About spaces of w;-w--ultradifferentiable
functions

Jean Schmets Manuel Valdivia*

Abstract

Let Q1 and 29 be non empty open subsets of R” and R® respectively
and let w; and ws be weights. We introduce the spaces of ultradifferen-
tiable functions g(w1,w2)(91 X QQ), D(wl,wg)(Ql X QQ), g{wth}(Ql X QQ) and
Dy, e} (21 X Q2), study their locally convex properties, examine the struc-
ture of their elements and also consider their links with the tensor products
E«(21) ®E(Q2) and D, (1) ® D« (Q2) endowed with the e-, 7- or i-topologies.
This leads to kernel theorems.

1 Introduction

Spaces of ultradifferentiable functions can be defined by use of special sequences of
positive numbers or by use of weights. The first point of view has been developed
in [7]. In this paper, we investigate the second point of view. The results are
similar but not identical. We concentrate on the differences and refer to [7] when
the methods are the same.

All functions we consider are complex-valued and all vector spaces are C-vector
spaces. The euclidean norm of x € R" is designated by |z|. If f is a function on
A CRY, we set |[fl], = sup,es |£(2)].

If F is a Hausdorff locally convex topological vector space (in short: a locally
convex space), then we designate by F’ its topological dual endowed with the strong
topology B(E', E). If E and F are locally convex spaces, Ly(E, F') designates the
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space of the continuous linear maps from FE into F' equipped with the bounded
convergence topology. We refer to [3] and [6] for properties of the locally convex
spaces.

Unless explicitely stated, r and s are positive integers; {2; and )y are non empty
open subsets of R” and R?® respectively; w; and wy are weights (notion defined in
Paragraph 2).

Definition. Let us describe the four basic spaces we deal with:
a) Ewiw) (1 X ) : its elements are the C>°-functions on €2; x €y such that

[bal ‘= sup DD Fll i
HxK,h (o, 8)ENEXNS exp ((p’f(h |Oé|)/h + QO;(h ‘ﬁ‘)/h)

< 00

for every h > 0 and compact subsets H of 2; and K of {25.

b) Diwy ws) (§1 X Q) : its elements are those of E,; w,) (€21 % Q2) which have a com-
pact support contained in €2 x €2,.

) Efwrwo} (1 x Q) ¢ its elements are the C*°-functions on €2y x €2y such that, for
every compact subsets H of {2; and K of 2, there is & > 0 such that || f|| ;. s, < 0.
d) Dy, wo} (821 X €o) : its elements are those of Ep,, wy) (€1 X Q2) which have a com-
pact support contained in €2 x €2s.

As usual if a statement is valid for €, w,) (S % Q) and Epu, w1 (S x ) [resp.
D1 ,w9) (1 % Q) and Dy, wo1 (1 X )], we simply write that it is valid for the
space E,(§21 x Q) [resp. D.(2; x Q)]

In Paragraph 5, we endow these four spaces with locally convex topologies by
means of the auxiliary spaces £, w,)n(H X K) and D, w,)n(H x K) where H and
K are compact subsets of €; and ) respectively, these compact subsets being
strictly regular in the case of £, wy).n(H X K). We obtain that &, w,) (21 x )
is a Fréchet nuclear space; Dy, w,) (21 X Q) is a (LFN)-space; Eu, way (21 X o) is
complete, nuclear and (by Proposition 6.4) ultrabornological; Dy, w,} (€21 X £)s) is a
(DFN)-space.

In the paragraphs 9 and 10, different approximation and denseness properties are
developed. This leads to the study of the structure of the elements of £,(€2; x Qs)
and D, (€2, x Q) in Paragraph 11. We then investigate tensor product descriptions
of these spaces; in particular we obtain in part d) of Theorem 13.1 that the spaces
D, (9 x Q) and D, (,)®;D,(Qs) coincide, a result leading to kernel theorems in
Paragraph 13.

2 Weights

The Young conjugate of a function ¢: [0, 00[— [0, 0o which is convex, increasing
and such that ¢(0) = 0 and lim, .., ¥(y)/y = oo, is the function ¢*: [0, co[— [0, o]
defined by ¢*(y) := sup,~¢(zy — ¥ (z)). It is a convex and increasing function that
verifies ¢*(0) = 0 and lim,, ., ¥*(y)/y = oo.

Let us adopt the definition of Braun, Meise and Taylor (cf. [1]) and say that a
weight is a continuous and increasing function w: [0, co[— [0, 0o identically 0 on
the interval [0, 1] and verifying the following four conditions:
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() there is M > 1 such that w(2t) < M (1 + w(t)) for every t > 0;

(B) Joew(®)(1 + %)~ dt < oo;

() limn,_oo(log(1 + £)) /() = 0,

(0) the function ¢ : [0, 00[— [0, 00| defined by ¢(t) = w(e') is convex. So it has a
meaning to speak about the Young conjugate p* associated to w.

Lemma 2.1. Ifw is a weight,
a) p(t+1) < M(M + 1)(1 + p(t)) for every t > 0;
b) for every b > M(M + 1) and h > 0, there is ag > 0 such that

a+ ¢*(ah)/h < 1/h+ ¢*(abh)/(bh), Va > aog/(bh). (1)

Proof.  a) It suffices to note that, for every ¢t > 0, we successively have p(t +
1) <w(de’) < M(14+ M1 +w(e))) < M(M +1)(1+ o(t)).

b) So, by use of the Lemma 1.4 of [1], there is a positive number y, such that
©*(y) —y > bp*(y/b) — b for every y > 9. Hence the conclusion by setting yo = ay,
replacing y by abh and dividing both members by bh. [ ]

In the proof of Lemma 2.2, we use the following information. Let the function
w: [0,400[— [0,+00] be defined by w(t) = 0 if ¢ € [0,1] and w(t) = ¢t — 1 if
t €]1,400[. Then we have ¢(t) := w(e’) = e' — 1 for every ¢t € [0,00[ and the
function ¢*: [0, 0co[— [0, 0o defined by ¢*(y) := sup,~,(zy—¢(z)) is explicitely given
by ¢*(y) = 0if y € [0,1] and ¢*(y) = ylog(y) —y+1if y €]1, +-00[. Given a weight w,
we have w(t)/t — 0if t — oo hence there is B > 1 such that w(t) < Bt < B(w(t)+1)
for every t € [0, 400 hence xy—(z) > B(xy/B—¢(x))—B for every x, y € [0, +00.
This leads to: for every weight w, there is B > 1 such that

B¢*(y/B) — B < o"(y), Yy € [0,+o0l. (2)

Lemma 2.2. For every weight w, there is B > 1 such that
al(h/(4B))* < exp(¢*(h|al)/h + B/h) (3)
for every h >0, n € N and o € Nj.

Proof.  Let B > 1 verify the inequality (2). Given h > 0, n € N and «a € N,
we clearly have

al(h/(4B))" < |l (h/(4B))" = exp(|allog(h]al /(4B))).

As we also have

hloly < g < Byl

ol log (5 5 =79 \B

if h|a|/(4B) <1 and

h B /h h B . /h
s (15) < (s (351) 41 = o (5

if h]a|/(4B) > 1, we conclude at once by use of the inequality (2). u
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Notation. From now on, unless explicitely stated,
M > 1 is fixed so that w; and wy verify condition («);
b is an integer such that b > M (M + 1).
Therefore there are ap > 0 and B > 1 such that the inequalities (1) and (3) are
valid for w = w; and w = wy. There also is C' > 0 such that

a+@i(ah)/h < C+1/h+ ¢i(abh)/(bh), Va € No,j € {1,2}. (4)

3 The auxiliary space &,(K)

Definition. A compact subset of R" is strictly reqular if it has a finite number
of connected components and if each of these connected components B verifies the
following two properties:

a) B is regular, i.e. B = B°~;
b) there is a constant C' > 0 such that, for every x, y € B°, there is a polygonal
path joining x to y in B°, of length L < C'|z — y|.

It is immediate that a finite union U?ZIBJ- of closed balls in R is a strictly regular
compact set if, whenever B; meets By, B; N Bj has non empty interior. Therefore
every non empty open subset of R” has a cover (K,,),en by means of a sequence of
strictly regular compact subsets such that K, C K, for every n € N. Let us also
remark that, if the compact subsets K of R” and K’ of R® are strictly regular, then
K x K’ is a strictly regular compact subset of R"**.

Notation. Let K be a strictly regular compact subset of R™ and let f be a
function defined on K°. If, for some a € Nf, the derivative D“f exists on K° and
has a continuous extension on K, D f will also designate this extension.

Definition. a) The notation &,(K) requires that p is a non negative integer
and that K is a strictly regular compact subset of some euclidean space R™. It
designates the following Banach space: its elements are those of CP(K°) whose
derivatives of order < p have a continuous extension on K and its norm is H( K.p)

defined by
g p) = sup ID*fllc, Vf € &(K).
a|xp

b) The notation D,(K) requires that p is a non negative integer and that K is
a compact subset of some euclidean space R"™. It designates as usual the Banach
space of the C*°-functions on R™ with support contained in K and is equiped with
the norm [-[ .

Construction. Let K be a strictly regular compact subset of R” and let
us proceed as in ([4], p. 42). We first choose [ > 0 so that K is contained in the
interior of L = [—[,[]™. Next we apply successively results of [9] and [10] and obtain
a continuous linear extension map E: &,1(K) — D,y1(wL), i.e. a map such that
(Ef)|x = f for every f € &,11(K).

For every m € Z™, we introduce the linear functional w,, on D, 1(wL) by

(U, f) = /WL Fly)e i/l qy Y f € Dy (rL).
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If m =0, we have [(up, f)| < 270" [f|pnp1)- I m # 0, we proceed as follows: we
choose j € {1,...,n} such that |m;| > |my| for every k =1, ..., n and note that
this implies |m;| > (14 |m|)/(1 4+ n). Integrating n 4 1 times by parts with respect
to y; leads directly to the existence of some C' > 1 such that

[, £ < CA+ M) lepniry,  Vf € Dugalml),m € 27,

Therefore for every m € Z™, w,, := (27l) "u,oF is a continuous linear functional
on &,41(K), of norm |wp,| ;) such that

Wiy < C27D L+ ml) "B

So, if we enumerate the set {w,,: m € Z"} as a sequence (v;,);en, We have
obtained the following information: there is a sequence (vj)jen in E,11(K) such
that

) |vj|(K,n+1) <0 (5)
j=1

and

9(2)] < §\<vj,g>|, Vg€ Eup(K) € K. (6)

4 The auxiliary spaces &, ,,),(H x K) and D, .., ,(H x K)

Definition. a) The notation D, w.)x(H x K) requires that H and K are
compact subsets of R” and R® respectively and that h is a positive number. It
designates the vector space of the C*-functions f on R" x R* with compact support
contained in H x K and such that || f|| ;. s, < 00, endowed with the norm |[|-|| ;. s -
It is a Banach space. 7 7

b) The notation &y, w,)n(H x K) requires that H and K are strictly regular
compact subsets of R” and R® respectively and that h is a positive number. It
designates the vector space of the C*°-functions f on H° x K°, the derivatives of
which all have a continuous extension on H x K and such that ||f| . ., < 00,
endowed with the norm ||[| , x - It is a Banach space. 7

Proposition 4.1. The map
Ah: 5(wl,w2)7h(H X K) X g(whw),h(H X K) — 5(wl7w2),bh(H X K)

(with b as in the Notation following Lemma 2.2) defined by An(f,g9) = fg is well
defined, continuous and bilinear.

Proof.  Given f, g € Ewyw)n(H x K), (o, f) € Nj x Nj and (z,y) € R" x
R®, let us evaluate D@ (fg)(x,y)| as follows. We use the Leibniz formula, we
majorize the absolute value of the derivatives of f and g by means of || f||;;, 5, and
19|l x5, TESPECtiVEly, We group the exponentials in ¢} and ¢j separately, we use
the prof)erties of p] and ¢} as well as the inequalities 2 < e® for every a € N and
the inequalities (4).This procedure leads to

(DO (fg) ()| e FiCHD =3O/ < 2L | g1 gl

and permits to conclude at once. [ ]
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Proposition 4.2. If h, k > 0 verify 2bh < k, then the canonical injection
J: g(wl,m),h(H X K) — g(wl,wz),k<H X K)
is a well defined quasi-nuclear linear map.

Proof. 1t is immediate that J is a well defined continuous linear map.

For the sake of clear notations, let us write ||.|| for the norm in €, wp)n(H x K)'
and |.| for the norm in &, w,)x(H x K)'.

The construction made in Paragraph 3 provides a sequence (v;);en in the space

Ervat1(H x K)' such that Y32 Vil b i s 1y < 00 and

191l rre < D210 @), Vg € Erpoin(H x K). (7)
j=1

For every j € N and («,) € Nj x N§, let us define the continuous linear
functional w(q,g); 0N Ewy wa)k(H X K) by

(ua,m,g: f) = (07, DD ) exp(—gi(k o)) [k — @3(k[B])/F)-

Then developing the functionals and using the inequality (7) provides

e < 2 D [(u@mas )

(a,B)ENxNg jEN

L Vf € Enwyi(H X K.

Therefore, as every u,g),; also belongs to £, wo)n(H x K ), to conclude we just

have to prove that we also have 3, g)enrxng 2 jen u(a75)7jH < 00.

For every («, 3) € NpxN§ and j € N, let us evaluate Hu(o"ﬁ)’jH' For this purpose,
let f be any element of £, w.)n(H X K). As f belongs to £, w,)k(H x K), we have

‘(u(a,,@),j;f>‘ < [0, D) | gk g ag 1y~ F1RlD BRIk
with

|D(a’6)f|(HxKr+s+1) <fllgxrn — sup e RlotaD/Ares (RIFHOD/R,
’ U (8)|<rts+1

Now we note that for j € {1,2} and p, ¢ € Ny such that ¢ < r+ s+ 1, the properties
of ¢} provide

@i (h(p +q)) < @;(2hp) /2 + ©;(2h(r + s+ 1)) /2.

So, if we set A(h) := exp(pi(2h(r+s+1))/(2h) + @5(2h(r + s+ 1))/(2h)), we end
up with

pi2hlel) _ gilklal) | ©5(2h|Al) wé(klﬁl)).

[tttasna]| < A ol exp (P55 - - -

Now we note that part b) of Lemma 2.1 provides

1 1 1 1 1
L o 2ah) < ot (2abh) 4 —a < Tot(ak) 4 — —
op Fi2ah) < 5ppe;(2abh) + op —a < T i(ak) + op —a
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for every 7 € {1,2} and a > ag/(2bh). So, setting d := ay/(2bh) and
B(hk, d) := sup exp(ey (2h |a])/(2h) = i (k|ad)/k),

lal<

we get

>y Hu(a,g),jH < A(h)B(h, k,d)e"/®" Sl Y e 18l « 5o

la|<d jEN JjEN  |al<d
|8|>d |8|=d

and similarly ¥jjq (5120 Syen [t < 0.
Hence the conclusion since we also have

> e < AR I vl S el < 0o, n
|a|>d jeN la|>d
1l2d 18>d

As the same proof establishes that if h, k > 0 verify 2bh < k, then the canoni-
cal ingection from Dy, wy)n(H X K) into D, w)x(H x K) is a well defined quasi-
nuclear map, we get the following result (cf. [5]).

Proposition 4.3. If h, k > 0 verify 4b*h < k, the canonical injections

J: 5(w17w2),h(H X K) - S(W17W2),k<H X K)
J: 'D(whu&),h(H X K) — 'D(whu&)’k(H X K)

are well defined nuclear linear maps. ]

5 The spaces £.(€2; x Qs) and D, (2 x )

Definition. a) The notation Dy, ., (H x K) requires that H and K are
compact subsets of R” and R® respectively. It is defined by

’D(wlw2)<H X K) = @ D(wl,wg),l/m<H X K)
meN
b) The notation &y, .. (H x K) requires that H and K are strictly regular
compact subsets of R” and R? respectively. It is defined by
Elwrwa)(H x K) = 1im &y wp),1/m(H x K).
meN
By the results of Paragraph 4, D, w,)(H x K) and £, w,)(H x K) are Fréchet

nuclear spaces and, if H and K are strictly regular, Dy, .,)(H x K) is a closed
subspace of £, wy) (H x K).

Definition.  Under analogous restrictions on H and K, we also introduce the
locally convex spaces
'D{wl,u&}(H X K) = lin D(wth),m(H X K)
meN
5{w1,w2}(H X K) = lln 5(wl7w2),m(H X K)
meN
They are regular countable inductive limits and (DFN)-spaces; if H and K are
strictly regular, Dy, w1 (H x K) is a closed subspace of £, w1 (H x K).
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Definition.  The notations &.(2; x Qs) and D,(2; X ) require that the
sequences (H,)nen and (K, ) ey are compact exhaustions of €; and €y respectively,
by means of sequences of strictly regular compact sets such that H, C Hp , and
K, C K, for every n € N. They are the locally convex spaces

g*(Ql X Qg) = @ 5*(Hn X Kn) and D*(Ql X Qg) = llﬂ D*(Hn X Kn)

meN meN

SO E(wrwe) (1 X Q) is a Fréchet nuclear space and Dy, w,) (21 x Q) is a strict
countable inductive limit of Fréchet nuclear spaces, it is a (LFN)-space.

The space Eu, w,} (§21 X €2y) carries a complicated locally convex structure but
certainly is complete and nuclear. In Proposition 6.4, we prove that it also is ul-
trabornological. The space Dy, u,} (€1 x €22) is a strict countable inductive limit of
(DFN)-spaces hence is a (DFN)-space.

6 Elementary properties
Acting as in the proof of ([7], Proposition 3.1) leads to the following result.
Proposition 6.1. For every n € N,
Ayt E(Hy, X Ky) X E(Hy x Ky) — E(H, < Ky); - (f,9) = fg
is a well defined continuous bilinear map. Therefore
At Eu( X Qo) X E( x Q) = E(U xQa); (f,9)— fg
also is a well defined continuous bilinear map. ]

In [1], one finds that, for every e > 0, there are non-zero and positive functions
[ € Dy (R") and g € Dy,,)(R®) with support contained in the closed ball of center
0 and radius /2.

So, using f ® g and acting as in ([4], p. 61), one obtains that
a) for every non empty compact subset K of an open subset A of R” x R®, there is
a positive function in Dy, .,)(R" x R?), identically 1 on a neighbourhood of K and
support contained in A;
b) for every finite open cover {A;: j =1,...,¢} of a compact subset K of {; x €y,
there are positive function f; € Dy, wy) (21 X €22) such that supp(yp;) C A; and
>9_1; = 1 on a neighbourhood of K’;
c) for every open cover {A;: j € N} of a non empty open subset A of R" x R®, there
is & D, wy) (R x R*)-partition of unity subordinate to the cover.

As a consequence, we note that every continuous linear map from the space
D, (1 x ) into a locally convex space has a support. In fact, a lot more can be
said: acting as in [7] leads directly to the following results.

Proposition 6.2. The set D.(Qy x Q) is a sequentially dense vector subspace
Of 5*(91 X QQ) |
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Proposition 6.3. Let G be a locally convex space.

a) If A is a bounded subset of Ls(D.(21 X Q2), G) and if there are compact subsets
H of Q1 and K of Qs such that supp(S) C H x K for every S € A, then every
S € A has a unique continuous linear extension T'(S) from E.(Qy x Q) into G and
{T(S): S € A} is an equicontinuous subset of L(E.(21 X s), G).

b) If the topology of G comes from a system of norms and if B is a simply
bounded set of sequentially continuous linear maps from E.(2; X Qg) into G, then
there are compact subsets H of Q1 and K of Qs such that, for every T € B, the
support of the restriction of T to D,(y x s) is contained in H x K.

c) Bvery simply bounded set of sequentially continuous linear maps from the space
Etn wa} (S X Qo) into G is equicontinuous. u

Theorem 6.4. The space Equ, wy} (§21 X §y) is ultrabornological. u

7 The spaces £.(12) and D, ()

In this paragraph, given a weight w and a non void open subset €2 of R, we make
precise the definition of the spaces . (€2), £} (), D) (2) and Dy, (2) by use of
strictly regular compact subsets of €.

Definition.  Given a weight w, a strictly regular compact subset K of R™ and
a positive number h, the Banach space &, (/) is defined as follows: its elements
are the C*-functions f on K° such that, for every o € Nj, D*f has a continuous
extension on K and such that

1l == sup ID*f | s exp(—¢" (h|]) /h) < o0
a&lNy

its norm is ||| x .-

We then introduce the Fréchet space Ew)(K) == lim_ £ 1/m(K) and the count-
able inductive limit of Banach spaces Eqy (K) := lim_, £ m(K).

In a second step, we consider a non void open subset {2 of R™ and a countable
cover (K, )nen of § by means of strictly regular compact sets such that K,, C K7,
for every n € N and set &,)(2) := lim._ £,)(K,) and Egy () := lim_ Eq,y (K).

Moreover Dy,)(K') and Dy, (K') denote respectively the subspaces of &, (K) and
Ery (K), the elements of which have a compact support contained in K. Finally we

set 'D(w)(ﬂ) =lim__, D(w)<Kn) and 'D{w}<Q) =lim_, g{w}<Kn).

From now on, let us agree on the following use of the notations: if the notation
E (1 X Q) [resp. D.(Qy x Q)] appears in a statement as well as £,(21), (),
D, () or D,(£2y), it means that two statements are valid:
a) one with €, w.) (1 X Q) [resp. Dy, wy) (1 X Q2)]; in this case, the notations
become E,,)(1), Ewy)(22), Diwy)(£21) and Dy, (£22) respectively;
b) one with Egu, w, (21 X Q2) [resp. Dy, w3 (€1 X Q)]; in this case, the notations
become Eg,,,3(21), Efwy} (22), Dy (§21) and Dy,y(£22) respectively.

Proposition 7.1. The bilinear map
At E(() X E(2) = E( x D)y (f,9)— f®yg

and the canonical injection from E,(£21) ®x E.(Qa) into E.(21 X Q) are continuous.
u
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8 The space £"?)(R" x R?)

Definition. By £P'?)(R" x R®), we designate the space of the C>®-functions
f on R*® x R? such that, for every h > 0 and compact subsets H of R" and K of R?,

DB f || e

= su —_——— < 0
e (a,ﬁ)eNpngg hlal+18l 1 31 ;

endowed with the system {|:|;, x,: H € R", K € R*,h > 0} of semi-norms. It
clearly is a Fréchet space.

We also denote by H(C™) the Fréchet space of the holomorphic functions on C"
endowed with the topology of uniform convergence on the compact sets. Classical
holomorphy arguments easily provide that the restriction map

D M) = EPDR xR, f > g e
15 a well defined isomorphism.

Proposition 8.1. The restriction map
Royx0,: EPPRT X R®) = E( x Qa); [ = floyxo,

1s well defined, continuous and linear.
In fact, for every h > 0, there is B > 1 such that

2B/h

||R§21x§22f||HXK,h <e / |f|H><K,h/(4B)

for every f € EPNR" x R®) and strictly reqular compact subsets H of Qy and K
Of QQ.

Proof.  Let us establish first the second part of the statement.

Given h > 0, we choose B > 1 such that the inequalities (3) hold for ¢* = ¢}
and every a € Njj as well as for ¢* = ¢35 and every 3 € N¢.

Then we note that, for every f € £P'¢)(R" x R*) and strictly compact subsets
H of R" and K of R*, we have

DD Fllsre < | flensam (b (AB) ol !
< flispsam €7 exp(@i(hlal)/h + @3(h|8])/h)

hence the announced inequality and the fact that R|q, xq, is a well defined linear
map.

At this point, the case * = (wy,wy) is clear.

In the case * = {w;,ws}, we note that, for every n € N, the inequality we
just established implies the continuity of the linear map (Rq,x0,)|m, xx, from
EPM(R" x R?*) into Ewywn)1 (Hy x K,) hence into Eqy, wyy (H, x K,,). The conclu-
sion then follows at once. |
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9 Approximation

Notation. For every m € N, the function 1, is defined on R" x R® by
Vm(u,v) = mT T ()2 gmm? ul? g mm? V(u,v) € R" x R®.

Proposition 9.1. For every m € N and f € D,.(R" x R®), the function f %,
has a holomorphic extension on C™** hence belongs to EP'(R" x R?). |

Proposition 9.2. For every f € D,(21 X Q2), (Rayxq,(f * ¥m))men is a se-
quence in E,(2y X Q) converging to f.

Proof.  There is n € N such that f € D.(H, x K,,). So, in the case * =
(w1, wa), f belongs to Dw, wn)1/m(Hyn X Ky) for every m € N and, in the case * =
{wi,wa}, there is m € N such that f belongs to D, wy)m(Hn X Ky).

Let f belong to Dy, wy)n(Hy X K;,) for some h > 0. For every m € N, we just
proved that f * v, belongs to EP'?)(R" x R?) hence, by Proposition 8.1, that its
restriction to H,, x K, belongs to &, w.)n(Hy X K;,). We are going to prove that the
sequence ((f * Vm)|H, x K, )men converges to f in Ew, w)en(Hy X Ky), which allows
to conclude at once.

Let € > 0 be given.

We first choose C' > 0 for which the inequalities (4) hold and then fix ¢ € N such
that 29620420 |, < e,

Now we evaluate [|[D(f x b)) — DD fll g k..

If |a| + |B] > ¢, we write down the convolution product and easily get

DA (f % ) = DO fl1, xx,
<2 flgyxcnn 2 exp(lal + @i (hlal)/h+ (8] + @5(h[B])/h)).

So the inequalities (4) and the choice of g provide

D (%) = D L1, < £ explioh (bh o)/ (Bh) + (bl 8])/ (5h)).

If || + | 6] < g, we note that {D@P f: ||+ 8| < ¢} is a finite set of continuous
functions on R” x R® with compact supports hence is a uniformly equicontinuous
set. Therefore there is 9 > 0 such that

DD f(w =y = v) = DD )| _
exp (o (B [al)/(bh) + 3 (B 5]/ (bh)) = 2

for every (z,y), (u,v) € R” x R® and (a, 8) € Nj x N§ such that |(u,v)] < § and
la| + 5] < g. Now we set

M:=2 sup D72 e e
ni+lsl<a €XP(@1(bh [7])/ (bh) + ¢3(bR [])/ (bR))

and fix mo € N such that M [/, > ¥mdudv < /2 for every m > my. There-
fore by writing down the convolution product and by splitting the integral on
{(u,v): |(u,v)| <} and {(u,v): |(u,v)| > 0}, we easily obtain

IDCD(f x1,) = DD fll g i,
exp(pi(bh |al)/(bh) + @5(bh |B])/bh))

Hence the conclusion by putting these two informations together. [ ]

<e, Vm > my.
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Proposition 9.3. For every f € D, (1 x Qs), there is a sequence of polynomials
on R™* converging to f in E.( x Q).

Therefore the set of the restrictions to €y X §25 of the polynomials on R" x R® is
a dense vector subspace of £.(Q x a).

Proof.  The first statement can be established as Proposition 5.3 of [7] The
second is then a direct consequence of Proposition 6.2. [ ]

Proposition 9.4. The vector space D,(€1) @ Di(€2s) is a dense vector subspace
OfD*<Ql X Qg)
Therefore £.(21) ® E.(§22) is a dense vector subspace of E.(€21 X o).

Proof.  The first statement can be established as Proposition 7.1 of [7] The
second is then a direct consequence of Proposition 6.2. [ ]

10 Denseness of D,(H) ® D.(K)inD.(H x K)

Notation. Given b € R" and a function f on R", 7, f designates the function
defined on R" by (1f)(-) = f(- = b).

Proposition 10.1. For every b € R"™, the map 7, is a well defined continuous
linear map from E,(R" x R®) into itself.
Moreover we have limy_o 1, f = f for every f € E,(R" x R?).

Proof.  The first part of the statement is immediate.

Now for any strictly regular compact subsets H of R” and K of R* we first choose
strictly regular compact subsets H' of R” and K’ of R® such that H C H'’® and
K C K. We next choose a positive number § < d(H x K, (R" xR*)\ (H"® x K'?))).
So for every b = (b1, by) € R"xR* such that [b] < d and (z,y) € Hx K, (x—by,y—bs)
belongs to H' x K'.

In the case x = (w1, ws), flaxxr belongs to Ew, wy),1/m(H' x K') for every m € N;
in the case * = {wi,ws}, f|axxr belongs to E, wo)m(H' x K') for some m € N.

We are going to prove that, if f|g/wx belongs to £y w)n(H' x K') for some
h > 0, then, for every € > 0, there is > 0 such that ||7,f — fl| y.xon < € for every
b € R™ x R* such that |b| < 7. The conclusion then follows at once.

Clearly the functions f|gxx and (7, f)|mxx belong to E, wy)n(H x K). We first
choose C' > 0 for which the inequalities (4) hold and then fix ¢ € N such that
2792 fll s per iy < €/2-

On one hand, for every (z,y) € HX K, b= (b, by) € R xR* and («, ) € N, xN§
such that [b] < 6 and |a| + |5] > ¢, the inequality (4) directly leads to

D) £z, y) — DD f & — by, — by)
< 2620 ] 1 e exp(i (b1 ]/ (bR) + 03 (5h |B1)/ (bh).

On the other hand, {D®% f: |a|+|8| < ¢} is a finite set of continuous functions
on the compact set H' x K'. Therefore there is 7 > 0 such that

D7 f () = D f(w — by — bo)]
sup sup » " <e
lal+18<q (za)cHx i €XP(@1(bh |a])/(bh) + @3(bh |5])/(bR))
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for every b = (b1, by) € R” x R® such that |b| < 7.
These two informations put together provide the conclusion. [ ]

Definition. A subset B of R" has the local displacement property if every
x € B has a neighbourhood W such that, for every € > 0, there is a € R" such that
la| <eand a+ (BNW) C B°.

If By, ..., B, are closed balls in R™ in finite number and such that B; N By, # ()
implies that B; N By, # (), one can check that their union has the local displacement
property. Moreover if the compact subsets H of R" and K of R® have the local
displacement property, it is clear that H x K also has this property.

Therefore, from now on, we agree that the covers (H,)nen of Q1 and (K}, )nen of
()9 consist of strictly regular compact sets having the local displacement property
and such that H,, C H; , and K, C K, for every n € N,

An argument analogous to the one of the proof of ([7], Proposition 8.1) then
establishes the following result.

Proposition 10.2. If the compact subsets H of R" and K of R® have the local
displacement property, then the vector space D.(H) ® D.(K) is a dense subspace of
D.(H x K). n

11 Structure of the elements of £,.(2; x Q) and D, (21 x Q)

If f belongs to &,(21 x ), it is clear that, for every y € Qo, f(.,y) belongs to
E.(21). Let us investigate this property.

Proposition 11.1. For every f € £.(Qq x Qy), the function

9: % — &)y f(y)
is C> and such that [D°f(y)](.) = DO f(.,y) for every 3 € N and y € Q.

Proof. For every 8 € N3, since DPf belongs to &,(Q x Qy), Proposi-
tion 10.1 provides the continuity of the function gz: Qs — &,(€) defined by g5(y) =
DA £(.,y). Therefore to conclude, it is enough to establish the formula in the case
|| = 1. Let us do this for § = (1,0,...,0). So we only have to prove that

]lﬁi_)né(g(ch kei) —g(c))/h = gs(c) in E.(1), Ve € Q.

Given ¢ € (23, we have ¢ € K, for n large enough. For such an integer n,
[l xk, belongs to Ew, w)1/m(Hy x Ky) for every m € N if x = (w;,ws) and to
E(wr wa)m(Hy X Ky,) for some m € Nif * = {wy,ws}.

If ¢ belongs to K, and f to £, w,)n(Hy X Ky,) for some h > 0, we are going to
prove that, for every € > 0, there is § > 0 such that

Ig(e + ker) = g(e))/k = gs(c) g, o0 < €

if 0 < |k| < 4. The conclusion then follows at once.



658 J. Schmets — M. Valdivia

Up to considering the real and imaginary parts of f separately, we may assume
f real valued. As c belongs to K, there is n > 0 such that ¢ + tke; belongs to K,
for every t € [0, 1] if |k| < 7. Let us consider k € R such that 0 < |k| <. For every
z € Q; and « € Nj, the limited Taylor formula provides 6(k, z, ) €]0, 1 such that

DO f(z, ¢+ key) — D@0 f(z,¢) = kD@D f(z, ¢ + 0(k, z, a) ke ).

Let ag be a positive number such that the inequalities (1) hold for every a >
ag/(bh) and let ¢ > ag/(bh) be an integer such that

2N s X1/ B4 g3 (R) [h) < /2.

As {D@Pf: |a| < ¢} is a finite set of continuous functions on the compact set
H, x K,, we can also choose § €]0,n[ such that

ID@F) f(2,y) — DF) f(x,y")| < e exp(pi(bh|al)/(bh))

for every x € Hp,; y, ¥ € K, and o € Nj such that |y — ¢/| <0 and |o| < q.
So for k € R such that 0 < |k| < J, we arrive directly at

I(g(c + kex) = g(e))/k = ga(e) | a on
< sup {&,2 sup DY [, s, exp(—i (bl |a])/ (bD) |

la|>g
with
sup 1D £l i x x, exp(—5 (bl |t]) / (bh))
a|>q
< [ fll g, e, SUP exp(pi (R |al) /b — @1 (bR [a]) /(bh) + 5(h |B])/ )

la|>g

< 27 g exP(1/ B A= @3(R) 1)

[to obtain the last inequality, we use the inequalities (1)].
Hence the conclusion. |

Then one can proceed as in [7] and get the following properties.

Proposition 11.2. a) For every f € £,(Q1 x Q) and S € £.(Q)', the function
(S, f(.,y)) belongs to E.(s) and verifies

DS, f(y)) = (S, DO f(y)), VB eNgy e Q.

b) The bilinear map A, : E.(Q1 X Q) x E,(Q) — E.(Qy) defined by A.(f,S) =
(S, f(.,y)) is well defined and hypocontinuous. [

Permuting the roles of {2, and €25 as well as those of w; and ws leads to analogous
results and in particular to a hypocontinuous bilinear map ,A.

Proposition 11.3. For every f € D,(2y x ), the function

gs: Q2 = Du(); y— f(,y)
is C° and such that [D°g(y)](.) = DO f(.,y) for every 3 € N3 and y € Qs.
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Proposition 11.4. a) For every f € D,(Q x Q) and S € D, (), the function
(S, f(.,y)) belongs to D.(Qs) and verifies

DS, f(y)) = (S, DO f(y)), VB €Ny €.

b) The bilinear map T, : D.(Q21,Q3) x Dy(Q1) — D,(Qy) defined by T,.(f,5) =
(S, f(.,y)) is well defined and hypocontinuous. [ |

Permuting the roles of 2; and €25 as well as those of w; and wy leads to analogous
results and in particular to a hypocontinuous bilinear map ,I'.

12 The tensor product © on the duals

Definition.  Given S € D,(£;)" and T € D,(Q)’, we know that
a) (S, f(.,y)) belongs to D, () for every f € D,.(2; x ) and y € O,
b) S®T: D.(Qy x Q) — C defined by

(ST, f) = (T,T(f,5)) = (T, (S, f (), VI €Dulfl x ()

is a continuous linear functional.
a’) (T, f(x,.)) belongs to D,(€2y) for every f € D.(; x o) and z € y,
b)) T'® S: D.(21 x Q) — C defined by

(T®8, f) = GU(LT) = (SAT, f(x,.))), Vf € Dul(fh x €y)

is a continuous linear functional.

Since we have (S® T, f1 ® fo) = (S, fi)(T, fo) = (T ® S, f1 ® fo) for every f €
D.(£21) and g € D.(Qs), Proposition 9.4 implies that these two continuous linear
functionals coincide. We call S ®@ T =T ® S the tensor product of S and T'. In fact
the restriction of ST = T'®S to D, () @D, (€2s) coincides with the tensor product
of S and T' considered as a continuous linear functional on D, (€2) ®. D.(22).

It is clear that if S and T" have compact support, then S ® T also has a compact
support.

Proposition 12.1. The map
Yot Ex(Q) X E(Q) = E(Q x Q) (S, T)— ST

1s well defined, hypocontinuous and bilinear.
In the case x = (wy,ws), Xx 1S continuous.

Proof.  Clearly y, is a well defined bilinear map.

As £,(1) and &,(€2)" are ultrabornological spaces, . is hypocontinuous if it is
separately continuous (cf. [6], II1.5.2). Given S € &,(€;), the continuity of y.(S,.)
can be established as in the proof of ([7],Proposition 11.1). As the same proof implies
the continuity of x.(.,T") for every T € £,(€)y), we conclude at once.

To obtain the improvement of the case * = (wy,ws), it suffices to note that
E.(Q1) and &,()" are strong duals of Fréchet nuclear spaces. u
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Proposition 12.2. The map
X Du() X Dy(Q2) — Du(Q x Q) (S, T) = ST

1s well defined, hypocontinuous and bilinear.
In the case * = {wy,ws}, Xs is continuous.

Proof.  For the general case, one can proceed as in the proof of Proposi-
tion 12.1. The improvement in the case * = {w;,ws} is immediate if one notes
that D, () and D, (€s)" are Fréchet spaces. n

13 Tensor properties and kernel theorems

Proceeding as in ([7], Paragraph 12) provides the following results. In d), given two
locally convex spaces E and F, F ®; F designates their tensor product endowed
with the inductive topology (cf. [2]) and of course E®;F its completion.

Theorem 13.1. a) The canonical algebraic isomorphism from E,(€) ® E.(£22)
as a subspace of E.(Qy x Qa) onto E.(21) R () is continuous.

b) The spaces E.( x Q) and E,(Q1)@,E.(Q) coincide.

c) If the compact subsets H of R" and K of R® have the local displacement
property, then the spaces D,(H x K) and D,(H)®,D,(K) coincide.

d) The spaces D,( x Q) and D, (2,)®;D.(Qs) coincide. n

Definition. A %-kernel on Q) x € is an element of D, (2, x Q).
Given a x-kernel N on 7 X g,

By: Du($1) X Du(f2) = G (f,9) = N(f @)
clearly is a bilinear functional. By Theorem 13.1.d), By is separately continuous, the
functional N'(f) := By(f,.) belongs to D,(£%)" for every f € D,(€) and the map
N to L(D.(Q1), D.(9)"). Similarly if g belongs to D, (), then By (., g) belongs to
D.()'; in fact, By(.,9) = 'N(g) where ‘N is the transpose of N.
Conversely the Theorem 13.1.d) also provides the following kernel theorems.

Theorem 13.2. a) If T is a continuous linear map from D,(Qy) into D.(),
then there is a *-kernel N on €y x Qs such that N =T.

b) If S is a continuous linear map from D.(s) into D.(Q), then there is a
x-kernel N on Q; x Qy such that ‘!N = S. m

Proceeding as in ([7], Paragraph 13) leads to the following results.

!/
)

Theorem 13.3. a) The following spaces coincide
'D{whw}(ﬂl X Qg) and D{wl}(Ql)®WD{w2}(QQ).
b) The spaces D.(2y x Q) By(D.(1), D.(2)) and Ly(D.(Q1), D.(Qs)) coin-

cide.
c) The set of the finite rank elements with compact support is a dense vector
subspace of Ly(Di(1), Dy(22)). u
d) The spaces D,(Q1 x Q3) and D, (1) ®.D.(Q) coincide. n

A way to state the classical kernel theorem of Schwartz (cf. [8]) is given by the
equality D(; x Q)" = D(Q,)'®.D(s)". Therefore the part d) also appears as a
refinement of the kernel theorem.
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14 Case w; = wy

Proposition 14.1. Let the compact subsets H of R" and K of R® be strictly
reqular and set L = H x K. Then, for every h > 0, the spaces &) (L) and
Eww)n(H x K) coincide.

Proof.  On one hand, every f € £, .y n(H x K) verifies

DD Flle < W f e exple™ (R lal) /h+ " (R ]B]) /h)
< Al rscren exple* (R |(a, B)])/R)

for every (a, 3) € Nj*°.
On the other hand, if f belongs to &, (L), then, for every (a, 3) € Nj x N§, we
successively have

ID? fllarxrc < [1F1l exple (| (e, B))) /)
< fllpnexple™ (2R ]al)/(2h) + " (2R [5])/ (2h)).

Hence the conclusion. ]

Therefore we have the following properties.

Proposition 14.2. If the compact subsets H of R" and K of R® are strictly
reqular and if we set L = H x K,
a) the spaces E,)(L) and &, w)(H x K) coincide.
b) the spaces Egy (L) and Egu o (H x K) coincide.
c) the spaces D, (L) and D, .\ (H x K) coincide.
d) the spaces Dy (L) and Dy, .y (H x K) coincide.
If we set 2 = Q1 x Qy,
a) the spaces E,)() and £, .\ (21 x ) coincide.
b) the spaces Eq.y () and Dy, wy (1 x Q) coincide.
c) the spaces Dy, () and D, .\ (21 x Q) coincide.
d) the spaces D,y (2) and Dy, ) (S % Q) coincide. u
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