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189. On the Bessel Kernel for a Domain

By Isao HIGUCHI
Suzuka College of Technology

(Comm. by Kinjiré6 KUNUGI, M. J. A., May 12, 1971)

1. Aronszajn and Smith [2] developed the theory of Bessel poten-
tials from the standpoints of their functional spaces and functional
completions [1]. Let P*(R™) be the functional completion of Cy(R™)

with the norm Hu|\i=j(1+|$ e &) dE. They showed that P«(R™)
has the reproducing kernel G, (x—vy) determined by

1 -n
Ganlr)= Z(n+2a—2)/27rn/2r(a)K(n—2a)/2(lxl)lx](za "

where K, ., is the modified Bessel function of third kind. The pur-
pose of this paper is to consider the kernel of functional completion
P+(Q) of C;(2) with the norm ||u|,. Making use of the methods of gen-
eral balayage and the theory of a-harmonic functions introduced by
M. 1t6 [6], we define the Green function G£(zx, y¥) and a-harmonic func-
tions in the theory of Bessel potentials. Let E,.(2) be the class of all
positive measures of finite energy with compact support contained in
02, Ui, be the potential of ¢ e F,,(2) in the functional space P*(22) and
G p (resp. é;’aﬂ) be the potential of p with respect to the kermel
G&(x, y)(resp. éé{,(x, Y)=G2(y, x)). We shall prove the following results.

(1) Let @ be a domain in R*. Then for every pec E, (£2), there
exists an a-harmonic function Hf () in £ such that

Us(@) =Gy, () + H, ().

(2) The following conditions are equivalent:

(a) There exists a bounded domain 2(x0) in R* such that
the Green function G£(zx, ) is the kernel of the functional space P+(Q)
i.e., Us,=GLpn in P«(2) for every p e K, (2).

(b) There exist a bounded domain £ in R® and a measure
2(%0) € E,,(2) such that G£ 2 e PX() and G&p=GEp in P(Q).

() 0<azl.

2. According to Aronszajn and Smith [2], we define the Bessel
potentials and summarize the results obtained in [2].
Definition 1. The Bessel potential of order 2a, a >0, of a positive

measure p is defined by GZa/z(x)szz“(x—y)dp(y). We denote by

E, (R the class of all positive measures for which the 2a-energy
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u;zuzazijga(x—y)dp(x)dmw:jc;mpd#
is finite.

(I) The following conditions on ¢ are equivalent:
(a) pekE,(R™. (b)) G.peLAR". (© GypeP(R™.

Further every function » in P*(R") is p-integrable and jud/u

=(u, GZa/’t)a'

(II) If 0<B=<a, then |u|,<|ull,. Therefore P*(R")CP*R"),
EZﬂ(Rn)CEZa(Rn) and H M |]2a§ll M Hzﬁ'

Definition 2. The inner and the outer capacities of order 2a with
respect to the Bessel kernel G, (x—y) are defined as usual. Every ana-
Iytic set is capacitable. We denote by ,, the class of all sets of 2a-
capacity 0. Then %, C,, if 0<B=<a. A property is said to hold ex-
cept Uy, (to be written exe. %,,) if the set where it fails to hold belongs
to U,,.

Finally we summarize the properties of the kernel G,,.

(1D G,.(x) € L\(R™). Go(E) =) (L +|EP .

(IV) G, (@)=G,*Gy(x).

(V) If 0<axl, then G,(x—1vy) satisfies the balayage principle.
For any positive measure p and any closed set F', there exists a positive
measure ' supported by F' such that G, p'() =G, pn(x) on F except U,
and G, ' (®) <G, p(x) everywhere in R" (see, for example, M. Kishi
[8D).

3. First, we define the potentials in the functional space P+({2).

Definition 3. We denote by (u, v), the inner product in the Hilbert
space P+({) corresponding to the norm ||u|,. Let ¢ e FE,,(2), then there

exists a function Uz in P*(Q) such that (¢, U;‘a)a_—_‘[gody for every
©eCy(2). We call U;, the Bessel potential of ¢ in P*(2). In the fol-
lowing sections, we consider the kernel of U%,.

4. If 0<a<l, G, (x—y) satisfies the balayage principle by (V).

But we also want to treat with the case that «>1. Therefore we use
here the methods of balayage introduced by M. Ito [6].

Theorem 1. Let a>0and p be the integer such that 0<a—p=<1.
Then for any closed set F' and for any positive measure p with compact
support, there exists a unique system {pi}?_, of positive measures sup-
ported by F satisfying

GZa/‘t(x):Zi:) Giaiy 43(2) on F exc. Ustap)

G, p(x);zp] Gyaiy () everywhere in R,
i=0
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-1
quﬂ(x):‘g Goqoiy (%) on F exc. U,

Gt (D)= ST Goa i) everywhere in R,
1=0

where q is any integer such that 0<q<p.

Theorem 1’. Under the same assumptions in Theorem 1, there
exists a unique system {p/}r_, of positive measures supported by F
satisfying

GZ(a—p)ﬂ(x):GZ(a—-p)lu(),(x) on F exc. Uy,_,),

Gty ME) 2 Gy py 120 () everywhere in R",

Gz(a—p+q>/‘(x)=Gz<a—p+q)ﬂ6'(x)+i Gogoiy /(@) on F exc. U,

Gortampr oy M) Z Gyt pr gy 20 (X) + Z: Gogiy (@)  everywhere in R,

where q is any integer such that 1<q=<p.

The proofs of the above theorems are the same as in [6]. The essen-
tial parts are based on the decomposition G,,=Gy,_p) * Gy # Gyx - - - %G,
of G,,.

Definition 4. According to M. It6 [6], we call {¢}?_, (resp. {¢7}2-y)
the system of balayaged measures of ¢ on F with respect to the system
(Gz, R Gzzv Gza)(reSp~ (GZ(a—p)) GZ(a-—-p+1)’ ) GZa))‘ We denote by
{Cey.00)i}r-o and {(e} ;0):}?-, the systems of balayaged measures on CQ of
the unit measure ¢, on y. The Green function of order 2« in 2 is

defined by G&(, 1) =Gp(@—9) — 3 Gou_i(&) 0a)i(@). If 0<a=1, then
1=0

Gi(x, y)=G2(y, x) and hence GZ(x, y) is measurable as a function of y.
Remark. In general G2(x, ) is not symmeiric, but we can prove
by the same way as in [6], that

G (x, y):j- . ~IG§<a_p>(x, 2)GE(21,2) - - -G (2p, Wz, - - -dz,

where G, _,, (resp. Gy) is the Green function of order 2(a—p)(resp. 2)
for £ and hence G2(x,y) is measurable as a function of y. For any
positive measure u, put

G;mx):jGéz(x, Wdpy) and G2 pu(a) = j G2y, 2)d p().
Then we have
GE p(2) =Gy, pr() — z Gae iy 124)

v y4
G p(®) = G p1(2) — G 1/ (%) — 23 Gaamvin 1 (2).
5. First, we treat with the case that 0<a<1.
Theorem 2. Let 0<a<l and Q2 be a domain in R*. Then the
Green function G (x, y) is the kernel of the functional space P<(Q2), that
18, U, =G p in P(Q) for every measure p e E,(2).
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Proof. Let w be a relatively compact domain such that @C 2 and
e(x) be a positive function in Cy(R") satisfying e(x)=0 for |z|=1 and

Je(m)dx:l. Put e, (x)=p "e(x/p) for 0<p=<1. Then

Gs.pxe,(x) e Co(R™ N P(R™),

Gs.p e, (x)—Gy, p(x) in P*(R™) as p—0,
because Gy, ¢t € P*(R™)(see [2], p. 423). On the other hand

G p(x) =Gy, p1(x) — Gy, 1, (2) =0 on Cw exc. U,,.

Therefore, for any sufficiently small p, Gg,xe () € P*(2) and hence
Gyt € P(2). We shall show that G2 ¢t € P«(2). Let {w,} be an exhaus-
tion of Q. Then Giyrpe P«(2). The sequence {uf,,} of balayaged
measures of ¢ on Cw, converges strongly to p;, in E, (R")(cf. [3]).
Therefore {Gjrp} converges strongly to GZp in P+(R") and hence
Gy e P(Q). For any function ¢ in C7(2), we have

(¢, U’;a)azfsod# =f90d# —jsod/«t’m =(¢, G, ).
This implies that G ¢=U:, in P*(2), because C:(2) is dense in P*(2).

6. Since G, (8)=(2r)~“?(1+|&P)-*, there exists a distribution T,
such that T, + G,,=¢, (.e., T,=@n)"*(1 +|£P)®). Similarly as in [6], we
define a-harmonic functions as follows.

Definition 5. A function u(x) is said to be a-harmonic in 2 in the
theory of Bessel potentials if it satisfies the following conditions:

(a) w(x) is defined in R” exc. ¥,, and locally integrable in R”.

®) T.*uis defined and T, +u=0 in £ in the sense of distributions.

Lemma 1. Let p be a positive measure with finite total mass.
Then the potential G, p(x) is a-harmonic in Cs, for any integer i such
that 0<1<p.

Proof. The equality (¢,—4)'G,, =G, _;, holds for every positive
integer 7 and (ey— s p=(ey— D+ T, % Gy pt=T %Gy, _,,pr. Hence the
convolution 7T,xG,, ¢ is defined. Since (5p—Nix p=0 in Cs,
T *Gyu_iyp=01in Cs,. Therefore G,,_; p(x) is a-harmonic in Cs,.

Remark. By this lemma, the Green function G£(x,y) is a-har-
monic in 2—{x}.

Theorem 3. Let 2 be a domain in R* and p e E,,(2). Then there
exists an a-harmonic function Ht (x) in 2 such that

Ut (@)= G, (@) + HE,(2).

Proof. Put H;,=Ui,—GL . Then we have

V4
Hga: (Ué‘v( - Guﬂ) + g GZ(a—i)ﬂ;‘
Since S, is compact, jd ;< + oo for every i such that 0<i<p. There-

fore, by Lemma 1, Zp} Gu_ry i 18 a-harmonic in 2. On the other hand,
=0
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the convolution T, (U4, —G,pt) is defined. By the definition of Uy,
there exists a sequence {x,} of signed measures supported by CQ such
that G, ¢,—(Us,— G, 1) strongly in P*(R") and hence in the sense of
distributions. Since G,,/, is a-harmonic in 2, T,* G, tt,=0 in 2 and
hence T, (Us,—G,,.)=0 in 2 in the sense of distributions. Therefore
(U4, —Gp ) is a-harmonic in Q. This means that Hf, is a-harmonic
in Q.

Lemma 2. Suppose Ui, =Gip for every peE,(2). Then é;{, 7
=G p exc. W, for every pe K, (2).

Proof. Let ¢ and v be any measures in F,,(2). By the assump-
tion

f G2(@, dv(@)d p(y) = (Ut,, Uz = (Us, U= j G2(y, ©)d p(y)dv(x)
and hence

[@tp@ -G panav@=o.

This means that G2 p(w):éfa p(x) exe. A,,, because v is arbitrary.

Theorem 4. The following conditions are equivalent:

(a) There exists a bounded domain 2 (x0) in R* such that the
Green function Gi(x,y) is the kernel of P*(Q2) i.e., UL, =GLp in P(Q)
for every peFE, (2Q).

(b) There exist a bounded domain 2 in R™ and a measure (=0
wn E,,(2) such that G p e P(Q) and G2 y:é;{, pin P(9).

(c) 0<a<l.

Remark. If there exists a domain which satisfies the condition in
(a) or in (b), then by Theorem 2, every domain satisfies the same condi-
tion.

Proof. We have already showed the relations (¢)=>(a)(in Theorem
2) and (a)=>(b)(in Lemma 2) and therefore we shall prove here the rela-
tion (b)=>(c).

First we suppose that 1<a<2 (i.e., p=1). (b) implies

GZaﬂ — GZaI/‘fv“ sz—nﬂ;: Gz«ﬂ—“ GZaﬂg,_' Gzﬂ{,o
By Lemma 1, this means that G,z is a-harmonic in 2 and hence
To st =T, T %G/ =T, xGu=0 in £.
By the definition of T',_,, we have f‘,,,_1=(27r)"/2(1+|€{2)““. If 1<a<?,
then by Levy-Khintchine’s theorem on negative definite functions, there
exists a symmetric positive measure ¢ in R*—{0} such that

(1) A4EP=I=14 j a—enda@)

(2) I do(y)< + oo and j- [y do(y) <+ oo for any r>0
lzi>r 0

<lyl<r

(see, for example, M. Itd [5]). We can see thatj lyFdo(y)>0 for
lyl<a
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any 0>0. Because, if J [y} do(y)=0, then by (2)[ do(y) < + co.
ly1<do ly1>0

Therefore (1+|£ )~ should be bounded by (1) and hence a contradic-
tion. Let ¢ € C5(2). Then we have

0="T, s (@)= [od ! + [ (@)= 1+ 0o )
and hence fpi’*gz)(y)da(y) =0. On the other hand, the fact

j lyf do(y) >0 implies that I ¢+ o0 for a suitable choice of ¢.
lyl<a

This leads us to a contradiction.
Next we suppose that a=2. (b) means that G, p—G,p

— ?:“1 Gyp—iin i belongs to P+(2)C P¥(£) and hence G, * (p_ll G-y 2+ #Z)

belongs to PX(R™). Therefore by (I) piGmM) pi + ) is a function in
i=1

L*(R™). Thisis a contradiction, because 2 is a measure on the bound-
ary 02 of 0.

Therefore (b) implies (¢). This completes the proof.
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