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196. The Theory of Nuclear Spaces Treated
by the Method of Ranked Space. IV

By Yasujir6 NAGAKURA
Science University of Tokyo

(Comm. by Kinjir6 KUNUGI, M. J. A., June 12, 1971)

§ 5. The completion of the linear ranked space @, (2).

Lemma 20. Let &, be the subset of & consisting of those equiva-
lence classes which contain an R-Cauchy sequence {g,} for which g,=g,
=gs=---.

The mapping T of @ onto @0, which maps g € @ to the class § con-
taining the sequence consisting of a single element g, is bijective and
we have g ¢ V; (0, 7, m) if and only if § ¢ 17} 0, r, m).

Proof. Let g and f be two different elements in @. Then there
exists no class containing two sequences {g,} and { f,,} with g, =g, f,.=1
for every n.

Because if it is not true, {g,} and {f,} are equivalent. And then
there exists a fundamental sequence of neighbourhoods {V,, (0, 7, m,)}
such that g,—f; ¢ V,i 0, r;, m;) for every i, that is, g— f ¢ V,i((), Ty M)
for every 4. This implies g=f by Lemma 8 in [4].

Next, we shall prove that g ¢ V, (0,7, m) implies §e Vi 0, r, m).
Since we have V, (0,1, m)=U, (0, ¢;, m) by the paper [4], we obtain
V. 0,r,m)=U, (0, re;, m). Hence we have

kzllk,ni—b’ﬂi(gi @k,ni)SDk,ni_l H<7’ei,
Then there exists some number 7/, 0 <7’ <7 such that

kz—ll Rlc,ni_l,ni(g’ gok,ni)gok,ni_l H <1"’8¢ <7‘€i°

Consequently we obtain g € V, (0,7’,m). By Definition 5, this shows
GeV,,r,m).
Conversely, if we have ¢ ¢ V. (0,7, m), there exist some number 7/,
0<7'<r and some integer N such that
9.=9¢cV,0,7,m) if n=N.

And then we obtain g € V, (0, r, m).

Theorem 2. The set @, is dense in &.

Proof. Let g be any element in . And let an R-Cauchy sequence
{9.} belong to §. Then there exists a fundamental sequence of neigh-
bourhoods {V,i(O, s, M;)}, such that the relations n=7 and m=< imply

gn—gm € VTi (0, /ri’ mz)
Let ¢, be the class containing the reptitive sequence ¢,, 9., - - -
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Then we have §, € §,. Since by Lemma 20 we have that the rela-
tions n=1 and m=1¢ imply §,—Gn < V’ri 0, r;, m;), the sequence {¢,} in
@, is an R-Cauchy sequence.

On the other hand, since we have g,—g, eV, ’ 0, r;, m;) for m=x,
we obtain §,—d e V,i (0, 2r;, m;) for every 4. Since {V,i 0, 2r;, my)} is

. . R
a fundamental sequence of neighbourhoods, we obtain §,——¢.
Definition 7. Let P;, be a real valued function defined on the
linear ranked space @ such that

P, .(¢)=inf r, where g ¢ V, (0, r, m).
Lemma 21. We have Pi,m(g):H kZZ i, mi—ymi] €G> Creyn) Premi—y

Proof. It is easily verified.

Lemma 22. The function P, ,, is a semi-norm on @.

Lemma 23. We have P, ,,(9)=P; ,(g9) if j<1.

Lemma 24. We have P, ,(9)=P; ,.(g9) if m'<m.

Definition 8. Let ﬁi,m be a real valued function defined on the
linear ranked space @ such that Pi,m(g)zinf r, where § Vi(O, r,m).

Lemma 25. If an R-Cauchy sequence {g,} belongs to g, we have

P, .()=lim P, ,(g,).

n—co

Proof. Set briefly Pi,m(g)za. Then if a<<r, we have ¢ e V.0, 7,
m). By Definition 5, there exist some number ', 0<#'<# and some
integer N such that g, € V,(0, 7/, m) for every n=N. And then we have
P, .(9,) <7 <r. Since the sequence {g,} is an R-Cauchy sequence, there
exists a fundamental sequence of neighbourhoods, {v, (0,7, my}, such
that the relations k=7 and >4 imply V. 0,7, m) 2 gu—9h-

On the other hand, there exists some integer j such that V,(0, r;, m;)
=2V, 0,75, my). And then we have that the relations k=j and h=j
imply |P;n(9x) —Pim(9) | S P w(9e—9,)<r;. Hence {P;,(9.)}, is a
Cauchy sequence of real numbers. Then lim P, ,(g,) exists and we

ni—1

n—oo

have lim P, ,.(9,) < a.

Conversely, if a>r>0, we have §¢ 171(0, r,m). And hence for
every | with 0<I<r and every integer N, there exists some integer
k>N such that g, e V0,1, m), that is, P, ,(g:)=1.

Since {P; .,(g,)} is a Cauchy sequence, it follows lim P; ,(g,)=!.

n—oo

And hence we have lim P, ,(g9,)=r. Consequently we obtain

n—0

lim P, ,,(9,)=«a. This finishes the proof of the lemma.

Lemma 26. The function P, ,, is a semi-norm on &.

Proof. It is evident.

Lemma 27. The quotient space ®/M;,, where M, ,={Gec®;
ﬁi,m(g)=0}, 18 @ finite dimensional space.
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Proof. Let §be an element in &, and let an R-Cauchy sequence {9.}
belong to . Then there exists a fundamental sequence of neighbour-
hoods {V, j(O, r;, M)} such that the relations =7 and I=j imply
V,j(O, *5,M;) 5 g,—¢,. And then the relations y;=¢ and m;=m imply
V0,r;,m)s g,—g, for h, I=j. Hence we have

(1/e) <7y,

1?'—"11 /llc,ni_l,ni(gh'—gb SDrc,ni)QDk,ni_l

and it follows

[(Gns Ce,n) — (915 i, w ) | <3/ Ak yny_simis for 1I<k<m.
Then {(9,, ©i )} i a Cauchy sequence of real numbers, thus there ex-
ists some number «; such that (g,, @i, .,)—ax hA—oco.

Now, we set (1/¢,) (i Xk,ni_l,niakgok,nm) =@ m,- Thus the mapping
k=1

F; . of g to ¢, is a homomorphism of & onto @(i,m, where

é(i,m): {kZ=12k'ni_l’ni(g’ gok,n,;)golc,ni_l; ge Q)} .

Moreover we can easily verify Pi,m(g)zPi,m(g(m)). And hence
F,, induces an isomorphism of & /ker (F;,) onto @, ., Next, we
shall prove ker (F;.,)=M,; . Because if § belongs to ker (I'; ,), we
have §,,=0. Then there exists an B-Cauchy sequence {g,} belonging to
g such that (g,, ©i,,)—0 as n—oo for every k=1, -..,m. And hence

we have P, ,.(g,)= It follows
P, ()=0, that is, § e M, ,,.

Conversely if ¢ belongs to M; ,, we have ﬁi,m(g)=0. Then there
exists an R-Cauchy sequence {g,} belonging to ¢ such that lim P; ,(g,)

N>

=0. Hence we have (9,, ¢i,.,)—0 as n—oo for k=1, ...,m. It fol-
lows ¢ m,=0.

Now, we shall define a norm on &/M,, such that ||§-+M;.,|
=inf P, ,.(f), where fed+M,, and jed. Thus we shall prove
lG+M;nl|=P;iun(dm). Because let f belong to g+ M, ,, such that f=¢
+d'5 4 € Min.

Hence we have

1P Gin) = Prn( o) =1 Pon() — Po (DI P (G — ) =0.
Consequently we obtain ||§+ M, . ||=Pi,u(@) =P ulfm)-

Theorem 3. A bounded infinite set in @ is sequential compact.

Proof. Let B be a bounded infinite set in . By the definition of
the boundness in linear ranked space (in [6]), there exist a fundamental
sequence of neighbourhoods (v, (0, 7;, m)} and numbers C,(i=1,2, ---)
such that C, V (0 7, M) DB for every 1nteger 1.

And then the relation ¢ € B implies P.. (§)<C,r; for every integer

—1, (gn’ Sok,ﬂi)gok,ni—l

Ti,m

Case 1. Suppose B/M,, where M,={j e & ﬁrhml(gj)=0}.
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If B/M, is consisted of some finite element of the coset; B, , B, ,,

-+, B, »), Some coset B, ;,, has to contain infinite elementsin @. Next,

suppose B, ;q,/M,, where M,={j é; P,z,mz(g):m. If By,;y/M, is con-

sisted of some finite element of the coset; B,,, B,,, - -+, B, 4, some

coset B, ;. has to contain infinite elements in &. In general, suppose

that By, /My, (k=1,2,...) has finite element of the coset, thus
Bisw (k=1,2, --.) has infinite elements in &.

And then we have B, ;,2B,i»=2 - 2B im=---. If we take a
sequence {g‘k}cé such that g, € B s, and gpx g, if kxh, then the se-
quence {dx} is a Cauchy sequence in @ with respect to every semi-norm

P, .. t=1,2,...). Because for any ¢>0 and any Isrl =y the relations
h=jand k=7 1mp1y P,J m(Jn—0r)=0<e, that is §,— gk € V (0 €, my).

On the other hand, for any nelghbourhood in &, V, (0, e m), there
exists some integer j such that V. (0,e¢, m)DV (0,e,m;). And then
we have V, (0,¢,m) 5 Gd,— g for h=7 and k=j. Consequently we as-
sert that the sequence {§,} is an R-Cauchy sequence in & and then there
exists a limiting element in @.

Case II. Suppose that there exists some integer ! such that for
k<1, B4 /My, has finite element of the coset and B, /M;., has
infinite elements of the coset. Let f belong to g+ M,,, (with § e B, .a)
in B, W/Ml+l Since we can select ¢’ in ML+1 such that f=¢+¢’, we
have PTL+1 mz+1(f) PTL+1 7M+1(g)+P7z+1 7nt+1(g”) PTL+1 mz+1(g) CTz+177 L1t

And hence we have ||§+ M, ,|<C;, 1r,,,. By Lemma 27, Q7/ML+1
is finite dimensional and then B, ;,,/M,,, is bounded in the finite dimen-
sional spase. Thus there exists a Cauchy sequence {B,,,,,}, of cosets
in B, ,,,/M,,, with respect to norm of ¢/M,,,. If we take a sequence
{0} such that ¢, ,e B,,,,, for every integer n, the sequence {d,,.} is a
Cauchy sequence with respect to P, ..., since we have P,Hl maa (D)
=|g+M,,,| by the proof of Lemma 27.

On the other hand, since we have

VT;.H(O’ 1, ml+1)_3=17 (O; 17 ml+2)y

Ti+2

it is clear that

A

P7z+2,mz+2(g)gﬁful,mzn(g)‘
Thus we obtain M,,,CM,,,.

Hence there cannot be two different elements ¢, ,, §;,» with nxm
in the same coset with respect to M,,,. And then {¢,,}./M,,, has in-
finite elements of the coset and it is bounded in @ /M,.,. Hence there
exists a Cauchy sequence {§,,,}, in {¢,.}, With respect to p,m,mm. We
proceed by induction, obtaining sequences {¢x,.}., each a subsequence
of its predecessor. The diagonal sequence {¢,, .}, is then a Cauchy se-
quence in @ with respect to every P,i,ml.. And then it has a limiting
element in .
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Theorem 4. A bounded infinite set in the nuclear space @ is se-
quential compact.

Proof. Let B be a bounded infinite set in the nuclear space @.
And then there exist numbers C; (i=1,2, .- .) such that the relation
g € B implies

190hies=] 5 Zeonic @ PPt | <Con
for every 1.
And hence we have
esz,m(g):H élzk,ni—l,ni(g, §01c,ni)90k,ni_1 <Cz~

Now, let ¢ be an element in @, which contains an R-Cauchy sequence
{g} consisting of a single element g in @. Then we have
Py (@) =P; n(9)<Cifes,
and hence we obtain
ge 171(0, C;/esm).

Consequently, {§}={d; g € B} is a bounded infinite set in the linear
ranked space ®. Hence by Theorem 3, there exists an R-Cauchy sub-
sequence {§,} in {¢}.

By Lemma 13 in [4], for any V,(0, ¢, m), there exists some integer
N such that the relations =N and m=N imply §,— ¢ € V.0, ¢, m).

Since for every integer n, g, is a equivalence class which contains
an R-Cauchy sequence consisting of a single element g,, then we have

Jn—9m € V;(0,e,m) by Lemma 20.

This shows that the sequence {g,}, is an R-Cauchy sequence in ®.

Hence by Lemma 4, the sequence {g,}, is a Cauchy sequence in the
nuclear space.

Since the nuclear space @ is complete, the proof finishes.
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