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Abstract

Let Ω1 and Ω2 be non empty open subsets of R
r and R

s respectively
and let ω1 and ω2 be weights. We introduce the spaces of ultradifferen-
tiable functions E(ω1,ω2)(Ω1 × Ω2), D(ω1,ω2)(Ω1 × Ω2), E{ω1,ω2}(Ω1 × Ω2) and
D{ω1,ω2}(Ω1 × Ω2), study their locally convex properties, examine the struc-
ture of their elements and also consider their links with the tensor products
E∗(Ω1)⊗E∗(Ω2) and D∗(Ω1)⊗D∗(Ω2) endowed with the ε-, π- or i-topologies.
This leads to kernel theorems.

1 Introduction

Spaces of ultradifferentiable functions can be defined by use of special sequences of
positive numbers or by use of weights. The first point of view has been developed
in [7]. In this paper, we investigate the second point of view. The results are
similar but not identical. We concentrate on the differences and refer to [7] when
the methods are the same.

All functions we consider are complex-valued and all vector spaces are C-vector
spaces. The euclidean norm of x ∈ R

n is designated by |x|. If f is a function on
A ⊂ Rn, we set ‖f‖A := supx∈A |f(x)|.

If E is a Hausdorff locally convex topological vector space (in short: a locally
convex space), then we designate by E ′ its topological dual endowed with the strong
topology β(E ′, E). If E and F are locally convex spaces, Lb(E,F ) designates the
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space of the continuous linear maps from E into F equipped with the bounded
convergence topology. We refer to [3] and [6] for properties of the locally convex
spaces.

Unless explicitely stated, r and s are positive integers; Ω1 and Ω2 are non empty
open subsets of Rr and Rs respectively; ω1 and ω2 are weights (notion defined in
Paragraph 2).

Definition. Let us describe the four basic spaces we deal with:
a) E(ω1,ω2)(Ω1 × Ω2) : its elements are the C∞-functions on Ω1 × Ω2 such that

‖f‖H×K,h := sup
(α,β)∈Nr

0
×Ns

0

‖D(α,β)f‖H×K

exp (ϕ∗1(h |α|)/h+ ϕ∗2(h |β|)/h)
<∞

for every h > 0 and compact subsets H of Ω1 and K of Ω2.
b) D(ω1,ω2)(Ω1 × Ω2) : its elements are those of E(ω1,ω2)(Ω1 × Ω2) which have a com-
pact support contained in Ω1 × Ω2.
c) E{ω1,ω2}(Ω1 × Ω2) : its elements are the C∞-functions on Ω1 × Ω2 such that, for
every compact subsets H of Ω1 and K of Ω2, there is h > 0 such that ‖f‖H×K,h <∞.
d) D{ω1,ω2}(Ω1 × Ω2) : its elements are those of E{ω1,ω2}(Ω1 × Ω2) which have a com-
pact support contained in Ω1 × Ω2.

As usual if a statement is valid for E(ω1,ω2)(Ω1 × Ω2) and E{ω1,ω2}(Ω1 × Ω2) [resp.
D(ω1,ω2)(Ω1 × Ω2) and D{ω1,ω2}(Ω1 × Ω2)], we simply write that it is valid for the
space E∗(Ω1 × Ω2) [resp. D∗(Ω1 × Ω2)].

In Paragraph 5, we endow these four spaces with locally convex topologies by
means of the auxiliary spaces E(ω1,ω2),h(H ×K) and D(ω1,ω2),h(H ×K) where H and
K are compact subsets of Ω1 and Ω2 respectively, these compact subsets being
strictly regular in the case of E(ω1,ω2),h(H ×K). We obtain that E(ω1,ω2)(Ω1 × Ω2)
is a Fréchet nuclear space; D(ω1,ω2)(Ω1 × Ω2) is a (LFN)-space; E{ω1,ω2}(Ω1 × Ω2) is
complete, nuclear and (by Proposition 6.4) ultrabornological; D{ω1,ω2}(Ω1 × Ω2) is a
(DFN)-space.

In the paragraphs 9 and 10, different approximation and denseness properties are
developed. This leads to the study of the structure of the elements of E∗(Ω1 × Ω2)
and D∗(Ω1 × Ω2) in Paragraph 11. We then investigate tensor product descriptions
of these spaces; in particular we obtain in part d) of Theorem 13.1 that the spaces
D∗(Ω1 × Ω2) and D∗(Ω1)⊗̂iD∗(Ω2) coincide, a result leading to kernel theorems in
Paragraph 13.

2 Weights

The Young conjugate of a function ψ : [0,∞[→ [0,∞[ which is convex, increasing
and such that ψ(0) = 0 and limy→∞ ψ(y)/y = ∞, is the function ψ∗ : [0,∞[→ [0,∞[
defined by ψ∗(y) := supx≥0(xy − ψ(x)). It is a convex and increasing function that
verifies ψ∗(0) = 0 and limy→∞ ψ

∗(y)/y = ∞.
Let us adopt the definition of Braun, Meise and Taylor (cf. [1]) and say that a

weight is a continuous and increasing function ω : [0,∞[→ [0,∞[ identically 0 on
the interval [0, 1] and verifying the following four conditions:
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(α) there is M > 1 such that ω(2t) ≤M(1 + ω(t)) for every t ≥ 0;
(β)

∫∞
0 ω(t)(1 + t2)−1 dt <∞;

(γ) limt→∞(log(1 + t))/ω(t) = 0;
(δ) the function ϕ : [0,∞[→ [0,∞[ defined by ϕ(t) = ω(et) is convex. So it has a
meaning to speak about the Young conjugate ϕ∗ associated to ω.

Lemma 2.1. If ω is a weight,
a) ϕ(t+ 1) ≤M(M + 1)(1 + ϕ(t)) for every t ≥ 0;
b) for every b ≥ M(M + 1) and h > 0, there is a0 > 0 such that

a+ ϕ∗(ah)/h ≤ 1/h+ ϕ∗(abh)/(bh), ∀a ≥ a0/(bh). (1)

Proof. a) It suffices to note that, for every t ≥ 0, we successively have ϕ(t+
1) ≤ ω(4et) ≤M(1 +M(1 + ω(et))) ≤M(M + 1)(1 + ϕ(t)).

b) So, by use of the Lemma 1.4 of [1], there is a positive number y0 such that
ϕ∗(y)− y ≥ bϕ∗(y/b)− b for every y ≥ y0. Hence the conclusion by setting y0 = a0,
replacing y by abh and dividing both members by bh.

In the proof of Lemma 2.2, we use the following information. Let the function
w : [0,+∞[→ [0,+∞[ be defined by w(t) = 0 if t ∈ [0, 1] and w(t) = t − 1 if
t ∈]1,+∞[. Then we have φ(t) := w(et) = et − 1 for every t ∈ [0,∞[ and the
function φ∗ : [0,∞[→ [0,∞[ defined by φ∗(y) := supx≥0(xy−φ(x)) is explicitely given
by φ∗(y) = 0 if y ∈ [0, 1] and φ∗(y) = y log(y)−y+1 if y ∈]1,+∞[. Given a weight ω,
we have ω(t)/t→ 0 if t→ ∞ hence there is B > 1 such that ω(t) ≤ Bt ≤ B(w(t)+1)
for every t ∈ [0,+∞[ hence xy−ϕ(x) ≥ B(xy/B−φ(x))−B for every x, y ∈ [0,+∞[.
This leads to: for every weight ω, there is B > 1 such that

Bφ∗(y/B) −B ≤ ϕ∗(y), ∀y ∈ [0,+∞[. (2)

Lemma 2.2. For every weight ω, there is B > 1 such that

α!(h/(4B))|α| ≤ exp(ϕ∗(h |α|)/h+B/h) (3)

for every h > 0, n ∈ N and α ∈ Nn
0 .

Proof. Let B > 1 verify the inequality (2). Given h > 0, n ∈ N and α ∈ N
n
0 ,

we clearly have

α!(h/(4B))|α| ≤ |α||α| (h/(4B))|α| = exp(|α| log(h |α| /(4B))).

As we also have

|α| log
(h |α|

4B

)
≤ 0 ≤

B

h
φ∗

(h |α|
B

)

if h |α| /(4B) ≤ 1 and

|α| log
(h |α|

4B

)
≤
B

h

(h |α|
B

log
(h |α|
eB

)
+ 1

)
=
B

h
φ∗

(h |α|
B

)

if h |α| /(4B) > 1, we conclude at once by use of the inequality (2).
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Notation. From now on, unless explicitely stated,
M > 1 is fixed so that ω1 and ω2 verify condition (α);
b is an integer such that b ≥M(M + 1).

Therefore there are a0 > 0 and B > 1 such that the inequalities (1) and (3) are
valid for ω = ω1 and ω = ω2. There also is C > 0 such that

a + ϕ∗j(ah)/h ≤ C + 1/h+ ϕ∗j(abh)/(bh), ∀a ∈ N0, j ∈ {1, 2}. (4)

3 The auxiliary space Ep(K)

Definition. A compact subset of Rn is strictly regular if it has a finite number
of connected components and if each of these connected components B verifies the
following two properties:
a) B is regular, i.e. B = B◦−;
b) there is a constant C > 0 such that, for every x, y ∈ B◦, there is a polygonal
path joining x to y in B◦, of length L ≤ C |x− y|.

It is immediate that a finite union ∪p
j=1Bj of closed balls in Rn is a strictly regular

compact set if, whenever Bj meets Bk, Bj ∩ Bk has non empty interior. Therefore
every non empty open subset of Rn has a cover (Kn)n∈N by means of a sequence of
strictly regular compact subsets such that Kn ⊂ K◦n+1 for every n ∈ N. Let us also
remark that, if the compact subsets K of R

r and K ′ of R
s are strictly regular, then

K ×K ′ is a strictly regular compact subset of Rr+s.

Notation. Let K be a strictly regular compact subset of Rn and let f be a
function defined on K◦. If, for some α ∈ Nn

0 , the derivative Dαf exists on K◦ and
has a continuous extension on K, Dαf will also designate this extension.

Definition. a) The notation Ep(K) requires that p is a non negative integer
and that K is a strictly regular compact subset of some euclidean space Rn. It
designates the following Banach space: its elements are those of Cp(K◦) whose
derivatives of order ≤ p have a continuous extension on K and its norm is |·|(K,p)

defined by
|f |(K,p) := sup

|α|≤p
‖Dαf‖K , ∀f ∈ Ep(K).

b) The notation Dp(K) requires that p is a non negative integer and that K is
a compact subset of some euclidean space Rn. It designates as usual the Banach
space of the C∞-functions on Rn with support contained in K and is equiped with
the norm |·|(K,p).

Construction. Let K be a strictly regular compact subset of Rn and let
us proceed as in ([4], p. 42). We first choose l > 0 so that K is contained in the
interior of L = [−l, l]n. Next we apply successively results of [9] and [10] and obtain
a continuous linear extension map E : En+1(K) → Dn+1(πL), i.e. a map such that
(Ef)|K = f for every f ∈ En+1(K).

For every m ∈ Zn, we introduce the linear functional um on Dn+1(πL) by

〈um, f〉 :=
∫

πL
f(y)e−i

∑
n

k=1
mkyk/l dy, ∀f ∈ Dn+1(πL).



About spaces of ω1-ω2-ultradifferentiable functions 649

If m = 0, we have |〈um, f〉| ≤ (2πl)n |f |(πL,n+1). If m 6= 0, we proceed as follows: we
choose j ∈ {1, . . . , n} such that |mj | ≥ |mk| for every k = 1, . . . , n and note that
this implies |mj | ≥ (1 + |m|)/(1 + n). Integrating n+ 1 times by parts with respect
to yj leads directly to the existence of some C > 1 such that

|〈um, f〉| ≤ C(1 + |m|)−n−1 |f |(πL,n+1) , ∀f ∈ Dn+1(πL), m ∈ Z
n.

Therefore for everym ∈ Zn, wm := (2πl)−num◦E is a continuous linear functional
on En+1(K), of norm |wm|(K,n+1) such that

|wm|(K,n+1) ≤ C(2πl)−n(1 + |m|)−n−1 ‖E‖ .

So, if we enumerate the set {wm : m ∈ Zn} as a sequence (vj)j∈N, we have
obtained the following information: there is a sequence (vj)j∈N in En+1(K)′ such
that

∞∑

j=1

|vj|(K,n+1) <∞ (5)

and

|g(x)| ≤
∞∑

j=1

|〈vj , g〉| , ∀g ∈ En+1(K), x ∈ K. (6)

4 The auxiliary spaces E(ω1,ω2),h(H ×K) and D(ω1,ω2),h(H ×K)

Definition. a) The notation D(ω1,ω2),h(H ×K) requires that H and K are
compact subsets of R

r and R
s respectively and that h is a positive number. It

designates the vector space of the C∞-functions f on Rr ×Rs with compact support
contained in H×K and such that ‖f‖H×K,h <∞, endowed with the norm ‖·‖H×K,h.
It is a Banach space.

b) The notation E(ω1,ω2),h(H ×K) requires that H and K are strictly regular
compact subsets of R

r and R
s respectively and that h is a positive number. It

designates the vector space of the C∞-functions f on H◦ × K◦, the derivatives of
which all have a continuous extension on H × K and such that ‖f‖H×K,h < ∞,
endowed with the norm ‖·‖H×K,h. It is a Banach space.

Proposition 4.1. The map

Λh : E(ω1,ω2),h(H ×K) × E(ω1,ω2),h(H ×K) → E(ω1,ω2),bh(H ×K)

(with b as in the Notation following Lemma 2.2) defined by Λh(f, g) = fg is well
defined, continuous and bilinear.

Proof. Given f , g ∈ E(ω1,ω2),h(H ×K), (α, β) ∈ Nr
0 × Ns

0 and (x, y) ∈ Rr ×

Rs, let us evaluate |D(α,β)(fg)(x, y)| as follows. We use the Leibniz formula, we
majorize the absolute value of the derivatives of f and g by means of ‖f‖H×K,h and
‖g‖H×K,h respectively, we group the exponentials in ϕ∗1 and ϕ∗2 separately, we use
the properties of ϕ∗1 and ϕ∗2 as well as the inequalities 2a ≤ ea for every a ∈ N and
the inequalities (4).This procedure leads to

∣∣∣D(α,β)(fg)(x, y)
∣∣∣ e−ϕ∗

1
(bh|α|)/(bh)−ϕ∗

2
(bh|β|)/(bh) ≤ e2C+2/h ‖f‖H×K,h ‖g‖H×K,h

and permits to conclude at once.
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Proposition 4.2. If h, k > 0 verify 2bh < k, then the canonical injection

J : E(ω1,ω2),h(H ×K) → E(ω1,ω2),k(H ×K)

is a well defined quasi-nuclear linear map.

Proof. It is immediate that J is a well defined continuous linear map.
For the sake of clear notations, let us write ‖.‖ for the norm in E(ω1,ω2),h(H ×K)′

and |.| for the norm in E(ω1,ω2),k(H ×K)′.
The construction made in Paragraph 3 provides a sequence (vj)j∈N in the space

Er+s+1(H ×K)′ such that
∑∞

j=1 |vj|(H×K,r+s+1) <∞ and

‖g‖H×K ≤
∞∑

j=1

|〈vj , g〉| , ∀g ∈ Er+s+1(H ×K). (7)

For every j ∈ N and (α, β) ∈ Nr
0 × Ns

0, let us define the continuous linear
functional u(α,β),j on E(ω1,ω2),k(H ×K) by

〈u(α,β),j , f〉 := 〈vj ,D
(α,β)f〉 exp(−ϕ∗1(k |α|)/k − ϕ∗2(k |β|)/k).

Then developing the functionals and using the inequality (7) provides

‖f‖H×K,k ≤
∑

(α,β)∈Nr

0
×Ns

0

∑

j∈N

∣∣∣〈u(α,β),j, f〉
∣∣∣ , ∀f ∈ E(ω1,ω2),k(H ×K).

Therefore, as every u(α,β),j also belongs to E(ω1,ω2),h(H ×K)′, to conclude we just

have to prove that we also have
∑

(α,β)∈Nr

0
×Ns

0

∑
j∈N

∥∥∥u(α,β),j

∥∥∥ <∞.

For every (α, β) ∈ Nr
0×Ns

0 and j ∈ N, let us evaluate
∥∥∥u(α,β),j

∥∥∥. For this purpose,

let f be any element of E(ω1,ω2),h(H ×K). As f belongs to E(ω1,ω2),k(H ×K), we have

∣∣∣〈u(α,β),j, f〉
∣∣∣ ≤ |vj | |D

(α,β)f |(H×K,r+s+1)e
−ϕ∗

1
(k|α|)/k−ϕ∗

2
(k|β|)/k

with

|D(α,β)f |(H×K,r+s+1) ≤ ‖f‖H×K,h sup
|(γ,δ)|≤r+s+1

eϕ∗

1
(h|α+γ|)/h+ϕ∗

2
(h|β+δ|)/h.

Now we note that for j ∈ {1, 2} and p, q ∈ N0 such that q ≤ r+s+1, the properties
of ϕ∗j provide

ϕ∗j (h(p+ q)) ≤ ϕ∗j (2hp)/2 + ϕ∗j (2h(r + s+ 1))/2.

So, if we set A(h) := exp(ϕ∗1(2h(r + s+ 1))/(2h) + ϕ∗2(2h(r + s+ 1))/(2h)), we end
up with

∥∥∥u(α,β),j

∥∥∥ ≤ A(h) |vj | exp
(ϕ∗1(2h |α|)

2h
−
ϕ∗1(k |α|)

k
+
ϕ∗2(2h |β|)

2h
−
ϕ∗2(k |β|)

k

)
.

Now we note that part b) of Lemma 2.1 provides

1

2h
ϕ∗j(2ah) ≤

1

2bh
ϕ∗j(2abh) +

1

2h
− a ≤

1

k
ϕ∗j (ak) +

1

2h
− a
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for every j ∈ {1, 2} and a ≥ a0/(2bh). So, setting d := a0/(2bh) and

B(h, k, d) := sup
|α|≤d

exp(ϕ∗1(2h |α|)/(2h) − ϕ∗1(k |α|)/k),

we get
∑

|α|≤d
|β|≥d

∑

j∈N

∥∥∥u(α,β),j

∥∥∥ ≤ A(h)B(h, k, d)e1/(2h)
∑

j∈N

|vj |
∑

|α|≤d
|β|≥d

e−|β| <∞

and similarly
∑
|α|≥d

∑
|β|≤d

∑
j∈N

∥∥∥u(α,β),j

∥∥∥ <∞.

Hence the conclusion since we also have
∑

|α|≥d
|β|≥d

∥∥∥u(α,β),j

∥∥∥ ≤ A(h)e1/h
∑

j∈N

|vj |
∑

|α|≥d
|β|≥d

e−|α|−|β| <∞.

As the same proof establishes that if h, k > 0 verify 2bh < k, then the canoni-
cal injection from D(ω1,ω2),h(H ×K) into D(ω1,ω2),k(H ×K) is a well defined quasi-
nuclear map, we get the following result (cf. [5]).

Proposition 4.3. If h, k > 0 verify 4b2h < k, the canonical injections

J : E(ω1,ω2),h(H ×K) → E(ω1,ω2),k(H ×K)

J : D(ω1,ω2),h(H ×K) → D(ω1,ω2),k(H ×K)

are well defined nuclear linear maps.

5 The spaces E∗(Ω1 × Ω2) and D∗(Ω1 × Ω2)

Definition. a) The notation D(ω1,ω2)(H ×K) requires that H and K are
compact subsets of Rr and Rs respectively. It is defined by

D(ω1,ω2)(H ×K) := lim
←−
m∈N

D(ω1,ω2),1/m(H ×K).

b) The notation E(ω1,ω2)(H ×K) requires that H and K are strictly regular
compact subsets of R

r and R
s respectively. It is defined by

E(ω1,ω2)(H ×K) := lim
←−
m∈N

E(ω1,ω2),1/m(H ×K).

By the results of Paragraph 4, D(ω1,ω2)(H ×K) and E(ω1,ω2)(H ×K) are Fréchet
nuclear spaces and, if H and K are strictly regular, D(ω1,ω2)(H ×K) is a closed
subspace of E(ω1,ω2)(H ×K).

Definition. Under analogous restrictions on H and K, we also introduce the
locally convex spaces

D{ω1,ω2}(H ×K) := lim
−→
m∈N

D(ω1,ω2),m(H ×K)

E{ω1,ω2}(H ×K) := lim
−→
m∈N

E(ω1,ω2),m(H ×K).

They are regular countable inductive limits and (DFN)-spaces; if H and K are
strictly regular, D{ω1,ω2}(H ×K) is a closed subspace of E{ω1,ω2}(H ×K).
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Definition. The notations E∗(Ω1 × Ω2) and D∗(Ω1 × Ω2) require that the
sequences (Hn)n∈N and (Kn)n∈N are compact exhaustions of Ω1 and Ω2 respectively,
by means of sequences of strictly regular compact sets such that Hn ⊂ H◦n+1 and
Kn ⊂ K◦n+1 for every n ∈ N. They are the locally convex spaces

E∗(Ω1 × Ω2) := lim
←−
m∈N

E∗(Hn ×Kn) and D∗(Ω1 × Ω2) := lim
−→
m∈N

D∗(Hn ×Kn).

So E(ω1,ω2)(Ω1 × Ω2) is a Fréchet nuclear space and D(ω1,ω2)(Ω1 × Ω2) is a strict
countable inductive limit of Fréchet nuclear spaces, it is a (LFN)-space.

The space E{ω1,ω2}(Ω1 × Ω2) carries a complicated locally convex structure but
certainly is complete and nuclear. In Proposition 6.4, we prove that it also is ul-
trabornological. The space D{ω1,ω2}(Ω1 × Ω2) is a strict countable inductive limit of
(DFN)-spaces hence is a (DFN)-space.

6 Elementary properties

Acting as in the proof of ([7], Proposition 3.1) leads to the following result.

Proposition 6.1. For every n ∈ N,

Λ(n) : E∗(Hn ×Kn) × E∗(Hn ×Kn) → E∗(Hn ×Kn); (f, g) 7→ fg

is a well defined continuous bilinear map. Therefore

Λ∗ : E∗(Ω1 × Ω2) × E∗(Ω1 × Ω2) → E∗(Ω1 × Ω2); (f, g) 7→ fg

also is a well defined continuous bilinear map.

In [1], one finds that, for every ε > 0, there are non-zero and positive functions
f ∈ D(ω1)(R

r) and g ∈ D(ω2)(R
s) with support contained in the closed ball of center

0 and radius ε/2.

So, using f ⊗ g and acting as in ([4], p. 61), one obtains that
a) for every non empty compact subset K of an open subset A of Rr × Rs, there is
a positive function in D(ω1,ω2)(R

r × Rs), identically 1 on a neighbourhood of K and
support contained in A;
b) for every finite open cover {Aj : j = 1, . . . , q} of a compact subset K of Ω1 ×Ω2,
there are positive function fj ∈ D(ω1,ω2)(Ω1 × Ω2) such that supp(ϕj) ⊂ Aj and∑q

j=1 ϕj ≡ 1 on a neighbourhood of K;
c) for every open cover {Aj : j ∈ N} of a non empty open subset A of Rr ×Rs, there
is a D(ω1,ω2)(R

r × R
s)-partition of unity subordinate to the cover.

As a consequence, we note that every continuous linear map from the space
D∗(Ω1 × Ω2) into a locally convex space has a support. In fact, a lot more can be
said: acting as in [7] leads directly to the following results.

Proposition 6.2. The set D∗(Ω1 × Ω2) is a sequentially dense vector subspace
of E∗(Ω1 × Ω2).
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Proposition 6.3. Let G be a locally convex space.
a) If A is a bounded subset of Ls(D∗(Ω1 × Ω2), G) and if there are compact subsets

H of Ω1 and K of Ω2 such that supp(S) ⊂ H × K for every S ∈ A, then every
S ∈ A has a unique continuous linear extension T (S) from E∗(Ω1 × Ω2) into G and
{T (S) : S ∈ A} is an equicontinuous subset of L(E∗(Ω1 × Ω2), G).

b) If the topology of G comes from a system of norms and if B is a simply
bounded set of sequentially continuous linear maps from E∗(Ω1 × Ω2) into G, then
there are compact subsets H of Ω1 and K of Ω2 such that, for every T ∈ B, the
support of the restriction of T to D∗(Ω1 × Ω2) is contained in H ×K.

c) Every simply bounded set of sequentially continuous linear maps from the space
E{ω1,ω2}(Ω1 × Ω2) into G is equicontinuous.

Theorem 6.4. The space E{ω1,ω2}(Ω1 × Ω2) is ultrabornological.

7 The spaces E∗(Ω) and D∗(Ω)

In this paragraph, given a weight ω and a non void open subset Ω of Rn, we make
precise the definition of the spaces E(ω)(Ω), E{ω}(Ω), D(ω)(Ω) and D{ω}(Ω) by use of
strictly regular compact subsets of Ω.

Definition. Given a weight ω, a strictly regular compact subset K of Rn and
a positive number h, the Banach space E(ω),h(K) is defined as follows: its elements
are the C∞-functions f on K◦ such that, for every α ∈ Nn

0 , Dαf has a continuous
extension on K and such that

‖f‖K,h := sup
α∈Nn

0

‖Dαf‖K exp(−ϕ∗(h |α|)/h) <∞;

its norm is ‖·‖K,h.
We then introduce the Fréchet space E(ω)(K) := lim←− E(ω),1/m(K) and the count-

able inductive limit of Banach spaces E{ω}(K) := lim−→ E(ω),m(K).
In a second step, we consider a non void open subset Ω of Rn and a countable

cover (Kn)n∈N of Ω by means of strictly regular compact sets such that Kn ⊂ K◦n+1

for every n ∈ N and set E(ω)(Ω) := lim←− E(ω)(Kn) and E{ω}(Ω) := lim←− E{ω}(Kn).
Moreover D(ω)(K) and D{ω}(K) denote respectively the subspaces of E(ω)(K) and

E{ω}(K), the elements of which have a compact support contained in K. Finally we
set D(ω)(Ω) := lim−→D(ω)(Kn) and D{ω}(Ω) := lim−→ E{ω}(Kn).

From now on, let us agree on the following use of the notations: if the notation
E∗(Ω1 × Ω2) [resp. D∗(Ω1 × Ω2)] appears in a statement as well as E∗(Ω1), E∗(Ω2),
D∗(Ω1) or D∗(Ω2), it means that two statements are valid:
a) one with E(ω1,ω2)(Ω1 × Ω2) [resp. D(ω1,ω2)(Ω1 × Ω2)]; in this case, the notations
become E(ω1)(Ω1), E(ω2)(Ω2), D(ω1)(Ω1) and D(ω2)(Ω2) respectively;
b) one with E{ω1,ω2}(Ω1 × Ω2) [resp. D{ω1,ω2}(Ω1 × Ω2)]; in this case, the notations
become E{ω1}(Ω1), E{ω2}(Ω2), D{ω1}(Ω1) and D{ω2}(Ω2) respectively.

Proposition 7.1. The bilinear map

λ∗ : E∗(Ω1) × E∗(Ω2) → E∗(Ω1 × Ω2); (f, g) 7→ f ⊗ g

and the canonical injection from E∗(Ω1)⊗π E∗(Ω2) into E∗(Ω1 × Ω2) are continuous.



654 J. Schmets – M. Valdivia

8 The space E (p!q!)(Rr × R
s)

Definition. By E (p!q!)(Rr × Rs), we designate the space of the C∞-functions
f on R

s ×R
s such that, for every h > 0 and compact subsets H of R

r and K of R
s,

|f |H×K,h := sup
(α,β)∈Nr

0
×Ns

0

‖D(α,β)f‖H×K

h|α|+|β|α!β!
<∞,

endowed with the system {|·|H×K,h : H ⋐ R
r, K ⋐ R

s, h > 0} of semi-norms. It
clearly is a Fréchet space.

We also denote by H(Cn) the Fréchet space of the holomorphic functions on Cn

endowed with the topology of uniform convergence on the compact sets. Classical
holomorphy arguments easily provide that the restriction map

Γ: H(Cr+s) → E (p!q!)(Rr × R
s); f 7→ f |Rr×Rs

is a well defined isomorphism.

Proposition 8.1. The restriction map

RΩ1×Ω2
: E (p!q!)(Rr × R

s) → E∗(Ω1 × Ω2); f 7→ f |Ω1×Ω2

is well defined, continuous and linear.

In fact, for every h > 0, there is B > 1 such that

‖RΩ1×Ω2
f‖H×K,h ≤ e2B/h |f |H×K,h/(4B)

for every f ∈ E (p!q!)(Rr × Rs) and strictly regular compact subsets H of Ω1 and K
of Ω2.

Proof. Let us establish first the second part of the statement.

Given h > 0, we choose B > 1 such that the inequalities (3) hold for ϕ∗ = ϕ∗1
and every α ∈ Nr

0 as well as for ϕ∗ = ϕ∗2 and every β ∈ Ns
0.

Then we note that, for every f ∈ E (p!q!)(Rr × Rs) and strictly compact subsets
H of Rr and K of Rs, we have

‖D(α,β)f‖H×K ≤ |f |H×K,h/(4B) (h/(4B))|α|+|β|α!β!

≤ |f |H×K,h/(4B) e
2B/h exp(ϕ∗1(h |α|)/h+ ϕ∗2(h |β|)/h)

hence the announced inequality and the fact that R|Ω1×Ω2
is a well defined linear

map.

At this point, the case ∗ = (ω1, ω2) is clear.

In the case ∗ = {ω1, ω2}, we note that, for every n ∈ N, the inequality we
just established implies the continuity of the linear map (RΩ1×Ω2

·)|Hn×Kn
from

E (p!q!)(Rr × Rs) into E(ω1,ω2),1(Hn ×Kn) hence into E{ω1,ω2}(Hn ×Kn). The conclu-
sion then follows at once.
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9 Approximation

Notation. For every m ∈ N, the function ψm is defined on Rr × Rs by

ψm(u, v) := mr+sπ−(r+s)/2e−m2|u|2e−m2|v|2, ∀(u, v) ∈ R
r × R

s.

Proposition 9.1. For every m ∈ N and f ∈ D∗(Rr × Rs), the function f ⋆ ψm

has a holomorphic extension on Cr+s hence belongs to E (p!q!)(Rr × Rs).

Proposition 9.2. For every f ∈ D∗(Ω1 × Ω2), (RΩ1×Ω2
(f ⋆ ψm))m∈N is a se-

quence in E∗(Ω1 × Ω2) converging to f .

Proof. There is n ∈ N such that f ∈ D∗(Hn ×Kn). So, in the case ∗ =
(ω1, ω2), f belongs to D(ω1,ω2),1/m(Hn ×Kn) for every m ∈ N and, in the case ∗ =
{ω1, ω2}, there is m ∈ N such that f belongs to D(ω1,ω2),m(Hn ×Kn).

Let f belong to D(ω1,ω2),h(Hn ×Kn) for some h > 0. For every m ∈ N, we just
proved that f ⋆ ψm belongs to E (p!q!)(Rr × Rs) hence, by Proposition 8.1, that its
restriction to Hn×Kn belongs to E(ω1,ω2),h(Hn ×Kn). We are going to prove that the
sequence ((f ⋆ ψm)|Hn×Kn

)m∈N converges to f in E(ω1,ω2),bh(Hn ×Kn), which allows
to conclude at once.

Let ε > 0 be given.
We first choose C > 0 for which the inequalities (4) hold and then fix q ∈ N such

that 2−qe2/h+2C ‖f‖Hn×Kn,h ≤ ε/2.

Now we evaluate ‖D(α,β)(f ⋆ ψm) − D(α,β)f‖Hn×Kn
.

If |α| + |β| ≥ q, we write down the convolution product and easily get

‖D(α,β)(f ⋆ ψm) − D(α,β)f‖Hn×Kn

≤ 2 ‖f‖Hn×Kn,h 2−|α|−|β| exp(|α| + ϕ∗1(h |α|)/h+ |β| + ϕ∗2(h |β|)/h)).

So the inequalities (4) and the choice of q provide

‖D(α,β)(f ⋆ ψm) − D(α,β)f‖Hn×Kn
≤ ε exp(ϕ∗1(bh |α|)/(bh) + ϕ∗2(bh |β|)/(bh)).

If |α|+ |β| < q, we note that {D(α,β)f : |α|+ |β| < q} is a finite set of continuous
functions on Rr × Rs with compact supports hence is a uniformly equicontinuous
set. Therefore there is δ > 0 such that

|D(α,β)f(x− u, y − v) − D(α,β)f(x, y)|

exp(ϕ∗1(bh |α|)/(bh) + ϕ∗2(bh |β|)/(bh))
≤
ε

2

for every (x, y), (u, v) ∈ Rr × Rs and (α, β) ∈ Nr
0 × Ns

0 such that |(u, v)| ≤ δ and
|α| + |β| < q. Now we set

M := 2 sup
|γ|+|δ|<q

‖D(γ,δ)f‖Rr×Rs

exp(ϕ∗1(bh |γ|)/(bh) + ϕ∗2(bh |δ|)/(bh))

and fix m0 ∈ N such that M
∫
|(u,v)|≥δ ψm du dv ≤ ε/2 for every m ≥ m0. There-

fore by writing down the convolution product and by splitting the integral on
{(u, v) : |(u, v)| ≤ δ} and {(u, v) : |(u, v)| ≥ δ}, we easily obtain

‖D(α,β)(f ⋆ ψm) − D(α,β)f‖Hn×Kn

exp(ϕ∗1(bh |α|)/(bh) + ϕ∗2(bh |β|)/bh))
≤ ε, ∀m ≥ m0.

Hence the conclusion by putting these two informations together.
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Proposition 9.3. For every f ∈ D∗(Ω1 × Ω2), there is a sequence of polynomials
on Rr+s converging to f in E∗(Ω1 × Ω2).

Therefore the set of the restrictions to Ω1 ×Ω2 of the polynomials on Rr ×Rs is
a dense vector subspace of E∗(Ω1 × Ω2).

Proof. The first statement can be established as Proposition 5.3 of [7] The
second is then a direct consequence of Proposition 6.2.

Proposition 9.4. The vector space D∗(Ω1)⊗D∗(Ω2) is a dense vector subspace
of D∗(Ω1 × Ω2).

Therefore E∗(Ω1) ⊗ E∗(Ω2) is a dense vector subspace of E∗(Ω1 × Ω2).

Proof. The first statement can be established as Proposition 7.1 of [7] The
second is then a direct consequence of Proposition 6.2.

10 Denseness of D∗(H) ⊗D∗(K) in D∗(H ×K)

Notation. Given b ∈ R
n and a function f on R

n, τbf designates the function
defined on Rn by (τbf)(·) = f(· − b).

Proposition 10.1. For every b ∈ Rn, the map τb is a well defined continuous
linear map from E∗(Rr × Rs) into itself.

Moreover we have limb→0 τbf = f for every f ∈ E∗(Rr × Rs).

Proof. The first part of the statement is immediate.
Now for any strictly regular compact subsets H of Rr andK of Rs, we first choose

strictly regular compact subsets H ′ of Rr and K ′ of Rs such that H ⊂ H ′◦ and
K ⊂ K ′◦. We next choose a positive number δ < d(H×K, (Rr ×Rs)\ (H ′◦×K ′◦))).
So for every b = (b1, b2) ∈ Rr×Rs such that |b| ≤ δ and (x, y) ∈ H×K, (x−b1, y−b2)
belongs to H ′ ×K ′.

In the case ∗ = (ω1, ω2), f |H′×K ′ belongs to E(ω1,ω2),1/m(H ′ ×K ′) for every m ∈ N;
in the case ∗ = {ω1, ω2}, f |H′×K ′ belongs to E(ω1,ω2),m(H ′ ×K ′) for some m ∈ N.

We are going to prove that, if f |H′×K ′ belongs to E(ω1,ω2),h(H
′ ×K ′) for some

h > 0, then, for every ε > 0, there is η > 0 such that ‖τbf − f‖H×K,bh ≤ ε for every
b ∈ Rr × Rs such that |b| ≤ η. The conclusion then follows at once.

Clearly the functions f |H×K and (τbf)|H×K belong to E(ω1,ω2),h(H ×K). We first
choose C > 0 for which the inequalities (4) hold and then fix q ∈ N such that
2−qe2C+2/h ‖f‖H′×K ′,h ≤ ε/2.

On one hand, for every (x, y) ∈ H×K, b = (b1, b2) ∈ Rr×Rs and (α, β) ∈ Nr
0×Ns

0

such that |b| ≤ δ and |α| + |β| ≥ q, the inequality (4) directly leads to

|D(α,β)f(x, y) − D(α,β)f(x− b1, y − b2)|

≤ 2e2C+2/h2−q ‖f‖H′×K ′,h exp(ϕ∗1(bh |α|)/(bh) + ϕ∗2(bh |β|)/(bh)).

On the other hand, {D(α,β)f : |α|+ |β| < q} is a finite set of continuous functions
on the compact set H ′ ×K ′. Therefore there is η > 0 such that

sup
|α|+|β|<q

sup
(x,y)∈H×K

|Dα,β)f(x, y) − D(α,β)f(x− b1, y − b2)|

exp(ϕ∗1(bh |α|)/(bh) + ϕ∗2(bh |β|)/(bh))
≤ ε
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for every b = (b1, b2) ∈ R
r × R

s such that |b| ≤ η.
These two informations put together provide the conclusion.

Definition. A subset B of Rn has the local displacement property if every
x ∈ B has a neighbourhood W such that, for every ε > 0, there is a ∈ Rn such that
|a| ≤ ε and a+ (B ∩W ) ⊂ B◦.

If B1, . . . , Bq are closed balls in Rn in finite number and such that Bj ∩Bk 6= ∅
implies that B◦j ∩B

◦
k 6= ∅, one can check that their union has the local displacement

property. Moreover if the compact subsets H of R
r and K of R

s have the local
displacement property, it is clear that H ×K also has this property.

Therefore, from now on, we agree that the covers (Hn)n∈N of Ω1 and (Kn)n∈N of
Ω2 consist of strictly regular compact sets having the local displacement property
and such that Hn ⊂ H◦n+1 and Kn ⊂ K◦n+1 for every n ∈ N.

An argument analogous to the one of the proof of ([7], Proposition 8.1) then
establishes the following result.

Proposition 10.2. If the compact subsets H of Rr and K of Rs have the local
displacement property, then the vector space D∗(H)⊗D∗(K) is a dense subspace of
D∗(H ×K).

11 Structure of the elements of E∗(Ω1 × Ω2) and D∗(Ω1 × Ω2)

If f belongs to E∗(Ω1 × Ω2), it is clear that, for every y ∈ Ω2, f(., y) belongs to
E∗(Ω1). Let us investigate this property.

Proposition 11.1. For every f ∈ E∗(Ω1 × Ω2), the function

g : Ω2 → E∗(Ω1); y 7→ f(., y)

is C∞ and such that [Dβf(y)](.) = D(0,β)f(., y) for every β ∈ Ns
0 and y ∈ Ω2.

Proof. For every β ∈ Ns
0, since D(0,β)f belongs to E∗(Ω1 × Ω2), Proposi-

tion 10.1 provides the continuity of the function gβ : Ω2 → E∗(Ω1) defined by gβ(y) =
D(0,β)f(., y). Therefore to conclude, it is enough to establish the formula in the case
|β| = 1. Let us do this for β = (1, 0, . . . , 0). So we only have to prove that

lim
k→0

(g(c+ ke1) − g(c))/h = gβ(c) in E∗(Ω1), ∀c ∈ Ω2.

Given c ∈ Ω2, we have c ∈ K◦n for n large enough. For such an integer n,
f |Hn×Kn

belongs to E(ω1,ω2),1/m(Hn ×Kn) for every m ∈ N if ∗ = (ω1, ω2) and to
E(ω1,ω2),m(Hn ×Kn) for some m ∈ N if ∗ = {ω1, ω2}.

If c belongs to K◦n and f to E(ω1,ω2),h(Hn ×Kn) for some h > 0, we are going to
prove that, for every ε > 0, there is δ > 0 such that

‖(g(c+ ke1) − g(c))/k − gβ(c)‖Hn,bh ≤ ε

if 0 < |k| ≤ δ. The conclusion then follows at once.
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Up to considering the real and imaginary parts of f separately, we may assume
f real valued. As c belongs to K◦n, there is η > 0 such that c + tke1 belongs to K◦n
for every t ∈ [0, 1] if |k| ≤ η. Let us consider k ∈ R such that 0 < |k| ≤ η. For every
x ∈ Ω1 and α ∈ Nr

0, the limited Taylor formula provides θ(k, x, α) ∈]0, 1[ such that

D(α,0)f(x, c+ ke1) − D(α,0)f(x, c) = kD(α,β)f(x, c+ θ(k, x, α)ke1).

Let a0 be a positive number such that the inequalities (1) hold for every a ≥
a0/(bh) and let q ≥ a0/(bh) be an integer such that

2−q ‖f‖Hn×Kn,h exp(1/h+ ϕ∗2(h)/h) ≤ ε/2.

As {D(α,β)f : |α| ≤ q} is a finite set of continuous functions on the compact set
Hn ×Kn, we can also choose δ ∈]0, η[ such that

|D(α,β)f(x, y) − D(α,β)f(x, y′)| ≤ ε exp(ϕ∗1(bh |α|)/(bh))

for every x ∈ Hn; y, y′ ∈ Kn and α ∈ Nr
0 such that |y − y′| ≤ δ and |α| ≤ q.

So for k ∈ R such that 0 < |k| ≤ δ, we arrive directly at

‖(g(c+ ke1) − g(c))/k − gβ(c)‖Hn,bh

≤ sup
{
ε, 2 sup

|α|>q
‖D(α,β)f‖Hn×Kn

exp(−ϕ∗1(bh |α|)/(bh))
}

with

sup
|α|>q

‖D(α,β)f‖Hn×Kn
exp(−ϕ∗1(bh |α|)/(bh))

≤ ‖f‖Hn×Kn,h sup
|α|>q

exp(ϕ∗1(h |α|)/h− ϕ∗1(bh |α|)/(bh) + ϕ∗2(h |β|)/h)

≤ 2−q ‖f‖Hn×Kn,h exp(1/h+ ϕ∗2(h)/h)

[to obtain the last inequality, we use the inequalities (1)].
Hence the conclusion.

Then one can proceed as in [7] and get the following properties.

Proposition 11.2. a) For every f ∈ E∗(Ω1 × Ω2) and S ∈ E∗(Ω1)
′, the function

〈S, f(., y)〉 belongs to E∗(Ω2) and verifies

Dβ〈S, f(., y)〉 = 〈S,D(0,β)f(., y)〉, ∀β ∈ N
s
0, y ∈ Ω2.

b) The bilinear map ∆∗ : E∗(Ω1 × Ω2) × E∗(Ω1)
′ → E∗(Ω2) defined by ∆∗(f, S) =

〈S, f(., y)〉 is well defined and hypocontinuous.

Permuting the roles of Ω1 and Ω2 as well as those of ω1 and ω2 leads to analogous
results and in particular to a hypocontinuous bilinear map ∗∆.

Proposition 11.3. For every f ∈ D∗(Ω1 × Ω2), the function

gβ : Ω2 → D∗(Ω1); y 7→ f(., y)

is C∞ and such that [Dβg(y)](.) = D(0,β)f(., y) for every β ∈ Ns
0 and y ∈ Ω2.
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Proposition 11.4. a) For every f ∈ D∗(Ω1 × Ω2) and S ∈ D∗(Ω1)
′, the function

〈S, f(., y)〉 belongs to D∗(Ω2) and verifies

Dβ〈S, f(., y)〉 = 〈S,D(0,β)f(., y)〉, ∀β ∈ N
s
0, y ∈ Ω2.

b) The bilinear map Γ∗ : D∗(Ω1,Ω2) × D∗(Ω1)
′ → D∗(Ω2) defined by Γ∗(f, S) =

〈S, f(., y)〉 is well defined and hypocontinuous.

Permuting the roles of Ω1 and Ω2 as well as those of ω1 and ω2 leads to analogous
results and in particular to a hypocontinuous bilinear map ∗Γ.

12 The tensor product ⊗ on the duals

Definition. Given S ∈ D∗(Ω1)
′ and T ∈ D∗(Ω2)

′, we know that
a) 〈S, f(., y)〉 belongs to D∗(Ω1) for every f ∈ D∗(Ω1 × Ω2) and y ∈ Ω2,
b) S ⊗ T : D∗(Ω1 × Ω2) → C defined by

〈S ⊗ T, f〉 = 〈T,Γ∗(f, S)〉 = 〈T, 〈S, f(., y)〉〉, ∀f ∈ D∗(Ω1 × Ω2)

is a continuous linear functional.
a’) 〈T, f(x, .)〉 belongs to D∗(Ω2) for every f ∈ D∗(Ω1 × Ω2) and x ∈ Ω1,
b’) T ⊗ S : D∗(Ω1 × Ω2) → C defined by

〈T ⊗ S, f〉 = 〈∗Γ(f, T )〉 = 〈S, 〈T, f(x, .)〉〉, ∀f ∈ D∗(Ω1 × Ω2)

is a continuous linear functional.
Since we have 〈S ⊗ T, f1 ⊗ f2〉 = 〈S, f1〉〈T, f2〉 = 〈T ⊗ S, f1 ⊗ f2〉 for every f ∈

D∗(Ω1) and g ∈ D∗(Ω2), Proposition 9.4 implies that these two continuous linear
functionals coincide. We call S ⊗ T = T ⊗ S the tensor product of S and T . In fact
the restriction of S⊗T = T⊗S to D∗(Ω1)⊗D∗(Ω2) coincides with the tensor product
of S and T considered as a continuous linear functional on D∗(Ω1) ⊗ε D∗(Ω2).

It is clear that if S and T have compact support, then S⊗T also has a compact
support.

Proposition 12.1. The map

χ∗ : E∗(Ω1)
′ × E∗(Ω2)

′ → E∗(Ω1 × Ω2)
′; (S, T ) 7→ S ⊗ T

is well defined, hypocontinuous and bilinear.
In the case ∗ = (ω1, ω2), χ∗ is continuous.

Proof. Clearly χ∗ is a well defined bilinear map.
As E∗(Ω1)

′ and E∗(Ω2)
′ are ultrabornological spaces, χ∗ is hypocontinuous if it is

separately continuous (cf. [6], III.5.2). Given S ∈ E∗(Ω1)
′, the continuity of χ∗(S, .)

can be established as in the proof of ([7],Proposition 11.1). As the same proof implies
the continuity of χ∗(., T ) for every T ∈ E∗(Ω2), we conclude at once.

To obtain the improvement of the case ∗ = (ω1, ω2), it suffices to note that
E∗(Ω1)

′ and E∗(Ω2)
′ are strong duals of Fréchet nuclear spaces.
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Proposition 12.2. The map

χ∗ : D∗(Ω1)
′ ×D∗(Ω2)

′ → D∗(Ω1 × Ω2)
′; (S, T ) 7→ S ⊗ T

is well defined, hypocontinuous and bilinear.
In the case ∗ = {ω1, ω2}, χ∗ is continuous.

Proof. For the general case, one can proceed as in the proof of Proposi-
tion 12.1. The improvement in the case ∗ = {ω1, ω2} is immediate if one notes
that D∗(Ω1)

′ and D∗(Ω2)
′ are Fréchet spaces.

13 Tensor properties and kernel theorems

Proceeding as in ([7], Paragraph 12) provides the following results. In d), given two
locally convex spaces E and F , E ⊗i F designates their tensor product endowed
with the inductive topology (cf. [2]) and of course E⊗̂iF its completion.

Theorem 13.1. a) The canonical algebraic isomorphism from E∗(Ω1) ⊗ E∗(Ω2)
as a subspace of E∗(Ω1 × Ω2) onto E∗(Ω1) ⊗ǫ E∗(Ω2) is continuous.

b) The spaces E∗(Ω1 × Ω2) and E∗(Ω1)⊗̂πE∗(Ω2) coincide.
c) If the compact subsets H of R

r and K of R
s have the local displacement

property, then the spaces D∗(H ×K) and D∗(H)⊗̂πD∗(K) coincide.
d) The spaces D∗(Ω1 × Ω2) and D∗(Ω1)⊗̂iD∗(Ω2) coincide.

Definition. A ∗-kernel on Ω1 × Ω2 is an element of D∗(Ω1 × Ω2)
′.

Given a ∗-kernel N on Ω1 × Ω2,

BN : D∗(Ω1) ×D∗(Ω2) → C; (f, g) 7→ N(f ⊗ g)

clearly is a bilinear functional. By Theorem 13.1.d), BN is separately continuous, the
functional N (f) := BN(f, .) belongs to D∗(Ω2)

′ for every f ∈ D∗(Ω1) and the map
N to L(D∗(Ω1),D∗(Ω2)

′). Similarly if g belongs to D∗(Ω2), then BN(., g) belongs to
D∗(Ω1)

′; in fact, BN(., g) = tN (g) where tN is the transpose of N .
Conversely the Theorem 13.1.d) also provides the following kernel theorems.

Theorem 13.2. a) If T is a continuous linear map from D∗(Ω1) into D∗(Ω2)
′,

then there is a ∗-kernel N on Ω1 × Ω2 such that N = T .
b) If S is a continuous linear map from D∗(Ω2) into D∗(Ω1)

′, then there is a
∗-kernel N on Ω1 × Ω2 such that tN = S.

Proceeding as in ([7], Paragraph 13) leads to the following results.

Theorem 13.3. a) The following spaces coincide

D{ω1,ω2}(Ω1 × Ω2) and D{ω1}(Ω1)⊗̂πD{ω2}(Ω2).

b) The spaces D∗(Ω1 × Ω2)
′, Bb(D∗(Ω1),D∗(Ω2)) and Lb(D∗(Ω1),D∗(Ω2)

′) coin-
cide.

c) The set of the finite rank elements with compact support is a dense vector
subspace of Lb(D∗(Ω1),D∗(Ω2)).

d) The spaces D∗(Ω1 × Ω2)
′ and D∗(Ω1)

′⊗̂εD∗(Ω2)
′ coincide.

A way to state the classical kernel theorem of Schwartz (cf. [8]) is given by the
equality D(Ω1 × Ω2)

′ = D(Ω1)
′⊗̂εD(Ω2)

′. Therefore the part d) also appears as a
refinement of the kernel theorem.
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14 Case ω1 = ω2

Proposition 14.1. Let the compact subsets H of Rr and K of Rs be strictly
regular and set L = H × K. Then, for every h > 0, the spaces E(ω),h(L) and
E(ω,ω),h(H ×K) coincide.

Proof. On one hand, every f ∈ E(ω,ω),h(H ×K) verifies

‖D(α,β)f‖L ≤ ‖f‖H×K,h exp(ϕ∗(h |α|)/h+ ϕ∗(h |β|)/h)

≤ ‖f‖H×K,h exp(ϕ∗(h |(α, β)|)/h)

for every (α, β) ∈ N
r+s
0 .

On the other hand, if f belongs to Eω,h(L), then, for every (α, β) ∈ Nr
0 × Ns

0, we
successively have

‖D(α,β)f‖H×K ≤ ‖f‖L exp(ϕ(h(|(α, β)|))/h)

≤ ‖f‖L,h exp(ϕ∗(2h |α|)/(2h) + ϕ∗(2h |β|)/(2h)).

Hence the conclusion.

Therefore we have the following properties.

Proposition 14.2. If the compact subsets H of Rr and K of Rs are strictly
regular and if we set L = H ×K,
a) the spaces E(ω)(L) and E(ω,ω)(H ×K) coincide.
b) the spaces E{ω}(L) and E{ω,ω}(H ×K) coincide.
c) the spaces D(ω)(L) and D(ω,ω)(H ×K) coincide.
d) the spaces D{ω}(L) and D{ω,ω}(H ×K) coincide.

If we set Ω = Ω1 × Ω2,
a) the spaces E(ω)(Ω) and E(ω,ω)(Ω1 × Ω2) coincide.
b) the spaces E{ω}(Ω) and D{ω,ω}(Ω1 × Ω2) coincide.
c) the spaces D(ω)(Ω) and D(ω,ω)(Ω1 × Ω2) coincide.
d) the spaces D{ω}(Ω) and D{ω,ω}(Ω1 × Ω2) coincide.
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Université de Liège
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