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Abstract

A Fréchet space is called twisted if it is not isomorphic to a countable
product of Fréchet spaces with continuous norms. It is easy to show that no
non-archimedean Fréchet space with a Schauder basis is twisted. We construct
examples of non-archimedean twisted nuclear Fréchet spaces.

Introduction

In this paper all linear spaces are over a non-archimedean non-trivially valued field
K which is complete under the metric induced by the valuation | · | : K → [0,∞).
For fundamentals of locally convex Hausdorff spaces (lcs) and normed spaces we
refer to [8], [10], [3] and [9].

Any finite-dimensional lcs of dimension n is isomorphic to the Banach space Kn.
Every infinite-dimensional Banach space E of countable type is isomorphic to the
Banach space c0 of all sequences in K converging to zero with the sup-norm and any
closed subspace of E is complemented ([9], Theorem 3.16). Nevertheless, the world
of Fréchet spaces of countable type is very rich (see [11], [12], [13], [14]).

It is not hard to prove that any Fréchet space with a Schauder basis is isomorphic
to a countable product of Fréchet spaces with continuous norms (see Proposition 1).
In [11] we constructed many examples of Fréchet spaces of countable type without
a Schauder basis but each of these spaces is a countable product of Fréchet spaces
with continuous norms. It arises a natural question whether any Fréchet space of
countable type is isomorphic to a countable product of Fréchet spaces with continu-
ous norms. Recall that in [15] we have shown that any infinite-dimensional Fréchet
space of countable type is homeomorphic to the Fréchet space KN with the product
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topology ([15], Corollary 5). In this paper, developing some ideas of [7] and using the
generalized Köthe spaces studied in [5], we shall prove that the answer to the above
problem is negative, even for nuclear Fréchet spaces (Theorem 7 and Proposition 8).

Preliminaries

A seminorm on a linear space E is a function p : E → [0,∞) such that p(αx) =
|α|p(x) for all α ∈ K, x ∈ E and p(x + y) ≤ max{p(x), p(y)} for all x, y ∈ E. A
seminorm p on E is a norm if ker p = {0}.

The set of all continuous seminorms on a lcs E is denoted by P(E). A family
B ⊂ P(E) is a base in P(E) if for every p ∈ P(E) there exists q ∈ B with q ≥ p.

Any metrizable lcs E possesses a non-decreasing base (pk) in P(E).

A Fréchet space is a metrizable complete lcs. Let (xn) be a sequence in a Fréchet
space E. The series

∑∞
n=1 xn is convergent in E if and only if lim xn = 0.

A sequence (xn) in a lcs E is a basis in E if each x ∈ E can be written
uniquely as x =

∑∞
n=1 αnxn with (αn) ⊂ K. If additionally the coefficient functionals

fn : E → K, x → αn (n ∈ N) are continuous, then (xn) is a Schauder basis in E.

Let E be a lcs. A sequence (xn) ⊂ E is orthogonal with respect to B ⊂ P(E)
if p(

∑n
i=1 αixi) = max1≤i≤n p(αixi) for all p ∈ B, n ∈ N and α1, . . . , αn ∈ K. Ev-

ery Schauder basis in a Fréchet space F is orthogonal with respect to some (non-
decreasing) base (pk) in P(F ) ([4], Proposition 1.7).

Put BK = {α ∈ K : |α| ≤ 1}. A subset B of a lcs E is compactoid if for each
neighbourhood U of 0 in E there exists a finite subset {a1, . . . , an} of E such that
B ⊂ U + {∑n

i=1 αiai : α1, . . . , αn ∈ BK}
Let E and F be locally convex spaces. A linear map T : E → F is compact if

there exists a neighbourhood U of 0 in E such that T (U) is compactoid in F .

For any seminorm p on a lcs E the map p : Ep → [0,∞), x + ker p → p(x) is a
norm on Ep = (E/ ker p). Let ϕp : E → Ep, x → x + ker p.

A lcs E is nuclear if for any p ∈ P(E) there exists q ∈ P(E) with q ≥ p such
that the map ϕp,q : (Eq, q) → (Ep, p), x + ker q → x + ker p, is compact.

A lcs E is of countable type if for any p ∈ P(E) the normed space (Ep, p) contains
a linearly dense countable subset.

By a Köthe matrix we mean an infinite matrix B = (bk,n) of positive real numbers
such that ∀k, n ∈ N : bk,n ≤ bk+1,n. The Köthe space associated with the Köthe
matrix B is the Fréchet space

K(B) = {(ξn) ∈ KN : bk,n|ξn| →n 0 for any k ∈ N}

with the base (pk) of norms: pk((ξn)) = k maxn bk,n|ξn|, k ∈ N. The sequence (en) of
coordinate vectors is a Schauder basis of K(B) ([1], Proposition 2.2).

A Köthe matrix B = (bk,n) is nuclear if ∀k ∈ N ∃m ∈ N : (bk,n/bm,n) →n 0. The
Köthe space K(B) is nuclear if and only if B is nuclear ([1], Proposition 3.5).

Let a = (an) be a non-decreasing unbounded sequence of positive real numbers.
Then the following Köthe spaces are nuclear:

(1) A1(a) = K(B) with B = (bk,n), bk,n = ( k
k+1

)an ;

(2) A∞(a) = K(B) with B = (bk,n), bk,n = kan .
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A1(a) and A∞(a) are the power series spaces (of finite and infinite type, respec-
tively)(see [1]).

Let E be a lcs. We write B(E) for the family of all bounded subset of E. The
strong dual of E, that is the topological dual of E with the strong topology, will be
denoted by E ′ (not by E ′

b). If E is of countable type then E ′ separates points of E
([10], Theorem 4.4). The polar of A ⊂ E is A◦ = {f ∈ E ′ : |f(x)| ≤ 1 if x ∈ A}. If
M is a subspace of E then M◦ = {f ∈ E ′ : f(x) = 0 for x ∈ M}.

Let E and F be locally convex spaces. The space of all linear continuous maps
from E to F is denoted by L(E, F ). An operator T ∈ L(E, F ) is an isomorphism
if T is injective, surjective and the inverse map T−1 is continuous. E is isomorphic
to F if there exists an isomorphism T : E → F. If T ∈ L(E, F ) and T (E) = F
then the dual map T ′ : F ′ → E ′ is continuous, injective and T ′(F ′) = (ker T )◦. If
T ∈ L(E, F ) then (T (A))◦ = (T ′)−1(A◦) for A ⊂ E.

For fundamentals of projective and inductive limits of locally convex spaces we
refer to [3].

Results

First we shall prove that no Fréchet space with a Schauder basis is twisted.

Proposition 1. Let X be a Fréchet space with a Schauder basis (xn). Then X
is isomorphic to a countable product of Fréchet spaces with Schauder bases and
continuous norms. In particular X is not twisted.

Proof. The basis (xn) is orthogonal with respect to some non-decreasing base (pk)
in P(X). Put p0(x) = 0 for all x ∈ X and Mk = {n ∈ N : 0 = pk−1(xn) < pk(xn)}
for k ∈ N. Denote by Xk the closed linear span of {xn : n ∈ Mk} for k ∈ N (if
Mk = ∅, then Xk = {0}). Clearly, (xn)n∈Mk

is a Schauder basis in Xk and pk|Xk

is a continuous norm on Xk for k ∈ N. We shall prove that X is isomorphic to the
product space

∏∞
k=1 Xk. Let (fn) be the sequence of coefficient functionals associated

with the basis (xn). For any k ∈ N the map

Pk : X → Xk, Pk(x) =
∑

n∈Mk

fn(x)xn

is a linear continuous projection from X onto Xk. For every (xk) ∈ ∏∞
k=1 Xk the

series
∑∞

k=1 xk is convergent in X, since pk(xn) = 0 for all n, k ∈ N with n > k.
Thus the linear map P : X → ∏∞

k=1 Xk, Px = (Pkx), is continuous, injective and
surjective. By the open mapping theorem P is an isomorphism. �

In the proof our main result we will need the following two lemmas.

Lemma 2. Let Z be a closed subspace of a Fréchet space X of countable type. If
Z◦ is complemented in X ′, then Z is complemented in X.

Proof. Let S be a complement of Z◦ in X ′ and let V =
⋂

f∈S ker f. Clearly
Z ∩ V = {0}. Let (zn) ⊂ Z, (vn) ⊂ V, z0 ∈ Z, v0 ∈ V and zn + vn → z0 + v0 in
X. Let g ∈ Z ′. By the Hahn-Banach property ([10], Theorem 4.2), there exist
f1 ∈ Z◦ and f2 ∈ S such that g(x) = (f1 + f2)(x) = f2(x) for all x ∈ Z. We have
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f2(zn + vn) → f2(z0 + v0), so f2(zn) → f2(z0). Thus g(zn) → g(z0) for every g ∈ Z ′,
so (zn) converges weakly to z0 in Z. By [10], Theorem 4.11, zn → z0 in Z, so in
X. Hence vn → v0 in X. Thus the subspace W

.
= Z + V of X is isomorphic to the

Fréchet space Z × V . It follows that W is closed in X, so W is weakly closed in X
([10], Corollary 4.9). On the other hand it is easy to check that W is weakly dense
in X. Thus W = X, so V is a complement of Z in X. �

Lemma 3. Let X be a nuclear Fréchet space with a continuous norm p. Let A =
{x ∈ X : p(x) ≤ 1}. Then the set A◦ is bounded and linearly dense in X ′.

Proof. Let B ∈ B(X). Then there exists α ∈ K such that p(b) < |α| for all
b ∈ B. Let f ∈ A◦. For b ∈ B we have |f(α−1b)| ≤ 1, so f ∈ αB◦. Thus A◦ ⊂ αB◦.
It follows that A◦ is bounded in X ′. Let M be the closed linear span of A◦ in X ′.
Suppose, by contradiction, that M 6= X ′. X is reflexive ([10], Theorem 10.3) and
X ′ is of countable type ([10], Corollary 8.7), so there exists a non-zero element x0 in
X such that f(x0) = 0 for all f ∈ M ([10], Corollaries 4.8 and 4.9 and Proposition
3.4(iv)). Let γ, β ∈ K with 0 < |γ| < p(x0) and |β| > 1. Then there exists g ∈ X ′

with g(x0) = γ such that |g(x)| ≤ |β|p(x) for all x ∈ X ([10], Theorem 4.2). Thus
g ∈ βA◦ ⊂ M, so g(x0) = 0; a contradiction. �

We will also need the following proposition on projective limits of Fréchet spaces.

Proposition 4. Let (En) be a sequence of nuclear Fréchet spaces and let πn be a
continuous linear map from En+1 onto En with ker πn 6= {0} for n ∈ N. Then the
strong dual of a projective limit of the projective system 〈(En), (πn)〉 is isomorphic
to an inductive limit of the inductive system 〈(E ′

n), (π′n)〉.

Proof. The closed subspace G
.
= {(xn) ∈ ∏∞

n=1 En : πn(xn+1) = xn for n ∈ N}
of the product space E

.
=
∏∞

n=1 En, with the coordinate maps ϕn : G → En, n ∈ N,
is a projective limit of the projective system 〈(En), (πn)〉 ([3], 1.3.2). Clearly, G is
a nuclear Fréchet space and ϕn(G) = En for n ∈ N. For every n ∈ N the adjoint
operator π′n : E ′

n → E ′
n+1 is continuous and injective, and π′n(E ′

n) is a proper closed
subspace of E ′

n+1. Thus 〈(E ′
n), (π′n)〉 is an inductive system ([3], Definition 1.1.1).

Let F be the locally convex direct sum
⊕∞

n=1 E ′
n of (E ′

n). By [6], Proposition 2.8, F
is isomorphic to E ′ and the linear map

J : F → E ′, (J((x′n)))((xn)) =
∞∑

n=1

x′n(xn)

is an isomorphism. Clearly, Ĝ
.
= J−1(G◦) is a closed subspace of F . Denote by H

the linear subspace of F generated by the following subset of F

{(z′1,−π′1(z
′
1), 0, . . .) : z′1 ∈ E ′

1} ∪ {(0, z′2,−π′2(z
′
2), 0, . . .) : z′2 ∈ E ′

2} ∪ . . . .

We shall prove that Ĝ = H. Put πn+1,n = πn and πm,n = πn ◦ . . . ◦ πm−1 for

all m,n ∈ N with m > n + 1. Let x′ = (x′n) ∈ Ĝ. For some m ∈ N we have
x′n = 0 for all n > m. Let x = (xn) ∈ G. Then 0 = (Jx′)(x) =

∑m
n=1 x′n(xn) =∑m

n=1 x′n(πm+1,n(xm+1)) = (
∑m

n=1 π′m+1,nx
′
n)(xm+1). Since ϕm+1(G) = Em+1, we get∑m

n=1 π′m+1,nx
′
n = 0. Hence x′ = (x′1, . . . , x

′
m,−∑m

n=1 π′m+1,nx
′
n, 0, . . .) =
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(z′1,−π′1(z
′
1), 0, . . .)+(0, z′2,−π′2(z

′
2), 0, . . .)+. . .+(0, . . . , 0, z′m,−π′m(z′m), 0, . . .) where

z′1 = x′1, z
′
2 = x′2 + π′1x

′
1, . . . , z

′
m = x′m +

∑m−1
n=1 π′m,nx

′
n. Thus x′ ∈ H; so Ĝ ⊂ H. Let

m ∈ N, x′m ∈ E ′
m and x′ = (0, . . . , 0, x′m,−π′mx′m, 0, . . .). For any x = (xn) ∈ G we

have (Jx′)(x) = x′m(xm) − (π′mx′m)(xm+1) = x′m(xm − πmxm+1) = 0. Hence x′ ∈ Ĝ;
so H ⊂ Ĝ. Thus Ĝ = H; in particular H is a closed subspace of F .

Let n ∈ N. Let Jn : E ′
n → F, x′n → (x′k), where x′k = x′n for k = n and x′k = 0 for

k 6= n. Denote by T the quotient map from F onto F/H. It is easy to see that the
linear map

αn : E ′
n → F/H, αn(x) = T (Jn(x))

is continuous and injective, and αn+1 ◦ π′n = αn for all n ∈ N. Hence αn(E ′
n) is a

proper subspace of αn+1(E
′
n+1) for any n ∈ N and

⋃∞
n=1 αn(E ′

n) =
⋃∞

n=1(α1(E
′
1) +

. . . + αn(E ′
n)) = T (

⋃∞
n=1(J1(E

′
1) + . . . + Jn(E ′

n))) = T (
⊕∞

k=1 E ′
k) = F/H.

By [3], 1.1.2, the quotient space F/H with the maps αn : E ′
n → F/H, n ∈ N,

is an inductive limit of the inductive system 〈(E ′
n), (π′n)〉; by [3], 1.1.4, F/H is

the inductive limit of the inductive sequence (αn(E ′
n)), where αn(E ′

n) inherits the
topology of E ′

n through αn for any n ∈ N.
Let n ∈ N. By [2], Proposition 2.5, we get πn(B(En+1)) = B(En) since any

bounded subset of En is compactoid. For B ∈ B(En+1) we get αn+1(B
◦)∩αn(E ′

n) =
αn+1(B

◦∩π′n(E ′
n)) = αn+1(π

′
n((π′n)−1(B◦)) = αn((π′n)−1(B◦)) = αn((πn(B))◦). It fol-

lows that the topology of αn(E ′
n) agrees with the topology induced from αn+1(E

′
n+1)

onto αn(E ′
n). Thus the inductive sequence (αn(E ′

n)) is strict. Moreover αn(E ′
n) is

closed in αn+1(E
′
n+1), since π′n(E ′

n) is closed in E ′
n+1 (n ∈ N).

Using [6], Theorem 5.12, we infer that the space G′ is isomorphic to the quotient
F/Ĝ of F and the linear map Ψ : F/Ĝ → G′, (Ψ(Ty))(x) = (Jy)(x) is an isomor-
phism (T : F → F/Ĝ is the quotient map; y ∈ F, x ∈ G). Thus the strong dual
of the projective limit G of the projective system 〈(En), (πn)〉 is isomorphic to the
inductive limit F/H of the inductive system 〈(E ′

n), (π′n)〉. �
By the proof of the last proposition we get the following

Corollary 5. (a) αn(E ′
n) is a proper closed subspace of αn+1(E

′
n+1), n ∈ N;

(b) F/H is the inductive limit of the strict inductive sequence (αn(E ′
n));

(c) F/H is isomorphic to the strong dual of G.

Moreover we have the following

Remark 6. Let (Zn) be a strict inductive sequence with the inductive limit Z. As-
sume that Zn is closed in Zn+1 for any n ∈ N. If a subspace Z0 of Z contains a
bounded subset B which is linearly dense in Z0, then Z0 ⊂ Zm for some m ∈ N.

Proof. By [3], Theorem 1.4.13, the inductive sequence (Zn) is regular and Zn is
closed in Z for any n ∈ N. Thus B ⊂ Zm for some m ∈ N; hence Z0 ⊂ Zm. �

Let X and Y be nuclear Fréchet spaces with continuous norms such that there
exists a continuous map Q from X onto Y which kernel ker Q is not comple-
mented in X. For example, we can take X = A∞(a) and Y = A1(b) provided
a = (an) and b = (bn) are increasing unbounded sequences of positive numbers with
limn(an/bn) = 0 and supn(a2n/an) < ∞ (see [16], Proposition 21 and [1], Propo-
sition 4.3; the assumption that K is spherically complete can be omitted in [1],
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Proposition 4.3). Let (rk) and (pk) be non-decreasing bases of continuous norms
on X and Y , respectively. Let B = (bk,n) be a nuclear Köthe matrix. The space
K(B, Y ) = {(yn) ⊂ Y : bk,npk(yn) →n 0 for every k ∈ N}with the base of norms
qk((yn)) = maxn bk,npk(yn), k ∈ N, is a nuclear Fréchet space ([5], Lemma 2.2 and
Theorem 7.1; K(B, Y ) = Λ0(N, P, Y ) for P = {bk = (bk,n)n∈N : k ∈ N}). The
strong dual of K(B, Y ) is nuclear ([10], Corollary 11.5). Put pA(y′) = supy∈A |y′(y)|
for A ∈ B(Y ) and y′ ∈ Y ′. Consider the linear space S(B, Y ′) = {(y′n) ⊂ Y ′ :
|ξn|pA(y′n) →n 0 for all ξ = (ξn) ∈ K(B), A ∈ B(Y )} with the locally convex topol-
ogy generated by all seminorms of the form rξ,A((y′n)) = maxn |ξn|pA(y′n), where
ξ = (ξn) ∈ K(B), A ∈ B(Y ). For any φ = (y′n) ∈ S(B, Y ′) the linear functional
fφ : K(B, Y ) → K, fφ((yn)) =

∑∞
n=1 y′n(yn) is continuous and the linear map Φ :

S(B, Y ′) → (K(B, Y ))′, φ → fφ is an isomorphism; thus S(B, Y ′) is isomorphic to
the strong dual space of K(B, Y ) ([5], Proposition 4.4 and Corollary 7.2; S(B, Y ′) =
Λ(N, |Λ|, Y ′) = Λ0(N, |Λ0|, Y ′)). Let n ∈ N. The space En = Xn ×K(B, Y ) is a nu-
clear Fréchet space. The norms qk,n : En → [0,∞), qk,n((x1, . . . , xn), (y1, y2, . . .)) =
max{rk(x1), . . . , rk(xn), qk((yn))}, k ∈ N, form a base in P(En). Clearly, E ′

n is iso-
morphic to (X ′)n × S(B, Y ′); we will identified these spaces.

From now we will assume that the nuclear Köthe matrix B = (bk,n) is stable that
is

∀k ∈ N ∃l ∈ N : sup
n

(
bk,n+1

bl,n

+
bk,n

bl,n+1

)
< ∞.

For example, for an increasing unbounded sequence (an) ⊂ (0, +∞) the nuclear
Köthe matrixes A = (ak,n) = (kan) and C = (ck,n) = (( k

k+1
)an) are stable, provided

supn(an+1/an) < ∞.
It is not hard to check that for any (yn) ⊂ Y we have (y1, y2, . . .) ∈ K(B, Y )

if and only if (y2, y3, . . .) ∈ K(B, Y ); if k < l and ck,l
.
= supn(bk,n+1/bl,n) < ∞,

and pk ◦Q ≤ rl then qk(Qx, y1, y2, . . .) ≤ (ck,l + bk,1) max{rl(x), ql(y1, y2, . . .)} for all
x ∈ X, (yn) ∈ K(B, Y ). It follows that for any n ∈ N the map

πn : En+1 → En, πn((x1, . . . , xn+1), (y1, y2, . . .)) = ((x1, . . . , xn), (Qxn+1, y1, y2, . . .))

is well defined, linear, surjective and continuous.
Moreover, for any (ξn) ⊂ K we get (ξ1, ξ2, . . .) ∈ K(B) if and only if (ξ2, ξ3, . . .) ∈

K(B). Hence for every (y′n) ⊂ Y ′ we have (y′1, y
′
2, . . .) ∈ S(B, Y ′) if and only

if (y′2, y
′
3, . . .) ∈ S(B, Y ′). Put πk+1,k = πk and πj,k = πk ◦ . . . ◦ πj−1 for all

j, k ∈ N with j > k + 1. Let j, k ∈ N with j > k. Clearly, we have πj,k :
Ej → Ek, πj,k((x1, . . . , xj), (y1, y2, . . .)) = ((x1, . . . , xk), (Qxk+1, . . . , Qxj, y1, y2, . . .))
and π′j,k : E ′

k → E ′
j. For (x′1, . . . , x

′
k) ∈ (X ′)k, (y′n) ∈ S(B, Y ′), (x1, . . . , xj) ∈ Xj and

(yn) ∈ K(B, Y ) we have

(π′j,k((x′1, . . . , x
′
k), (y′1, y

′
2, . . .)))((x1, . . . , xj), (y1, y2, . . .))

= ((x′1, . . . , x
′
k), (y′1, y

′
2, . . .))((x1, . . . , xk), (Qxk+1, . . . , Qxj, y1, y2, . . .))

=
k∑

i=1

x′i(xi) +
j−k∑
i=1

y′i(Qxk+i) +
∞∑
i=1

y′j−k+i(yi)

= ((x′1, . . . , x
′
k, Q

′y′1, . . . , Q
′y′j−k), (y′j−k+1, y

′
j−k+2, . . .))((x1, . . . , xj), (y1, y2, . . .)).
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Thus
π′j,k : E ′

k → E ′
j, π

′
j,k((x′1, . . . , x

′
k), (y′1, y

′
2, . . .))

= ((x′1, . . . , x
′
k, Q

′y′1, . . . , Q
′y′j−k), (y′j−k+1, y

′
j−k+2, . . .)).

Hence we get π′j,k(E ′
k) = (X ′)k × (Q′Y ′)j−k × S(B, Y ′).

Spaces G, Ĝ, F, H and maps Ψ, α1, α2, . . . are defined as in the proof of Propo-
sition 4. By Lemma 3, Corollary 5 and Remark 6, no bounded subset of F/H is
linearly dense in F/H and G has no continuous norm; nevertheless αn(E ′

n) contains
a bounded and linearly dense subset for any n ∈ N.

Now we can prove our main result.

Theorem 7. The nuclear Fréchet space G is twisted.

Proof. Suppose, by contradiction, that G is isomorphic to the product
∏∞

n=1 Gn

of a sequence (Gn) of non-zero Fréchet spaces with continuous norms. Then G′ is
isomorphic to the direct sum W

.
=
⊕∞

n=1 G′
n ([6], Proposition 2.8).

Let Γ : W → G′ be an isomorphism. For any n ∈ N the closed subspace Wn
.
=

{(xk) ∈ W : xk = 0 for all k > n} of W is complemented; (Wn) is a strict inductive
sequence and W is the inductive limit of (Wn)([3], Proposition 1.4.4). For any n ∈ N,
Ln

.
= Ψ−1Γ(Wn) is a closed and complemented subspace of F/Ĝ = Ψ−1Γ(W ), and,

by Lemma 3, Ln contains a bounded and linearly dense subset. Moreover, (Ln) is
a strict inductive sequence and F/Ĝ is the inductive limit of (Ln). By Corollary 5
and Remark 6, there exist k, j ∈ N with 1 < k < j such that

α1(E
′
1) ⊂ Lk ⊂ αj(E

′
j) ⊂ αj+1(E

′
j+1) ⊂ F/Ĝ.

Clearly, Lk is closed and complemented in αj+1(E
′
j+1). Hence

α−1
j+1(α1(E

′
1)) ⊂ α−1

j+1(Lk) ⊂ α−1
j+1(αj(E

′
j)) ⊂ E ′

j+1

and M
.
= α−1

j+1(Lk) is a closed and complemented subspace of E ′
j+1.

Since αj+1π
′
j+1,1 = α1 and αj+1π

′
j+1,j = αj we have

π′j+1,1(E
′
1) ⊂ M ⊂ π′j+1,j(E

′
j) ⊂ E ′

j+1,

so

X ′ × (Q′Y ′)j × S(B, Y ′) ⊂ M ⊂ (X ′)j ×Q′Y ′ × S(B, Y ′) ⊂ (X ′)j+1 × S(B, Y ′).

Let C = {(x′2, . . . , x
′
j) ∈ (X ′)j−1 : ((0, x′2, . . . , x

′
j), 0, (0, 0, . . .)) ∈ M}. Then M =

X ′ × C ×Q′Y ′ × S(B, Y ′) and (Q′Y ′)j−1 ⊂ C ⊂ (X ′)j−1.
Put S : X ′ → E ′

j+1 = (X ′)j+1 × S(B, Y ′), Sx = ((0, . . . , 0, x), (0, 0, . . .)) and
R : X ′×C×Q′Y ′×S(B, Y ′) → Q′Y ′, R(x, c, y, s) = y. Let P be a continuous linear
projection from E ′

j+1 onto M . Then R ◦ P ◦ S is a continuous linear projection
from X ′ onto Q′Y ′. Clearly Q′Y ′ = (ker Q)◦. By Lemma 2 we infer that ker Q is
complemented in X; a contradiction. �

The seminorms r̃k : XN → [0,∞), r̃k((xn)) = max1≤n≤k rk(xn), k ∈ N, form a
base of continuous seminorms on the product space XN. Consider the linear subspace
Z

.
= {(xn) ∈ XN : (Qxn) ∈ K(B, Y )} of XN with the locally convex topology

generated by the seminorms sk : Z → [0,∞), sk((xn)) = max{r̃k((xn)), qk((Qxn))}
(k ∈ N). We shall prove the following
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Proposition 8. The locally convex space Z is isomorphic to G. Thus Z is a nuclear
twisted Fréchet space.

Proof. Put Φk : Z → Ek, Φk((xn)) = ((x1, . . . , xk), (Qxk+1, Qxk+2, . . .)) for k ∈
N. The linear map Φ : Z → Π∞

k=1Ek, Φ(x) = (Φkx) is injective. We shall prove that
Φ(Z) = G. Clearly Φ(Z) ⊂ G. Let (tk) ∈ G. Then tk = ((xk

1, . . . , x
k
k), (yk

1 , y
k
2 , . . .))

for some (xk
1, . . . , x

k
k) ∈ Xk, (yk

1 , y
k
2 , . . .) ∈ K(B, Y ), k ∈ N, and

((xk+1
1 , . . . , xk+1

k ), (Qxk+1
k+1, y

k+1
1 , yk+1

2 , . . .)) = ((xk
1, . . . , x

k
k), (yk

1 , y
k
2 , . . .)), k ∈ N. Hence

xk+1
n = xk

n for n, k ∈ N with n ≤ k, and Qxk+1
k+1 = yk

1 , y
k+1
n = yk

n+1 for n, k ∈ N. Thus
xk

n = xn
n for n, k ∈ N with n ≤ k, and yk

n = yk+n−1
1 = Qxk+n

k+n for n, k ∈ N. It follows
that tk = ((x1

1, . . . , x
k
k), (Qxk+1

k+1, Qxk+2
k+2, . . .)), k ∈ N; so (tk) = Φ((xn

n)) ∈ Φ(Z).
The seminorms q̃k : Π∞

n=1En → [0,∞), q̃k((tn)) = max1≤n≤k qk,n(tn), k ∈ N,
form a base of continuous seminorms on Π∞

n=1En. Let k ∈ N. By the stability
of B and the continuity of Q there exist ck > 1 and t ∈ N with t ≥ k such that
bk,j ≤ ckbt,j−1 for j ∈ N with j ≥ 2; bk,j ≤ ckbt,j+n for n, j ∈ N with 1 ≤ n ≤ k, and
bk,1pk(Qx) ≤ ckrt(x) for x ∈ X.
For x = (xn) ∈ Z we have

q̃k(Φx) = max
1≤n≤k

qk,n((x1, . . . , xn), (Qxn+1, Qxn+2, . . .))

= max
1≤n≤k

max{rk(x1), . . . , rk(xn), qk((Qxn+1, Qxn+2, . . .))}

= max{max
1≤i≤k

rk(xi), max
1≤n≤k

max
i∈N

bk,ipk(Qxn+i)}

= max{r̃k((xn)), max
1≤n≤k

max
m>n

bk,m−npk(Qxm)}

≤ max{r̃k((xn)), ck max
m

bt,mpt(Qxm)} ≤ ckst((xn)),

sk(x) = max{r̃k(x), max
i∈N

bk,ipk(Qxi)} ≤ ck max{r̃k(x), rt(x1), max
i≥2

bt,i−1pk(Qxi)}

≤ ck max{r̃t(x), max
1≤n≤k

max
i∈N

bt,ipt(Qxi+n)} = ckq̃t(Φx).

Thus the map Φ : Z → G is an isomorphism. �
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