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Abstract

Let G, H be finite groups. We asymptotically compute |Hom (G, H? A,)|,
thereby establishing a conjecture of T. Miiller.

Let G, H be finite groups. T. Miiller[2] developed an enumerative theory of
homomorphisms ¢ : G — H1S,, as n — oo, and asked to generalize this theory
to other sequences of groups. In particular, he conjectured the following.

Conjecture 1. Let G, H be a finite groups. Then we have for n — oo

1 1//G|

|Hom(G,H ! An)’ = (m + O(e_cn

)) [Hom(G, H1S,)],

where s, (G) is the number of subgroups of index 2 in G.
It is the aim of this note to proof this conjecture.
Theorem 1. Conjecture 1 holds true for all finite groups G and H.

One of the applications of wreath product representations is the recognition of
finite index subgroups of infinite groups. Let I be an infinite group, A a subgroup
of index n. The action of I' on the cosets I'/A by shift defines a homomorphism
¢ : I = S;. If in addition we know the number of lifts of ¢ to homomorphisms
p : T — HS,, we can compute |[Hom(A, H)|. Doing so for different choices
of H one can in certain situations gather sufficient information to reconstruct A.
For I being a free product of cyclic groups of prime order this reconstruction was
completed in [3], for free products of arbitrary finite groups in [5].
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Comparing homomorphisms into H ! A, with homomorphisms into H? Sy,
gives information on the embedding of finite index subgroups in large groups.
More precisely define for a subgroup A of a group I' the core A® as the normal
subgroup (J,cr A”. Then the case H = 1 of Theorem 1 implies that the proba-
bility that a random subgroup A of index n of a free product I' = Gy *...G, of
finite groups satisfies I'/A® = A, converges to [/_; ﬁ(@) The case of general
H yields that the property I'/A® = A, and the isomorphism type of A are asymp-
totically independent. It would be interesting to generalize such considerations
to arbitrary virtually free groups.

We now turn to the proof of the Theorem. We denote by 7 the canonical pro-
jection H?S, — S;, and by € the sign homomorphism S, — C;. We view C;
as {£1} C Z, that is, we write the group operation of C, multiplicatively, but
allow for the addition of values as in Z. Let ¢ : G — H! S, be a homomor-
phism. Then eomo @ : G — C; has a kernel containing G2G’. We denote the
induced homomorphism V = G/G>G’ — C, by ¢. To prove our theorem it is
therefore sufficient to show that if ¢ € Hom(G, H! S;) is chosen at random, then
the distribution of @ converges to a uniform distribution. This is certainly true if
52(G) = 0, because then G = G?>G’. We shall therefore from now on assume that
s2(G) > 0, that is, V is a non-trivial elementary abelian 2-group. Then our claim
is equivalent to the statement that for every non-trivial v € V we have

1 ~1/|6|

hi(G,H) := plo) <o ’
”( ) |H01’1’1(G,H l Sn)| qgeHorr;G,HZSn) 90( )

where we identified C; with {+1} C Z.
We first compute the dependence of h%(G, H) on H.

Lemma 1. Let G, H be finite groups, ¢ : G — S, a transitive permutation represen-
tation, w : H1S,, — Sy, the canonical projection. Then the number of homomorphisms
¢ : G — HS, satisfying wo Y = @ equals |H|" 1.

Proof. This follows form the proof of [3, Proposition 1], more precisely the equal-
ity between [3, (8)] and [3, (9)]. ]

Next we compute the generating series of 13 (G, H).

Lemma 2. We have

v |G| k—1 .k
Z hn(S!/H)xn = exp (Z Z ¢(0)|H|k' X ) .

v>0 k=1 ¢:G—Sytransitive

Proof. This is a weighted version of the exponential principle, see e.g. [6, Theo-
rem 5.1.4]. We only have to show that if 7 o ¢ decomposes as o ¢ = @ a;i;,
where the i; are transitive permutation representations, then ¢(v) = []¢(v)%.
However, this follows immediately from the fact that € is a homomorphism. =

To deal with the generating series we need a stability result similar to [4], note
however, that here we do not require P, to be Hayman admissible. In fact it is
easy to see that )~ hZ(S!’H) x" is Hayman admissible if and only if s,(G) = 0,

which is precisely the case we are not interested in.
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Lemma 3. Let P;(x) = ZV 1 av x" be a polynomial with non-negative real coefficients,

(1) £ 0,and let P, = Y4_, avz) Y be a polynomial with complex coefficients satisfying
|a | < av for all v < d. Define the sequences b](, ), b(z) by the relation ) ;. %x” =
ePi%), Then either there exists some complex number { with |{| = 1, such that P;(x) =
P>(Cx), or there is some ¢ > 0 such that |b](,2) | < e—ev'/" |b](,1) | for all v sufficiently large.

Proof. Let p, be the unique real solution of the equation pP’'(p) = n. It then
follows from Hayman’s theorem [1, Theorem I] that

bt exp(P1(pn)) .
o/ 27 (0P} (pu) + 03P" (o))

(2)

We now express b, using Cauchy’s integral formula as

P~ 1 / ep(Pa(z) .

Zn+1
aBPn (0)

to obtain

max | exp(P2(z)]

[
max | exp(Py(z)

/2 1z1=pn
< (V2o e o)

max | exp(P(z)]
n1/2|ZF:Pn b(l)
exp(P1(pn))

<

where we used the fact that for n — co we have p, ~ cn'/?. Hence it suffices to
show that either there is some { with P;(x) = P»({x), or

max RP(z) < Py(p,) — cnt/?

|z|=pn

for some ¢ > 0. If there exists some v with |a](,2)] < a](,l), then this follows im-
mediately from the triangle inequality. Define the function f : [0,27r] — [0, o)
by

f(0) = max |v0 + arg a1(, ) mod 27|,

1<v<d

a,#0

where we normalize mod in such a way that it takes values in [—7, 7). Being
continuous, this function either has a zero ¢, or it is uniformly bounded from
below by some positive constant . In the first case we obtain P,(x) = P;(efx),
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while in the second we have

d

Pi(pu) — RPo(ep,) = Y (1— Relv0+arga)) oy
1

(1 —Re®) min a, 0!,

>
- 1<v<d
a,#0
> ((1 - cosd) min a,)n'/4.
1<v<d
a, #0
Hence in either case our claim follows. ]

We can now finish the proof of the theorem. We have to show that for v # 0
we have h%(G, H) < e="'h%(G, H). We have

. f{k_l f{k_l
Yy gefle oy H

:G—Sytransitive ’ :G— Sitransitive

for every k, hence we can apply Lemma 3 to find that either our claim holds true,
or there exists some { with |{| = 1, such that

G| k=1 k |G| k—1 k
|H| |[H[*(Cx)
)3 Y, 9 Z Y

k=1 :G— Sitransitive k=1 y:G—Sitransitive

Consider first the coefficient of x in these polynomials. There is only the trivial
representation G — S; = 1, hence the coefficient of x on both sides equals 1, and
we conclude ¢ = 1.

Next we consider the coefficient of x%. Let U < G/G2G' be a subspace of co-
dimension 1, which does not contain v, and U be the preimage of U under the
canonical map G — G/G?G’. Then ¢g : G — G/U = S, is a homomorphism, for
which ¢g(v) = —1, and we conclude that

— |H H
21:: E: ¢(U)L5l < z: Lii ::zb/
:G—Sytransitive :G—Sytransitive
say, while the equality P;(x) = P>({x) implies that ¥y = {?%,. Clearly both ¥
and ¥, are real, and we conclude that {> = —1. However, this contradicts the
condition { = 1 obtained from the coefficient of x, and our claim follows.
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