d dimensional

Euclidean space Rd; d � 2. The Kakeya maximal

function Kðf ;xÞ is defined for a measurable func-

tion f on Rd by

Kðf ;xÞ ¼ sup
�

1

j‘ðx;�Þj

Z
‘ðx;�Þ

jfðyÞjdy; x 2 Rd;

where ‘ðx;�Þ is a tube in Rd with the center at

x 2 Rd, the diameter of bottom � and the side

length 1. � is chosen arbitrarily but fixed, and �

implies a slope of the axis of the tube. If the

direction � is fixed, that is, independent of x, our

problem is reduced to that of the Hardy-Littlewood

maximal operator. In two dimensional case an

estimate of Kðf ;xÞ is given by A. Córdoba [2].

Some estimate for two classes of functions on the d

dimensional Euclidean spaces are given by cf. e.g.

S. Igari [5], and A. Carbery, E. Fernández, and F.

Soria [1], but the expected Lp estimate of the

Kakeya functions on the higher dimensional Eucli-

dean spaces is not settled, cf. e.g. T. Wolff’s work

and N. H. Katz and J. Zahl [6].

Kakeya maximal function is deeply related to

Fourier analysis of several variables and the geom-

etry of sets in Euclidean spaces. For the detail and

applications to Fourier analysis, the theory of

geometry of sets and etc. see, e.g. the book of L.

Grafakos [4] and its references.

2. Reduction and Theorem. In order to

estimate the Kakeya maximal operator in the

Euclidean space Rdðd � 2Þ we change the scale,

so that, we assume the side length of cylinders is

a positive integer N ¼ ��1 and the diameter of

bottom is 1. More precisely, we define the cylinders

by ‘ðx;�Þ ¼ fy 2 Rd : distðLðx;�Þ; yÞ � 1=2g where

Lðx;�Þ ¼ fxþ t� : �N < t < Ng is the axis with a

slope �. We can suppose, by rotation, � is written by

ð�1; � � � ; �d�1; 1Þ.
For a measurable function f on Rd define

Kðf ;xÞ ¼ N�1
R
�‘ðx;�Þ ðyÞfðyÞdy, where �ðx;�Þ is the

characteristic function of ‘ðx;�Þ, and � is arbitrarily

determined depending on f and x.

By the same way, for a sequence c ¼ fcag on Zd

put kðc;xÞ ¼ N�1
P

aca�ða;�ÞðxÞ. If a sequence fcag is

given by the characteristic function f�P ðaÞg of a

subset P of Zd, then kðc;xÞ is written as kðP ;xÞ.
By a discretization argument of Lp space our

estimate of KðfÞ is equivalent to that of the

operator k on the space ‘pðZdÞ.
Our object is to prove the following

Theorem 1. (i) Let d � 2. The operator k

is of restricted type ðd=ðd� 1Þ; d=ðd� 1ÞÞ, that is, we

have
Z
ðkðP ;xÞÞd=ðd�1Þdx � CðlogNÞ1=dP#ð1Þ

for any finite subset P of Zd.

(ii) Let p > d. We have

kKðfÞkLp � Cðp� dÞ
�1ðlogNÞ1�1=pkfkLpð2Þ

for f 2 LpðRdÞ, where C is a constant depending

only on the dimention.
The second part of the theorem follows from (i)

and the interpolation argument of operators, cf. e.g.

Grafakos [3], p. 56.

3. Proof of the Theorem. First step. No-

tation and Reduction. Let us fix a positive integer
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N. Put D ¼ ½0; NÞd \ Zd. To prove Theorem 1 (i)

we restrict our attention to subsets P in D. The

general case is derived from this particular case.

Let P be a subset of Zd. For an integer 0 � g <
N let Pg ¼ fða1; . . . ; ad�1; gÞ 2 P ; ða1; . . . ; ad�1; adÞ 2
Pg, which we call the g-cross section of P . For a

point x ¼ ðx1; � � � ; xd�1; xdÞ 2 Rd we denote x ¼
ð�x; xdÞ, where �x ¼ ðx1; � � � ; xd�1Þ, and a point of the

range of the function kðP ; �Þ is denoted as ðx; xdþ1Þ
or ð�x; xd; xdþ1Þ. We assume that each point a in P

is assigned an angle � ¼ ð��; 1Þ; �� ¼ ð�1; . . . ; �d�1Þ,
which is arbitrarily given but fixed depending on a.

Let � be any integer such that 4 � � � logN=log 2.

Put P� ¼ fa ¼ ða; �Þ 2 P ; 2��1=N � j��j < 2�=Ng,
where �� ¼ ð�1; � � � ; �d�1Þ. We assume P ¼

S
��4P

�,

that does not disturb generality. For the case � < 4

the theorem is easily gotten. The key part of

our proof is to estimate the integral I�g ¼R
kðP�

g ;xÞd=ðd�1Þdx, 0 � g < N.

Second Step. We shall decompose the domain

of kðP�
g ;xÞ to simplify our argument. We write a

point x 2 Rd of the domain of kðP�
g Þ as ð�x; xdÞ and a

point of the graph as ð�x; xd; xdþ1Þ, where �x 2 Rd�1,

and xd; xdþ1 2 R.

For ð �m;mdÞ 2 Zd�1 � Z let Jð �mÞ ¼ ½4m1; 4m1 þ
1Þ � � � � � ½4md�1; 4ðmd�1 þ 1ÞÞ, and J�ðmdÞ ¼
½4mdN=2�; ð4md þ 1ÞN=2�Þ be a square of Rd�1

and an interval of R, respectively. Put � ¼
fð ��; �dÞ 2 Zd; �� ¼ ð�1; � � � ; �d�1Þ; 0 � �i < 4 for 1 �
i � dg, and let J�ð �mþ ��;md þ �dÞ be the translation

of J�ð �m;mdÞ by �ð��;N2���dÞ. Then fJ�ð �mþ
��;md þ �dÞ; ð �m;mdÞ 2 Rd; ð��:�dÞ 2 �g is a disjoint

covering of Rd. We remark that the range of kðP�
g Þ

is contained in ½�N; 2N�d � ½0; N�1P�#
g �. For � ¼

ð��; �dÞ 2 � put ��ð�Þ ¼
S
mJ

�ð �mþ ��;md þ �dÞ. We

have I�g ¼
P

�2� I
�
g ð��ð�ÞÞ, where

I�g ð��ð�ÞÞ ¼
X
�m;md

Z
J�ð �mþ��;mdþ�dÞ

kðP�
g ;xÞd=ðd�1Þdx:ð3Þ

In the following we assume g ¼ 0 and � ¼
ð��; �dÞ ¼ 0. If it is obvious, we may omit the suffixes

� and/or g. For other cases a proof is similar.

Therefore we consider the simplest case I�ð��ð0ÞÞ.
Let b1; b2; � � � ; b� , be an enumeration of points in P�

0 ,

where � ¼ P�#
0 . We fix it. Let us replace tempora-

rily the tubes ‘bj with ‘j defined by ‘1 ¼ ‘b1 and ‘j ¼
‘bj � ‘b1 � � � � � ‘bj�1 for 1 < j � �. Then f‘jg is a

disjoint covering of the support of kðP�
0 Þ. Therefore

by (3) we have

I�0 ð��ð0ÞÞ ¼
X
md

X
�m;j

Z
Dðj; �m;mdÞ

kðP�
0 ;xÞd=ðd�1Þdx;ð4Þ

where Dðj; �m;mdÞ ¼ ‘j \ J�ð �m;mdÞ.
Third Step. For a subset E of Rd let P

�
0 ðEÞ be

the set of a in P�
0 such that j‘a \ Ej > 0.

Pick any point bj in P�
0 . Choose any point

ð �m;mdÞ in Dd such that j‘bj \ J�ð �m;mdÞj > 0. For

each bj there exist at most ½N=4� such points �m, say

�mðbjÞ, and furthermore, for each �mðbjÞ there

corresponds uniquely an integer md ¼ mdðbjÞ. Con-

versely, for a given mdðbjÞ there corresponds

uniquely �m such that �m ¼ �mðbjÞ. In this way we

get a sequence ð �mðbjÞ;mdðbjÞÞ in Zd for each j ¼
1; 2; � � � ; �.

We write ð �mðbjÞ;mdðbjÞÞ ¼ ð �mðjÞ;mdðjÞÞ for

simplicity. Then by our definition

kðP�
0 ;xÞ � N�1P

�
0 ð �mðjÞ;mdðjÞÞ#ð5Þ

for almost all x in ‘j \ J�ð �mðjÞ;mdðjÞÞ. For mðjÞ ¼
ð �mðjÞ;mdðjÞÞ let IðmðjÞÞ be the set of i’s such that

j‘i \ J�ð �mðjÞ;mdðjÞÞj > 0. The (5) holds also for

almost all x in ‘i \ J�ð �mðjÞ;mdðjÞÞ.
Since f‘i; i 2 IðmðjÞÞg is a disjoint family.

Applying (5) to (4), we have

I
�
0 ð��ð0ÞÞð6Þ

�
X
ð �m;mdÞ

X
j

X
i2IðmðjÞÞ

Z
Dði;mðjÞ;mdðjÞÞ

kðP�
0 ;xÞd=ðd�1Þdx:

Fourth Step. To estimate the right hand side

of the last inequality we use the following lemma.

Lemma 1. Let 1 � � � ½logN=log 2� þ 1 be

an integer. Then the family fP�
0 ð �mðjÞ;mdðjÞÞg has

the following properties:

(i)
S�
j¼1

S
ð �m;mdÞ P

�
0 ð �mðjÞ;mdðjÞÞ ¼ P�

0 ð��ð0ÞÞ,
(ii) If md ¼ mdðiÞ ¼ mdðjÞ, then P�

0 ð �mðbiÞ;mdðiÞÞ
and P�

0 ð �mðjÞ;mdðbjÞÞ are either identical or mutu-

ally disjoint,

(iii) For each md we haveX
�m

X
i2IðmðjÞÞ

Z
Dði; �mðjÞ;mdÞ

ððkð �mðjÞ;mdðjÞÞd=ðd�1Þdx

� N�d=ðd�1Þ2�P�#
0 :

Proof of Lemma. (i) By definition, a point bj

belongs to P�
0 ð��ð0ÞÞ if and only if there exists a

point ð �m;mdÞ, such that j‘bj \ J�ð �m;mdÞj > 0. Thus

the right hand side of (i) is contained in the left

hand side. The converse is obvious.

(ii) follows immediately from the definition of

P�
0 ð �mðiÞ;mdðiÞÞ.
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(iii) Fix md. For 1 � j � � put P�
0 ðj;mdÞ ¼

fbi;mdðbiÞ ¼ mdðbjÞg.
We have the following

(a) for each md fP�
0 ðj;mdÞ; 1 � j � �g are mutually

disjoint.

(b) P�
0 ðj;mdÞ is contained in the disk of D0 with the

center at ð �mðjÞ; 0Þ and the radius bounded by

ð4mdðjÞ þ 1ÞN=2� � ð2�=NÞ ¼ 4mdðjÞ þ 1 � 2�.

(c) f‘i \Dðj;mðjÞ;mdÞ; bi 2 P�
0 ðj;mdÞg is a disjoint

covering of Dðj;mðjÞ;mdÞ.
(d) P �

0 ðmdÞ#d=ðd�1Þ � 2�B
1=ðd�1Þ
d P �

0 ð �mðjÞ; mdðjÞÞ#,

where Bd�1 is the volume of the unit ball of d� 1

dimensional Euclidean space.

(a), (b) and (c) follow easily from our defi-

nitions. To prove (iii) note that

P
�
0 ð �mðjÞ; md ðjÞÞ#d=ðd�1Þ � P

�
0 ð �mðjÞ; md ðjÞÞ# �

ðBd�1ð2�ÞÞ1=ðd�1Þ � ððBd�12�Þd�1Þ1=ðd�1ÞP �
0 ð �mð jÞ;

mdðjÞÞ#. Thus
P

�m P
�
0 ð �mðjÞ;mdðjÞÞ#d=ðd�1Þ �

2�N�d=ðd�1ÞP
�m P

�
0 ð �mðjÞ;mdðjÞÞ#.

Thus the left hand side of the inequality (d) is

up to a constant times bounded by

2�N�d=ðd�1Þ
X

�m

X
IðjÞ

X
i2P�

0 ðj;mdÞ

Z
‘i\Dðj; �mðjÞ;mdÞ

ðP�
0 ð �mðjÞ;mdÞÞ#dx:

If i; i0 2 P0ðj;mdÞ; i 6¼ i0, the corresponding integral

domains are disjoint but integrands remain the

same value. Therefore the last expression does not

exeed

2�N�d=ðd�1Þ
X

�m

X
IðjÞ

Z
J�ð �mðjÞ:mdðjÞÞ

P�
0 ð �mðjÞ;mdðjÞÞ#dx

� 2�N�d=ðd�1ÞP�#
0 ;

since P�
0 ð �mðjÞ;mdðjÞÞ; j ¼ 1; 2; . . . ; �, are mutually

disjoint. �

Applying Lemma (iii) to inequality (6) we

get I�0 ð��ð0ÞÞ � N�1=ðd�1ÞP�#
0 , which implies that

the last inequality holds good for subsets P�
g ; 0 <

g � N, and for the integral domain �ð��; �dÞ; � ¼
ð��; �dÞ 6¼ 0 in place of ��ð0Þ by translations. Thus we

get

I�g ¼
X
�2�

I�g ð�ð��; �dÞÞ � 4dN�1=ðd�1ÞP�#
gð7Þ

for all P � D and 0 � g < N .

Fifth Step. Recall the definition of the

g�cross section in section 3 and the corresponding

angles of the tubes. We shall remove the the

restrictions of the functional kð�;xÞ on sequences

f�Pg; P � Rd, and on the angles.

Let P � D and P� ¼
S

0�g<NP
�
g . By the H}older

inequality with indices 1=dþ ðd� 1Þ=d ¼ 1, we have

kðP�;xÞd=ðd�1Þ � N1=ðd�1ÞP
gðkðP�

g ;xÞÞd=ðd�1Þ. Thus

we have by (7)

I� ¼
Z

Rd
kðP�;xÞd=ðd�1Þdxð8Þ

� N1=ðd�1Þ
X
g

Z
Rd
ðkðP�

g ;xÞÞd=ðd�1Þdx

� 4d
X
g

P�#
g ¼ 4dP�#:

To remove the restriction for angles put

P 00 ¼ P � P 0, where P 0 ¼
S1þ½logN=log 2�
�¼3 P�. When

� < 3, every tube ‘a is contained in a

rectangle ½�4; 4�d�1 � ½N;N � þ a ¼ Ra. Thus

j‘aj�1R
‘a
jfðyÞjdy � 8d�1jRaj�1R

Ra
jfðyÞjdy for all

a 2 P 00. Thus we have
R
ðkðP 00ÞÞd=ðd�1Þdx . P 00# by

a well known calculus or by an application of

Hardy-Littlewood maximal inequality.

Therefore our main concern is in the subset P 0.
Applying the H}older inequality again for the sumP

� over f�; 3 � � � 1þ ½logN=log 2�g with indices

1=dþ ðd� 1Þ=d ¼ 1 we have

I 0 ¼
Z

Rd
ðkðP 0;xÞÞd=ðd�1Þdx

¼
Z

Rd

�
k
�X
f�g

P�;x
��d=ðd�1Þ

dx

� ð1þ ½logN=log 2�Þ1=ðd�1ÞX
��3

Z
kðP�;xÞd=ðd�1Þdx:

Due to (8) we get

I 0 5 cdðlogNÞ1=ðd�1ÞP#ð9Þ

for all P � D, where cd is a constant depending only

on d but may be defferent each occasion. Therefore

we get

I ¼
Z

Rd
ðkðP ;xÞÞd=ðd�1Þdx � cdðlogNÞ1=ðd�1ÞP#ð10Þ

for all P � D.

Put DðmÞ ¼ Dþ 2Nm for m 2 Zd and ZdðiÞ ¼S
m DðmÞ þN"i, where "i ¼ ð0; � � � ; 0; 1

i
; 0; � � � ; 0Þ;

i ¼ 1; � � � ; d. If m 6¼ m0, the ranges of kðDðmÞÞ and

kðDðm0ÞÞ are disjoint. Thus (10) holds for DðmÞ [
Dðm0Þ with the same constant cd. This implies that

(10) holds for all subets of ZdðiÞ, and thus for every

subset of Zd with constant 2dcd. �
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