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Abstract

We study in this paper the space L∞
0 (S , Ma(S)) of a locally compact semi-

group S . That space consists of all µ-measurable (µ ∈ Ma(S)) functions
vanishing at infinity, where Ma(S) denotes the algebra of all measures with
continuous translations. We introduce an Arens multiplication on the dual
L∞

0 (S , Ma(S))∗ of L∞
0 (S , Ma(S)) under which Ma(S) is an ideal. We then

give some characterizations for Arens regularity of Ma(S) and L∞
0 (S , Ma(S))∗.

As the main result, we show that Ma(S) or L∞
0 (S , Ma(S))∗ is Arens regular

if and only if S is finite.

1 Introduction

Let S denote a locally compact semigroup, that is a semigroup with a locally com-
pact Hausdorff topology under which the binary operation of S is jointly con-
tinuous. As usual, C0(S) denotes the space of all continuous complex-valued
functions on S vanishing at infinity, and M(S) denotes the Banach space of all
bounded complex-valued regular Borel measures on S with the total variation
norm. The convolution multiplication ∗ is defined on M(S) as the dual of C0(S)
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by the equation

〈µ ∗ ν, g〉 =
∫

S

∫

S
g(xy) dµ(x) dν(y)

for all
µ, ν ∈ M(S) and g ∈ C0(S);

then M(S) with this multiplication is a Banach algebra. It is well-known from
Wong [19] that the latter equality also holds for all

µ, ν ∈ M(S) and g ∈ L1(|µ| ∗ |ν|).

The space of all measures µ ∈ M(S) for which the maps

x 7−→ δx∗ | µ | and x 7−→| µ | ∗δx

from S into M(S) are weakly continuous is denoted by Ma(S) (or L̃(S) as in
[1]), where δx denotes the Dirac measure at x. Then Ma(S) is a closed two-sided
L-ideal of M(S); see Baker and Baker [1]. The locally compact semigroup S is
called foundation if the set

⋃
{supp(µ) : µ ∈ Ma(S)} is dense in S .

A complex-valued function g on S is said to be Ma(S)-measurable if it is
µ-measurable for all µ ∈ Ma(S). Denote by L∞(S , Ma(S)) the set of all bounded
Ma(S)-measurable functions on S formed by identifying functions that agree
µ-almost everywhere for all µ ∈ Ma(S). For each g ∈ L∞(S , Ma(S)), define

‖ g ‖∞= sup{ ‖g‖∞,|µ| : µ ∈ Ma(S) },

where ‖.‖∞,|µ| denotes the essential supremum norm with respect to |µ|. Observe

that L∞(S , Ma(S)) with the complex conjugation as involution, the pointwise
operations and the norm ‖.‖∞ is a commutative C∗-algebra with the constant
function one as identity. The duality

〈g, µ〉 :=
∫

S
g dµ

defines a linear mapping from L∞(S , Ma(S)) into the dual space Ma(S)∗ of Ma(S).
It is well-known from Sleijpen [17] that if S is a foundation semigroup with iden-
tity, then L∞(S , Ma(S)) can be identified with Ma(S)∗.

Note that a function g ∈ L∞(S , Ma(S)) vanishes at infinity if for each ε > 0,
there is a compact subset K of S for which

‖gχS\K‖∞ ≤ ε;

that is,
|g(x)| ≤ ε

for µ-almost all x ∈ S \ K (µ ∈ Ma(S)). We denote by L∞
0 (S , Ma(S)) the

C∗-subalgebra of L∞(S , Ma(S)) consisting of all functions in L∞(S , Ma(S)) that
vanish at infinity. Note that L∞

0 (S , Ma(S)) is the ‖.‖∞-closure of L∞
00(S , Ma(S)),

the space of all functions f ∈ L∞(S , Ma(S)) with compact support.
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In the case where G is a locally compact group, L∞
0 (G, Ma(G)) is the space

L∞
0 (G) of all essentially bounded measurable functions that vanish at infinity.

In this paper, we introduce and study an Arens multiplication on
L∞

0 (S , Ma(S))∗ for certain foundation semigroups S with identity. As the main
result, we prove that Ma(S) or L∞

0 (S , Ma(S))∗ is Arens regular if and only if S
is finite. Our work improves an interesting result of Singh [15] and Young [20]
for locally compact groups G to a more general setting of locally compact semi-
groups; these results are based on the previous investigation concerning L∞

0 (G)
by Lau and Pym [9] and Isik, Pym, and Ülger [6].

2 The C∗-algebra L∞
0 (S , Ma(S))

The locally compact semigroup S is said to be compactly cancellative if the sets
C−1D and CD−1 are compact subsets of S for all compact subsets C and D of S ,
where

C−1D = {x ∈ S : cx = d for some c ∈ C, d ∈ D },

CD−1 = {x ∈ S : c = xd for some c ∈ C, d ∈ D }.

Given any µ ∈ Ma(S) and g ∈ L∞(S , Ma(S)), the complex-valued functions
g ◦ µ and µ ◦ g are defined on S by

(g ◦ µ)(x) = 〈µ, xg〉

and

(µ ◦ g)(x) = 〈µ, gx〉

for all x ∈ S , where the function xg and gx are defined on S by

xg(y) = g(xy) and gx(y) = g(yx)

for all x, y ∈ S . The weak continuity of the mappings

x 7→ δx ∗ µ and x 7→ µ ∗ δx

from S into Ma(S) together with that

(g ◦ µ)(x) = 〈δx ∗ µ, g〉

and

(µ ◦ g)(x) = 〈µ ∗ δx, g〉

for all x ∈ S imply that g ◦ µ and µ ◦ g are continuous. Also,

‖g ◦ µ‖∞ ≤ ‖g‖∞ ‖µ‖

and

‖µ ◦ g‖∞ ≤ ‖g‖∞ ‖µ‖.
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So, if we denote by Cb(S) the Banach space of all bounded continuous complex-
valued functions on S , then

L∞(S , Ma(S)) ◦ Ma(S) ⊆ Cb(S)

and
Ma(S) ◦ L∞(S , Ma(S)) ⊆ Cb(S).

Let X be a closed subspace of L∞(S , Ma(S)) with

X ◦ Ma(S) ⊆ X

and
Ma(S) ◦ X ⊆ X.

Then as easily checked X can be considered as a Banach Ma(S)-bimodule. In fact,
X equipped with the map (µ, g) 7→ g ◦ µ from Ma(S) × X into X is a Banach left
Ma(S)-module; also, X equipped with the map (g, µ) 7→ µ ◦ g from X × Ma(S)
into X is a Banach right Ma(S)-module; moreover,

(µ ◦ g) ◦ ν = µ ◦ (g ◦ ν)

for all µ, ν ∈ Ma(S) and g ∈ L∞(S , Ma(S)), and so X is Banach Ma(S)-bimodule.
In particular, L∞(S , Ma(S)) and Cb(S) are Banach Ma(S)-bimodules.

A bounded net (̺ι)ι∈I in Ma(S) is said to be a bounded right approximate identity
for X whenever

‖̺ι ◦ g − g‖∞ → 0

for all g ∈ X. A bounded left approximate identity for X is defined similarly; by a
bounded approximate identity for X, we shall mean a bounded left and right approx-
imate identity for X.

Proposition 2.1. Let S be a compactly cancellative locally compact semigroup. Then

L∞
0 (S , Ma(S)) ◦ Ma(S) ⊆ C0(S)

and
Ma(S) ◦ L∞

0 (S , Ma(S)) ⊆ C0(S).

In particular, C0(S) and L∞
0 (S , Ma(S)) are Banach Ma(S)-bimodules.

Proof. Let µ ∈ Ma(S) and g ∈ L∞
0 (S , Ma(S)). As we have already seen µ ◦ g ∈

Cb(S). To prove that µ ◦ g vanishes at infinity, without loss of generality, we may
assume that g and µ have compact support E and D, respectively. Then

supp(µ ◦ g) ⊆ D−1E.

In particular, supp(µ ◦ g) is compact, and so

µ ◦ g ∈ L∞
0 (S , Ma(S)).

Therefore
Ma(S) ◦ L∞

0 (S , Ma(S)) ⊆ C0(S).
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The other inclusion follows similarly.

A function f ∈ Cb(S) is called left uniformly continuous if the map x 7→ x f
from S into Cb(S) is norm continuous. A right uniformly continuous is defined
similarly; by a uniformly continuous function, we shall mean a left and right uni-
formly continuous function. The Banach space of all left (resp. right) uniformly
continuous functions on S is denoted by LUC(S) (resp. RUC(S)); we also set

UC(S) := LUC(S) ∩ RUC(S).

Let us recall that a bounded right approximate identity in the Banach algebra
Ma(S) is a bounded net (̺ι)ι∈I ⊆ Ma(S) such that

‖µ ∗ ̺ι − µ‖ → 0

for all µ ∈ Ma(S). A bounded left approximate identity in Ma(S) is defined sim-
ilarly; also, a bounded approximate identity in Ma(S) is a bounded left and right
approximate identity in Ma(S).

Proposition 2.2. Let S be a foundation semigroup with identity. Then LUC(S) is a
Banach Ma(S)-bimodule, and every bounded right approximate identity in Ma(S) is a
bounded right approximate identity for LUC(S).

Proof. First, recall that for each µ ∈ Ma(S), the hypothesis implies that the map
x 7→ µ ∗ δx from S into Ma(S) is norm continuous; see Dzinotyweyi [5], Theorem
5.6.1. Next, note that

x(µ ◦ g) = (µ ∗ δx) ◦ g

for all x ∈ S and g ∈ L∞(S , Ma(S)). It follows that

µ ◦ g ∈ LUC(S)

for all g ∈ L∞(S , Ma(S)); that is,

Ma(S) ◦ L∞(S , Ma(S)) ⊆ LUC(S).

In particular,
Ma(S) ◦ LUC(S) ⊆ LUC(S),

and hence LUC(S) is a Banach right Ma(S)-module.
Now, suppose that (̺ι)ι∈I is a right approximate identity in Ma(S) bounded

by the constant B > 0. Then for every f ∈ LUC(S) and ε > 0, there is a neigh-
bourhood U of the identity element e of S such that

‖x f − f‖∞ < ε

for all x ∈ U. Since S is foundation, there exists a probability measure ̺ in Ma(S)
with

supp (̺) ⊆ U.

Then
‖̺ ◦ f − f‖∞ ≤ ε.
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So, for each ι ∈ I we have

̺ι ◦ (̺ ◦ f ) = (̺ ∗ ̺ι) ◦ f

and therefore

‖̺ι ◦ f − f‖∞ ≤ ‖̺ι ◦ f − ̺ι ◦ (̺ ◦ f )‖∞

+ ‖̺ι ◦ (̺ ◦ f )− ̺ ◦ f‖∞ + ‖̺ ◦ f − f‖∞

≤ B ‖ f − ̺ ◦ f‖∞

+ ‖(̺ ∗ ̺ι) ◦ f − ̺ ◦ f‖∞ + ‖̺ ◦ f − f‖∞

≤ 2 (B + 1) ε + ‖̺ ∗ ̺ι − ̺‖.

This shows that
‖̺ι ◦ f − f‖∞ → 0;

that is, (̺ι)ι∈I is a bounded right approximate identity for LUC(S).
Now, recall from Sleijpen [16], Theorem 5.16, that there is a bounded approx-

imate identity (νγ)γ∈Γ in Ma(S). By what we have already seen, (νγ)γ∈Γ is a
bounded right approximate identity for LUC(S). Thus, the Cohen factorization
theorem [3], Theorem 11.10, yields that

Ma(S) ◦ LUC(S) = LUC(S).

So, if f ∈ LUC(S) and µ ∈ Ma(S), then

σ ◦ h = f

for some σ ∈ Ma(S) and h ∈ LUC(S); this yields that

f ◦ µ = (σ ◦ h) ◦ µ = σ ◦ (h ◦ µ).

Consequently,
f ◦ µ ∈ Ma(S) ◦ L∞(S , Ma(S)),

and hence
f ◦ µ ∈ LUC(S).

It follows that
LUC(S) ◦ Ma(S) ⊆ LUC(S)

whence LUC(S) is a Banach Ma(S)-bimodule.

Proposition 2.2 has the following analogue for RUC(S).

Proposition 2.3. Let S be a foundation semigroup with identity. Then RUC(S) is a
Banach Ma(S)-bimodule, and every bounded left approximate identity in Ma(S) is a
bounded left approximate identity for RUC(S).

A combination of Propositions 2.2 and 2.3 lead naturally to the following re-
sult.

Corollary 2.4. Let S be a foundation semigroup with identity. Then UC(S) is a Ba-
nach Ma(S)-bimodule, and every bounded approximate identity in Ma(S) is a bounded
approximate identity for UC(S).
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The following remark shows that in Corollary 2.4, the space UC(S) cannot be
replaced by LUC(S) or RUC(S).

Remark 2.5. Let S be a foundation semigroup with identity.
(a) There is a bounded approximate identity for LUC(S) only if

LUC(S) ⊆ RUC(S);

indeed, if there is a bounded approximate identity (νγ)γ∈Γ ⊆ Ma(S) for LUC(S),
then for each function f ∈ LUC(S) we have

‖ f ◦ νγ − f‖∞ → 0;

since
f ◦ νγ ∈ L∞(S , Ma(S)) ◦ Ma(S) ⊆ RUC(S)

for all γ ∈ Γ, it follows that f ∈ RUC(S). Thus

LUC(S) ⊆ RUC(S).

(b) There is a bounded approximate identity for RUC(S) only if

RUC(S) ⊆ LUC(S);

this follows by an argument similar to (a).

For foundation semigroups with identity Proposition 2.1 becomes particularly
interesting as the following result shows.

Proposition 2.6. Let S be a compactly cancellative foundation semigroup with identity.
Then every bounded approximate identity in Ma(S) is a bounded approximate identity
for C0(S). Furthermore,

(a) C0(S) ◦ Ma(S) = L∞
0 (S , Ma(S)) ◦ Ma(S) = C0(S).

(b) Ma(S) ◦ C0(S) = Ma(S) ◦ L∞
0 (S , Ma(S)) = C0(S).

Proof. Since S is compactly cancellative, it follows from Lemma 1.2 of Lau and
Loy [8] that

C0(S) ⊆ UC(S).

So, by Corollary 2.4, any bounded approximate identity in Ma(S) is a bounded
approximate identity for C0(S).

To prove (a), recall that Ma(S) has a bounded approximate identity; see for
example Sleijpen [16], Theorem 5.16. So, there is a bounded approximate iden-
tity in Ma(S) for C0(S). Moreover, C0(S) is a Banach Ma(S)-bimodules. So, an
application of the Cohen factorization theorem [3], Theorem 11.10, implies that

Ma(S) ◦ C0(S) = C0(S);

similarly,
C0(S) ◦ Ma(S) = C0(S).

These equalities together with C0(S) ⊆ L∞
0 (S , Ma(S)) complete the proof.

We end this section with the following example which shows that Proposi-
tions 2.6 is, in general, not valid if the hypothesis that S is foundation with iden-
tity is dropped.
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Example 2.7. Let S = [0, ∞) be the semigroup with the operation xy = max{x, y}
and the usual topology of the real line. Then S is a non-foundation locally com-
pact semigroup with

Ma(S) = {0};

however, C0(S) is the space of all continuous complex-valued functions f on S
with

lim
x→+∞

| f (x)| = 0.

3 An Arens product on L∞
0 (S , Ma(S))∗

We commence this section with the following key lemma.

Lemma 3.1. Let S be a locally compact semigroup and m ∈ L∞
0 (S , Ma(S))∗. Then for

each ε > 0, there is a compact subset C ⊆ S with

|〈m, h〉| ≤ ε ‖h‖∞

for all h ∈ L∞
0 (S , Ma(S)) with supp(h) ⊆ S \ C.

Proof. Since L∞
0 (S , Ma(S))∗ is spanned by its positive elements, we can assume

m ≥ 0. Let σ denote the restriction of m to C0(S). Then for every ε > 0, there is a
compact subset C of S such that

σ(S \ C) < ε/2.

Let (Cα) be the family of compact subsets of S directed by upward inclusion.
Then (χCα

) is a bounded approximate identity in the C∗-algebra L∞
0 (S , Ma(S)).

Now, let n be the linear functional on L∞
0 (S , Ma(S)) defined by

〈n, g〉 = 〈m, g χS\C〉

for all g ∈ L∞
0 (S , Ma(S)). Since n is a positive functional on the C∗-algebra

L∞
0 (S , Ma(S)), it follows that

‖n‖ = lim
α
〈n, χCα

〉.

So, there exists α0 such that

〈n, χCα0
〉 ≥ ‖n‖ − ε/2.

Choose a function φ ∈ C0(S) with

χCα0
≤ φ ≤ 1.

Then

〈n, χCα0
〉 ≤ 〈n, φ〉

≤ ‖n|C0(S)‖

= σ(S \ C)
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which shows that ‖n‖ ≤ ε. Therefore

|〈m, h〉| = |〈m, h χS\C〉|

= |〈n, h〉|

≤ ε ‖h‖∞

for all h ∈ L∞
0 (S , Ma(S)) with supp(h) ⊆ S \ C.

Let S be a compactly cancellative locally compact semigroup. For every
m ∈ L∞

0 (S , Ma(S))∗ and g ∈ L∞
0 (S , Ma(S)), we denote by mg the linear func-

tional defined on Ma(S) by

〈mg, µ〉 = 〈m, µ ◦ g〉 (µ ∈ Ma(S)).

Proposition 3.2. Let S be a compactly cancellative foundation semigroup with identity.
Then L∞

0 (S , Ma(S)) is a left introverted subspace of L∞(S , Ma(S)); i.e.,

mg ∈ L∞
0 (S , Ma(S))

for m ∈ L∞
0 (S , Ma(S))∗ and g ∈ L∞

0 (S , Ma(S)).

Proof. The map µ 7→ 〈m, µ ◦ g〉 is a bounded linear functional on Ma(S), and
hence mg ∈ Ma(S)∗. Since S is a foundation semigroup with identity, mg can be
considered as a function in L∞(S , Ma(S)) such that

〈mg, µ〉 = 〈m, µ ◦ g〉 (µ ∈ Ma(S)).

We show that mg ∈ L∞
0 (S , Ma(S)). To this end, without loss of generality, we

may assume that g has compact support E. Recall from Lemma 3.1 that for each
ε > 0, there exists a compact subset C of S such that

|〈m, h〉| ≤ ε ‖h‖∞

for all h ∈ L∞
0 (S , Ma(S)) with

supp(h) ⊆ S \ C.

Then
‖(mg)χEC−1‖∞ ≤ ε ‖g‖∞ .

Indeed, for each µ ∈ Ma(S) with compact support D in S \ EC−1, we get

D−1E ∩ C = ∅.

Therefore,
supp(µ ◦ g) ⊆ D−1E ⊆ S \ C

and hence
∣∣∣∣
∫

S
mg dµ

∣∣∣∣ = |〈mg, µ〉|

= |〈m, µ ◦ g〉|

≤ ε ‖µ ◦ g‖∞

≤ ε ‖µ‖ ‖g‖∞.
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Since EC−1 is compact in S , it follows that mg ∈ L∞
0 (S , Ma(S)).

Let S be as in Proposition 3.2. We endow L∞
0 (S , Ma(S))∗ with the first Arens

product “·” defined by

〈m · n, g〉 = 〈m, ng〉

for all m, n ∈ L∞
0 (S , Ma(S))∗ and g ∈ L∞

0 (S , Ma(S)). Then L∞
0 (S , Ma(S))∗ with

this product is a Banach algebra.
For each µ ∈ Ma(S), let µ also denote the functional in L∞

0 (S , Ma(S))∗

defined by

〈µ, g〉 :=
∫

S
g dµ

for all g ∈ L∞
0 (S , Ma(S)) ). Note that this duality defines a linear isometric em-

bedding of Ma(S) into L∞
0 (S , Ma(S))∗; indeed,

C0(S) ⊆ L∞
0 (S , Ma(S)) ⊆ L∞(S , Ma(S)) ⊆ Ma(S)∗,

and
sup{|〈µ, ϕ〉| : ϕ ∈ C0(S) } = ‖µ‖ = sup{|〈µ, f 〉| : f ∈ Ma(S)∗}.

Also, observe that for any µ, ν ∈ Ma(S) and g ∈ L∞
0 (S , Ma(S)),

µ · ν = µ ∗ ν

and
µg = g ◦ µ.

Furthermore, an easy application of Goldstein’s theorem shows that Ma(S) is
weak∗ dense in L∞

0 (S , Ma(S))∗.

Proposition 3.3. Let S be a compactly cancellative foundation semigroup with identity.
Then Ma(S) is a two-sided closed ideal in L∞

0 (S , Ma(S))∗ .

Proof. Trivially Ma(S) is a closed subspace of L∞
0 (S , Ma(S))∗.

Now, suppose that µ ∈ Ma(S) and m ∈ L∞
0 (S , Ma(S))∗. We show that

µ · m ∈ L∞
0 (S , Ma(S))∗;

that
m · µ ∈ L∞

0 (S , Ma(S))∗

is similar. Let ν ∈ M(S) be the restriction of m to C0(S). Since Ma(S) is a two-
sided ideal in M(S) we have

µ ∗ ν ∈ Ma(S).

So it suffices to show that
µ · m = µ ∗ ν.

To that end, note that if g ∈ L∞
0 (S , Ma(S)), then

µ ◦ g ∈ C0(S)
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by Proposition 2.1. Hence

〈m, µ ◦ g〉 = 〈ν, µ ◦ g〉.

On the one hand,

〈µ · m, g〉 = 〈µ, mg〉

= 〈m, µ ◦ g〉,

and on the other hand,

〈ν, µ ◦ g〉 =
∫

S
(µ ◦ g)(y) dν(y)

=
∫

S

∫

S
g(xy) dµ(x) dν(y)

=
∫

S
g(t) d(µ ∗ ν)(t)

= 〈µ ∗ ν, g〉.

That is µ · m = µ ∗ ν as required.

Proposition 3.4. Let S be a foundation semigroup with identity. Then Ma(S) coincides
with L∞

0 (S , Ma(S))∗ if and only if S is discrete.

Proof. The “if” part is clear. To prove the converse, suppose that

Ma(S) = L∞
0 (S , Ma(S))∗.

Let E be an extension of δe from C0(S) to an element of L∞
0 (S , Ma(S))∗, where e

denotes the identity element of S . Then E = µ for some µ ∈ Ma(S). In particular,

φ(e) = E(φ) = µ(φ)

for all φ ∈ C0(S). Thus
δe = µ ∈ Ma(S);

that is, S is discrete; see Baker and Baker [1], Theorem 2.8.

We end this section with the following result.

Proposition 3.5. Let S be a compactly cancellative foundation semigroup with identity.
Then L∞

0 (S , Ma(S))∗ has a bounded approximate identity if and only if it has an identity.

Proof. If L∞
0 (S , Ma(S))∗ has a bounded approximate identity (uγ), and u is a

weak∗ cluster point of (uγ) in L∞
0 (S , Ma(S))∗, we may assume that

uγ → u

in the weak∗ topology. Let m ∈ L∞
0 (S , Ma(S))∗. Then the weak∗ continuity of the

map n 7→ n · m on L∞
0 (S , Ma(S))∗ shows that

uγ · m → u · m
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in the weak∗ topology of L∞
0 (S , Ma(S))∗. But

uγ · m → m

in the norm topology of L∞
0 (S , Ma(S))∗. So u · m = m.

So, for each µ ∈ Ma(S), by the weak∗ continuity of the map n 7→ µ · n on
L∞

0 (S , Ma(S))∗ we conclude that

µ · uγ → µ · u

in the weak∗ topology of L∞
0 (S , Ma(S))∗. This together with that (uγ) is a bounded

approximate identity for L∞
0 (S , Ma(S))∗ imply that

µ · u = µ.

It follows that m · u = m by the weak∗ density of Ma(S) in L∞
0 (S , Ma(S))∗.

4 Arens regularity of Ma(S) and L∞
0 (S , Ma(S))∗

Let us recall that the first Arens product ⊙ on the second dual of a Banach algebra
A is defined by

〈F ⊙ G, ϕ〉 = 〈F, G ϕ〉

for all F, G ∈ A
∗∗ and ϕ ∈ A

∗, where

〈G ϕ, a〉 = 〈G, ϕ a〉

and
〈ϕ a, b〉 = 〈ϕ, ab〉

for a, b ∈ A. Then A∗∗ endowed with ⊙ is a Banach algebra. For any G in A∗∗, the
map

F 7→ F ⊙ G

is weak∗-weak∗ continuous on A
∗∗. For an element F in A

∗∗, the map

G 7→ F ⊙ G

is in general not weak∗-weak∗ continuous on A
∗∗ unless F is in A.

The Banach algebra A is called Arens regular if the map G 7→ F ⊙ G is weak∗-
weak∗ continuous on A∗∗ for all F ∈ A∗∗; this is equivalent to that the set

{ϕa : a ∈ A, ‖a‖ ≤ 1 }

is relatively weakly compact for all ϕ ∈ A∗. Let ℓ1(S) denote the closed subalge-
bra of M(S) consisting of all discrete measures.
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Lemma 4.1. Let S be a foundation semigroup with identity. If ℓ1(S) or Ma(S) is Arens
regular, then S is discrete.

Proof. If ℓ1(S) is Arens regular, then M(S) is also Arens regular; see Young [20].
Since Ma(S) is a closed ideal in M(S), it follows that Ma(S) is Arens regular; see
Corollary 6.3 of [4].

It is well-known that Ma(S) has a bounded approximate identity and is the
unique predual of von Neumann algebra L∞(S , Ma(S)); see [13], Lemma 2.2. In
particular, Ma(S) is weakly sequentially complete.

So, by the use of Ülger’s criterion for Arens regularity of weakly sequentially
complete Banach algebras, the Arens regularity of Ma(S) implies that Ma(S) has
an identity element δ; see Ülger [18], Theorem 3.3. One can easily check that δ is
also an identity element of L∞

0 (S , Ma(S))∗. Now, apply Theorem 3.3 to conclude
that

Ma(S) = L∞
0 (S , Ma(S))∗.

In particular, S is discrete by Corollary 3.4.

The next examples show that Lemma 4.1 is not true without the assumption
that S is foundation with identity.

Example 4.2. (a) Let S = [0, 1] be equipped with the usual multiplication and
the real line topology. Then

Ma(S) = {cδ0 : c ∈ C},

and thus S is a non-foundation semigroup with identity and Ma(S) is regular,
but S is not discrete.

(b) Let S = [0, 1] be equipped with the multiplication x.y = 0 for all x, y ∈ S
and the real line topology. Then S is a foundation semigroup without identity,
and Ma(S) and ℓ1(S) are regular, but S is not discrete.

A function f ∈ Cb(S) is called weakly almost periodic if the set { fx : x ∈ S } is
relatively weakly compact in Cb(S). The set of all weakly almost periodic func-
tions on S is denoted by WAP(S).

We now are in a position to give the main result of this paper.

Theorem 4.3. Let S be a compactly cancellative foundation semigroup with identity.
Then the following statements are equivalent.

(a) L∞
0 (S , Ma(S))∗ is Arens regular.

(b) Ma(S) is Arens regular.
(c) M(S) is Arens regular.
(d) ℓ1(S) is Arens regular.
(e) S is finite.

Proof. The equivalence of (c) and (d) is well-known; see Young [20]. If (d) holds,
then S is discrete by Lemma 4.1, and hence finitely cancellative; i.e.,

{x}−1{y} and {x}{y}−1
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are finite subsets of S for all x, y ∈ S . This shows that (e) holds; see Dzinotyiweyi
[5] or Baker and Rejali [2].

Suppose that L∞
0 (S , Ma(S))∗ is Arens regular. Since Ma(S) is a closed ideal of

L∞
0 (S , Ma(S))∗, it follows that Ma(S) is also Arens regular; see Civin and Yood

[4], Corollary 6.3. This shows that (a) implies (b). Clearly (e) implies (a).
To prove that (b) implies (e), suppose that Ma(S) is Arens regular. For every

f ∈ Cb(S), the set

K( f ) = {µ ◦ f : µ ∈ Ma(S), ‖µ‖ ≤ 1 }

is relatively weakly compact in Cb(S). Let (νγ) be an approximate identity of
probability measures in Ma(S); see Sleijpen [16], Theorem 5.16 or the second
author [13], Lemma 2.2. Then

νβ ◦ f → f

in the weak topology of Cb(S) for some subnet (νβ) of (νγ). Now, invoke Propo-
sition 2.2 to conclude that

νβ ◦ f ∈ LUC(S)

for all β, and hence f ∈ LUC(S). So, for every x ∈ S we have

‖νγ ◦ fx − fx‖∞ = sup
y∈S

|(νγ ◦ f )(yx) − f (yx)|

≤ ‖νγ ◦ f − f‖∞.

Next, recall from Proposition 2.2 that (νγ) is a bounded left approximate identity
for LUC(S), and therefore

‖νγ ◦ fx − fx‖∞ → 0.

This shows that
{ fx : x ∈ S} ⊆ K( f ),

and hence f ∈ WAP(S). We thus have shown that

WAP(S) = Cb(S).

But this is equivalent to that S is compact; see Dzinotyweyi [5], Corollary 4.3.9 .
So, the result will follow if we show that S is discrete. To see this, recall that

Ma(S) is the predual of von Neumann algebra L∞(S , Ma(S))∗ , and hence Ma(S)
is weakly sequentially complete. Thus Ma(S) has an identity; see Ülger [18],
Theorem 3.3. In particular, S is discrete; see Baker and Baker [1], Theorem 2.8.

Corollary 4.4. Let H be a locally compact subsemigroup of a locally compact group G
with positive Haar measure and with identity. the following statements are equivalent.

(a) L∞
0 (H, Ma(H))∗ is Arens regular.

(b) Ma(H) is Arens regular.
(c) M(H) is Arens regular.
(d) ℓ1(H) is Arens regular.
(e) H is finite.
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Proof. Let λH be the restriction of the Haar measure λ of G on H. Then

Ma(H) = L1(H, λH);

see Sleijpen [16], Theorem 4.10. This implies that H is foundation. So the result
follows from Theorem 4.3.

A special case of this result gives Theorem 7(a) in Singh [15].

Corollary 4.5. Let G be a locally compact group. Then L∞
0 (G)∗ is Arens regular if and

only if G is finite.

For a more general statement of Corollary 4.5 see [12]. Another special case of
our main result gives the following description of Arens regularity for the group
algebra L1(G) of a locally compact group G; this is due to Young [20]; see also
Isik, Pym and Ülger [6], Lau and Losert [7], and Neufang [14].

Corollary 4.6. Let G be a locally compact group. Then L1(G) is Arens regular if and
only if G is finite.

We conclude the paper by the following examples.

Example 4.7. (a) Let S = {0} ∪ {1/n : n ≥ 1} ∪ {1/2 + 1/n : n ≥ 1} and set

B = {{x} : x 6= 0} ∪ {{0} ∪ {1/n : n ≥ k} : k ≥ 1}.

Then S with B as a base of the topology and the operation

xy = max{x, y}

defines a compactly cancellative foundation semigroup with identity. An applica-
tion of Theorem 4.3 shows that Ma(S) and L∞

0 (S , Ma(S))∗ are not Arens regular.
(b) Let H be the subsemigroup R+ of the additive group R consisting of

all non-negative real numbers. Then H with the restriction of the usual topol-
ogy of the real line defines a compactly cancellative foundation semigroup with
identity; indeed, Ma(H) coincides with the usual Lebesgue space L1(R+), and
L∞

0 (H, Ma(H)) is the space L∞
0 (R+) of all measurable functions g on R+ such

that
‖g χ(x,∞)‖∞ → 0 as x → +∞.

In view of Corollary 4.4, L1(R+) and L∞
0 (R+)∗ are not Arens regular.

Let S be a compactly cancellative foundation semigroup with identity. We de-
note by Z1(L∞

0 (S , Ma(S))∗) the first topological center of L∞
0 (S , Ma(S))∗ consisting

of all functionals m ∈ L∞
0 (S , Ma(S))∗ for which the map n 7→ m · n is weak∗-

weak∗ continuous on L∞
0 (S , Ma(S))∗. Note that

Ma(S) ⊆ Z1(L∞
0 (S , Ma(S))∗).

Let us recall from Lau and Pym [9] that for any locally compact group G,

Ma(G) = Z1(L∞
0 (G)∗).
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This result leads us to conclude the paper by the following natural conjecture.

Conjecture. For every compactly cancellative foundation semigroup with iden-
tity S ,

Ma(S) = Z1(L∞
0 (S , Ma(S))∗).
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