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Abstract:

In this paper an estimate of the Kakeya maximal operator on the high

dimensional Euclidean spaces is given, that is, the Kakeya maximal operator is of restricted weak
type (d/(d —1),d/(d — 1)) for the Lebesgue space L@ D(R?), d > 2 with the norm bounded by a

constant times (log N)"“.
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1. Introduction. The purpose of this paper
is to give an estimate of the Kakeya maximal
function on the high dimensional Euclidean spaces.

Let f be a function on the d dimensional
Euclidean space R? d > 2. The Kakeya maximal
function K(f;x) is defined for a measurable func-
tion f on R? by

K(f;r) = sup !

- z € R?
0 |€(M)| s |

|f(y)ldy,
where /() is a tube in R? with the center at
z € RY, the diameter of bottom & and the side
length 1. 6§ is chosen arbitrarily but fixed, and 6
implies a slope of the axis of the tube. If the
direction @ is fixed, that is, independent of z, our
problem is reduced to that of the Hardy-Littlewood
maximal operator. In two dimensional case an
estimate of K(f;x) is given by A. Cérdoba [2].
Some estimate for two classes of functions on the d
dimensional Euclidean spaces are given by cf. e.g.
S. Igari [5], and A. Carbery, E. Ferndndez, and F.
Soria [1], but the expected LP estimate of the
Kakeya functions on the higher dimensional Eucli-
dean spaces is not settled, cf. e.g. T. Wolff’s work
and N. H. Katz and J. Zahl [6].

Kakeya maximal function is deeply related to
Fourier analysis of several variables and the geom-
etry of sets in Euclidean spaces. For the detail and
applications to Fourier analysis, the theory of
geometry of sets and etc. see, e.g. the book of L.
Grafakos [4] and its references.

2. Reduction and Theorem. In order to
estimate the Kakeya maximal operator in the
Euclidean space R%(d > 2) we change the scale,
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so that, we assume the side length of cylinders is
a positive integer N = ¢! and the diameter of
bottom is 1. More precisely, we define the cylinders
by Lo = {y € R* : dist(L,,y) <1/2}  where
Lig ={r+t0: —-N <t <N} is the axis with a
slope 6. We can suppose, by rotation, 6 is written by
(917 e 79(1—1) 1)

For a measurable function f on R? define
K(f;z) = N7 [x0,,, () f(y)dy, where x(,q) is the
characteristic function of £(, ), and 0 is arbitrarily
determined depending on f and z.

By the same way, for a sequence ¢ = {¢,} on Z*
put k(c;x) = N7'Y caX(a0) (). If a sequence {c,} is
given by the characteristic function {xp(a)} of a
subset P of Z%, then k(c; x) is written as k(P;z).

By a discretization argument of LP space our
estimate of K(f) is equivalent to that of the
operator k on the space 7(Z%).

Our object is to prove the following

Theorem 1. (i) Let d > 2. The operator k
is of restricted type (d/(d — 1),d/(d — 1)), that is, we
have

(1) / (k(P: 2)"“ Vi < C(log N)Y4 P

for any finite subset P of Z°.
(ii) Letp > d. We have

2) (KNl < Cp—d) " (log N)' 7| £,

for f e LP(RY), where C is a constant depending
only on the dimention.

The second part of the theorem follows from (i)
and the interpolation argument of operators, cf. e.g.
Grafakos [3], p. 56.

3. Proof of the Theorem. First step. No-
tation and Reduction. Let us fix a positive integer
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N. Put D =[0,N)*nZ% To prove Theorem 1 (i)
we restrict our attention to subsets P in D. The
general case is derived from this particular case.

Let P be a subset of Z%. For an integer 0 < g <
N let P, ={(ai,...,a4-1,9) € P;(a1,...,a4-1,aq) €
P}, which we call the g-cross section of P. For a
point z = (z1,---,24.1,24) € RY we denote ==
(Z,xq), where T = (x1,--+,24-1), and a point of the
range of the function k(P;-) is denoted as (z,zq41)
or (Z,xq,x411). We assume that each point a in P
is assigned an angle a = (&,1),a = (a1,...,0q4-1),
which is arbitrarily given but fixed depending on a.
Let p be any integer such that 4 < u <log N/log2.
Put P*={a=(a,a)€ P;2*"'/N <|a| < 2*/N},
where @ = (aq, -+, aq-1). We assume P =J ., P,
that does not disturb generality. For the case u < 4
the theorem is easily gotten. The key part of
our proof is to estimate the integral I =
JE(P2) Ve, 0 < g < N.

Second Step. We shall decompose the domain
of k(P!;x) to simplify our argument. We write a
point z € R? of the domain of k(PY) as (Z,zq) and a
point of the graph as (&, 4, 241), where & € R
and x4, 411 € R.

For (m,mq) € Z" x Zlet J(m) = [4my,4m; +
1) x -+ x [dmg_1,4(mg—1 + 1)), and  J*(mgy) =
[4mgN /2", (4mg +1)N/2") be a square of R4!
and an interval of R, respectively. Put A =
{(5,5(]) € Zd; 5= (61,“',6d_1), 0<é;, <4 for 1<
i < d}, and let J#(m + &, mg + 84) be the translation
of JH(m,mq) by —(6,N27"8;). Then {J'(m +
8,mq + 64); (m mg) € R4, (6.64) € A} is a disjoint
covering of R?. We remark that the range of k(P)')
is contained in [—N,2N]* x [0, N~ 'PI#]. For 6 =
(6,64) € A put Q#(8) =, J*(m + 6, md—|—6d) We
have Il = > s 5 I1'(927(6)), where

(3) IM(92(8)) = k(P 2) "V dg.

m,mg /J“(m+6,md+6d)

In the following we assume g=0 and 6=
(6,64) = 0. If it is obvious, we may omit the suffixes
6 and/or g. For other cases a proof is similar.
Therefore we consider the simplest case I*(£2#(0)).
Let b, 0%, -+, b, be an enumeration of points in P},
where II = P" #. We fix it. Let us replace tempora-
rily the tubes 4y; with ¢/ defined by ' = £, and ¢ =
by — by — -+ — Ly for 1 < j<II. Then {#} is a
disjoint covering of the support of k(F)'). Therefore
by (3) we have
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(4)  I(©Q"0 k(P 2) " dy

)

=3[

ma m,j D(j,m,mq)

where D(j,m,mg) = £ N J*(m, myg).

Third Step. For a subset E of R? let P} (E) be
the set of @ in P}’ such that |[¢, N E| > 0.

Pick any point b’ in P}'. Choose any point
(1, mg) in D? such that |¢,; N J#(m, mg)| > 0. For
each b’ there exist at most [N /4] such points m, say
m(b?), for each m(b’) there
corresponds uniquely an integer my = my(b7). Con-
versely, for a given mgy(b’) there corresponds
uniquely m such that m = m(b’). In this way we
get a sequence (1m(b7), mg(b?)) in Z¢ for each j=
1,2, 1II.

We write (m(b?), mg(b’)) =
simplicity. Then by our definition

(5) k(P @) < NP (m(j), ma(5) "

for almost all z in ¢ N J*(m(j), ma(j)). For m(j) =
(m(4),ma(4)) let I(m(j)) be the set of i’s such that
|6 J#(m(5), ma(5))] > 0. The (5) holds also for
almost all z in £ N J*(m(5), ma(4)).

Since {¢',i € I(m(j))} is a disjoint family.
Applying (5) to (4), we have

(6) Iy (2"(0))
)/ Dim(5).ma(3))

and furthermore,

(m(j), ma(j)) for

<> >
(m,mq) J i€l(m(j
Fourth Step. To estimate the right hand side
of the last inequality we use the following lemma.
Lemma 1. Let 1< pu<[logN/log2]+1 be
an integer. Then the family { P} (m(j),mq(j))} has
the following properties:
() ULy Upnony PLOTG) mai)) = PLQ4(0)),
(ii) If mg =ma(i) = ma(j), then Py(m(b'), mq(i))
and P} (m(5),mq(b7)) are either identical or mutu-
ally disjoint,
(iii) For each my we have

2 2 / (k(1m(3), ma(3))"* da

mqel(m(; )ima)
<N~ d/d 12*1135‘7%‘.

Proof of Lemma. (i) By definition, a point b’
belongs to P)(€2(0)) if and only if there exists a
point (m,mg), such that |, N J#(m, mg)| > 0. Thus
the right hand side of (i) is contained in the left
hand side. The converse is obvious.

(ii) follows immediately from the definition of

By (m(i), ma(i).
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(iii) Fix mq. For 1 <j<II put Py(j,mq) =

(b3 ma(b) = ma(b)}.

We have the following

(a) for each my { P} (j,maq); 1 < j < IT} are mutually
disjoint.

(b) Py (j,mq) is contained in the disk of Dy with the
center at (m(j),0) and the radius bounded by
(4ma(j) + 1N /2" x (2! /N) = 4mq(j) +1 < 2.

(c) {¢/ N D(j,m(j), ma); " € PY(j,mq)} is a disjoint
covering of D(j, m(j), mq).

(d) By (ma)* D < 2B R (m(5), ma( ),
where B;_1 is the volume of the unit ball of d — 1
dimensional Euclidean space.

(a), (b) and (c) follow easily from our defi-
nitions. To prove (iii) note that
B (m(3), ma ()0 < B (m (), ma ()%
(Baa (20 < (B2t B (),
ma())*. Thus 35, B (m(5), ma(j) """ <
2NN 3 B (), ma( )"

Thus the left hand side of the inequality (d) is
up to a constant times bounded by

oM N —d/(d-1) E Z / (P(él(m(]), m(]))#dl’.
£nD(G,m(5)ma)

o 10) i Gma) !

If 4,4 € Py(j,mq),? # 7, the corresponding integral
domains are disjoint but integrands remain the
same value. Therefore the last expression does not
exeed

NSy P
“(m(g).ma(j))

< 2PN- d/(d— IPM#

since P} (m(j),maq(4)),7=1,2,...,II, are mutually
disjoint. O

Applying Lemma (iii) to inequality (6) we
get IM(Q4(0)) < N-Y@DpI#*  which implies that
the last inequality holds good for subsets Pr.o<
g< N, and for the integral domain (¢, éd) 6=
(6,64) # 01in place of Q#(0) by translations. Thus we
get

(1) Iy =) I8 80)) <
beA

forall PCDand 0 < g< N.
Fifth Step. Recall the definition of the

g—cross section in section 3 and the corresponding

angles of the tubes. We shall remove the the

restrictions of the functional k(-;z) on sequences

{xpr}, P C Ry, and on the angles.

4dN—1/(d—1)P5#
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Let P C D and P" = {Jy,.yP)- By the Hélder
inequality with indices 1/d 4 (d — 1)/d = 1, we have
k(P )Y < NVEUSS (kP ) U Thus
we have by (7) ‘ '

8) I"=
Rd

< NV 1>Z/ k(P 2) D dy

<4ty " prt = alprt,

g

k(P*; )Y dg

To remove the restriction for angles put

P’"=P— P, where P':Ulﬂtg"gm“g?} P*. When
©w<3, every tube ¢, is contained in a
rectangle [—4,4" x [N N]+a=R,. Thus
™ 1)y < 8RS f()ldy  for al

a € P". Thus we have [(k(P")) N gy < P by
a well known calculus or by an apphcatlon of
Hardy-Littlewood maximal inequality.

Therefore our main concern is in the subset P'.
Applying the Holder inequality again for the sum
>, over {33 < p <1+ [logN/log2|} with indices
1/d+ (d—1)/d =1 we have

I = /R d(k(P’;x))d/(d*”dx
= o ()

{un}
< (1 + [log N/log2))/ =V Z/k

u=3

d/(d 1) dl‘

Due to (8) we get
= Cq4\10
(9) I' < cq(log N0 p#

for all P C D, where ¢y is a constant depending only
on d but may be defferent each occasion. Therefore
we get

(10) I :/ (k‘(P;x))d/(d_l)dx < cd(logN)l/(d_1>P#
Rd

for all P C D.

Put D(m) = D + 2Nm for m € Z¢ and Z4(i) =
U,, D(m) + N&', where & = (0,---,0,1,0,---,0),
i=1,---,d. If m #m/, the ranges of k(D(m)) and
kE(D(m')) are disjoint. Thus (10) holds for D(m) U
D(m') with the same constant ¢g. This implies that
(10) holds for all subets of Z%(i), and thus for every
subset of Z¢ with constant 2%¢,. O
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