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Abstract

Let S be a left compactly cancellative foundation semigroup with identity e
and Ma(S) be its semigroup algebra. In this paper, we give a characterization
for the existence of an inner invariant extension of δe from Cb(S) to a mean
on L∞(S,Ma(S)) in terms of asymptotically central bounded approximate
identities in Ma(S). We also consider topological inner invariant means on
L∞(S,Ma(S)) to study strict inner amenability of Ma(S) and their relation
with strict inner amenability of S.

1 Introduction

Throughout this paper, S denotes a locally compact Hausdorff topological semi-
group. The space of all bounded complex regular Borel measures on S is denoted
by M(S). This space with the convolution multiplication ∗ and the total variation
norm defines a Banach algebra. The space of all measures µ ∈ M(S) for which
the maps x 7→ δx ∗ |µ| and x 7→ |µ| ∗ δx from S into M(S) are weakly continu-
ous is denoted by Ma(S) (or L̃(S) as in [2]), where δx denotes the Dirac measure
at x. S is called foundation semigroup if S coincides with the closure of the set⋃{supp(µ) : µ ∈ Ma(S)}. It is well-known that Ma(S) is a closed two-sided L-ideal
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of M(S); see [2]. Let us point out that the second dual Ma(S)∗∗ of Ma(S) is a
Banach algebra with the first Arens product � defined by the equations

(F �H)(f) = F (Hf), (Hf)(µ) = H(fµ), and (fµ)(ν) = f(µ ∗ ν)

for all F, H ∈ Ma(S)∗∗, f ∈ Ma(S)∗, and µ, ν ∈ Ma(S).
Denote by L∞(S, Ma(S)) the set of all complex-valued bounded functions g on

S that are µ-measurable for all µ ∈ Ma(S). We identify functions in L∞(S, Ma(S))
that agree µ-almost everywhere for all µ ∈ Ma(S). For every g ∈ L∞(S; Ma(S)),
define

‖g‖∞ = sup{ ‖g‖∞,|µ| : µ ∈ Ma(S) },

where ‖.‖∞,|µ| denotes the essential supremum norm with respect to |µ|. Observe
that L∞(S, Ma(S)) with the complex conjugation as involution, the pointwise oper-
ations and the norm ‖.‖∞ is a commutative C∗-algebra. The duality

τ(g)(µ) := µ(g) =
∫
S

g dµ

defines a linear mapping τ from L∞(S, Ma(S)) into Ma(S)∗. It is well-known that
if S is a foundation semigroup with identity, then τ is an isometric isomorphism
of L∞(S, Ma(S)) onto Ma(S)∗; see Proposition 3.6 of Sleijpen [27]. Given any
µ ∈ Ma(S) and g ∈ L∞(S, Ma(S)), define the complex-valued functions g ◦ µ and
µ ◦ g on S by

(g ◦ µ)(x) = µ(xg) and (µ ◦ g)(x) = µ(gx)

for all x ∈ S, where (xg)(y) = g(xy) and (gx)(y) = g(yx) for all y ∈ S. It is clear
that g ◦ µ and µ ◦ g are in L∞(S, Ma(S)) with

‖g ◦ µ‖∞ ≤ ‖g‖∞ ‖µ‖ and ‖µ ◦ g‖∞ ≤ ‖g‖∞ ‖µ‖.

Let LUC(S) be the space of all left uniformly continuous on S; recall that a
function g ∈ Cb(S) is called left uniformly continuous if the mapping x 7→ xg from
S into Cb(S) is ‖.‖∞-continuous, where Cb(S) denotes the space of all bounded
continuous complex-valued functions on S; as usual C0(S) denotes the space of
functions in Cb(S) vanishing at infinity and Cc(S) denotes its subspace of functions
with compact support.

Let X be a closed subspace of L∞(S, Ma(S)) containing the constant functions
on S. A mean on X is a functional M with ‖M‖ = M(1) = 1. If, moreover,

xg, gx ∈ X for all x ∈ S and g ∈ X, we then say that m is inner invariant if

M( xg) = M(gx) (x ∈ S, g ∈ X).

The study of inner invariant means was initiated by Effros [8] and pursued by
Akemann [1], H. Choda and M. Choda [4], M. Choda [5, 6] for discrete groups, Lau
and Paterson [17], Losert and Rindler [20], Yuan [28] for topological groups, and by
Ling [19] and the second and third authors [22] for discrete semigroups.

For a foundation semigroup S with identity e, the Dirac measure δe is always an
inner invariant mean on Cb(S). Several authors have been studied the possibility of
inner invariant extension of δe to a mean on L∞(S) in the case where S is a locally
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compact group; see [20] and [28]. Here, we consider the more general setting of left
compactly cancellative topological semigroups; recall from [18] that S is said to be
left compactly cancellative if C−1D is compact for all compact subsets C and D of
S. We give a characterization for the existence of an inner invariant extensions of
δe to a mean on L∞(S, Ma(S)) in terms of asymptotically central bounded approxi-
mate identities in Ma(S). Motivated by an open problem arising from [24], we also
consider topological inner invariant means on L∞(S, Ma(S)) to study strict inner
amenability of Ma(S) and their relation with strict inner amenability of S.

2 Inner invariant extensions of Dirac measures

Let us recall that an element E in Ma(S)∗∗ is called a mixed identity if

µ� E = E � µ = µ (µ ∈ Ma(S)).

It is easy to see that an element E of Ma(S)∗∗ is a mixed identity if and only if it
is a weak∗ cluster point of a bounded approximate identity in Ma(S); see [3], page
146. Furthermore, any mixed identity is a right identity of Ma(S)∗∗ but not a left
identity in general.

Proposition 2.1. Let S be a foundation semigroup with identity e. Then any
extension of δe from Cb(S) to L∞(S, Ma(S)) with norm one is a mixed identity.

Proof. Let E be an extension of δe from Cb(S) to L∞(S, Ma(S)) with norm one.
For every µ ∈ Ma(S) and g ∈ L∞(S, Ma(S)) we have

(µ ◦ g)(x) = (µ ∗ δx)(g)

for all x ∈ S; it follows from the weak continuity of the map x 7→ µ ∗ δx from S into
Ma(S) that µ ◦ g ∈ Cb(S). Therefore

(µ� E)(g) = E(µ ◦ g)

= (µ ◦ g)(e)

= µ(g);

that is, µ� E = µ. Similarly E � µ = µ. Thus E is a mixed identity. �

To prove the converse of Proposition 2.1, we need the following lemma.

Lemma 2.2. Let S be a foundation semigroup with identity e. Suppose that M is
a mean on L∞(S, Ma(S)) with M(h) = h(e) for all h ∈ Cc(S). Then M(g) = g(e)
for all g ∈ L∞(S, Ma(S)) continuous at e.

Proof. Without loss of generality we may assume that g is non-negative and g(e) = 0.
Given ε > 0, let

Vε = {x ∈ S : g(x) < ε }.
Then Vε is a neighbourhood of e by continuity of g at e. Hence there exists h ∈ Cc(S)
with support in Vε such that

0 ≤ h ≤ ‖ g‖∞ and h(e) = ‖ g‖∞.
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Thus

‖ g‖∞ + M(g) = h(e) + M(g)

= M(h) + M(g)

= M(h + g)

≤ ‖ h + g‖∞
= ‖ g‖∞ + ε.

It follows that M(g) ≤ ε for all ε > 0; hence M(g) = 0 as required. �

The following theorem is indeed an improvement of Proposition 2.1 in [9].

Theorem 2.3. Let S be a left compactly cancellative foundation semigroup with
identity e, and let E be an element of Ma(S)∗∗ with norm one. Then the following
assertions are equivalent.

(a) E is a mixed identity.
(b) E is a right identity.
(c) E is an extension of δe from C0(S) to L∞(S, Ma(S)).
(d) E is an extension of δe from Cb(S) to L∞(S, Ma(S)).

Proof. (a)=⇒(b). Let F ∈ Ma(S)∗∗ and (σα) be a net in Ma(S) which converges to
F in the weak∗ topology. Then

σα � E → F � E

in the weak∗ topology. So the result follows from that σα � E = σα for all α.
(b)=⇒(c). Let (νγ) be a right approximate identity bounded by one converging

to E in the weak∗ topology. Then for each µ ∈ Ma(S) and g ∈ L∞(S, Ma(S)) we
have

E(µ ◦ g) = lim
γ

νγ(µ ◦ g)

= lim
γ

(µ ∗ νγ)(g)

= µ(g);

that is, E(µ ◦ g) = (µ ◦ g)(e). Now invoke Lemma 2.1 from [10], to conclude that

LUC(S) = Ma(S) ◦ L∞(S, Ma(S))

and hence E(f) = f(e) for all f ∈ LUC(S). Since S is left compactly cancellative,
from Lemma 1.2 of [11] it follows that

C0(S) ⊆ LUC(S).

Thus E(f) = f(e) for all f ∈ C0(S).
(c)=⇒(d). By Lemma 2.2, we only need to show that E is a mean on L∞(S, Ma(S)).

To that end, let m be the restriction of E to LUC(S). Then by Theorem 2 of [11],
there is n ∈ C0(S)⊥ such that

m = n + µ and ‖m‖ = ‖n‖+ ‖µ‖,

where µ ∈ LUC(S)∗ is defined by µ(f) = f(e) for all f ∈ LUC(S). Since ‖E‖ = 1,
we have ‖m‖ ≤ 1, whence n = 0. Thus E(1) = m(1) = 1.

(d)=⇒(a). This follows from Proposition 2.1. �
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Recall that a net (µγ) in Ma(S) is called asymptotically central (resp. weakly
asymptotically central ) if

δx ∗ µγ − µγ ∗ δx → 0

in the norm (resp. weak) topology for all x ∈ S. In the following, let P1(Ma(S))
denote the set of all probability measures in Ma(S).

Theorem 2.4. Let S be a left compactly cancellative foundation semigroup with
identity e. Then the following statements are equivalent.

(a) δe has an inner invariant extension to a mean on L∞(S, Ma(S)).
(b) There is a weakly asymptotically central approximate identity in P1(Ma(S)).
(c) There is an asymptotically central approximate identity in P1(Ma(S)).

Proof. Suppose that (a) holds, and let E be an extension of δe from Cb(S) to an inner
invariant mean on L∞(S, Ma(S)). Then E is a mixed identity by Proposition 2.1.
Since S is a foundation semigroup with identity, it follows from [27] that Ma(S) is the
predual of the commutative C∗-algebra L∞(S, Ma(S)); see also [12] and [23]. Thus
P1(Ma(S)) is weak∗ dense in P1(Ma(S)∗∗), the set of all means on L∞(S, Ma(S));
see Lemma 2.1 in [16]. So, there is a net (µγ) in P1(Ma(S)) which converges to E
in the weak∗ topology. Thus, (µγ) is a weak approximate identity for Ma(S), and
therefore we may find an approximate identity (σα) in P1(Ma(S)) which converges
to E in the weak∗ topology; see [3], page 146. Since E is inner invariant, it follows
that

δx ∗ σα − σα ∗ δx → 0 (x ∈ S)

in the weak topology of Ma(S). That is, (σα) a weakly asymptotically central
approximate identity. A standard argument shows that (b) implies (c).

Finally, if there exists an asymptotically central approximate identity (νγ) in
P1(Ma(S)), then any weak∗-cluster point E of (νγ) in Ma(S)∗∗ is an inner invariant
mean. Also, E is a mixed identity with norm one, and hence it follows from Theorem
2.3 that E is an extension of δe from Cb(S) to L∞(S, Ma(S)). That is (a) holds. �

3 Strict inner amenability

A closed subspace X of L∞(S; Ma(S)) is called topologically inner invariant if

µ ◦ g, g ◦ µ ∈ X (µ ∈ Ma(S), g ∈ X).

Let X be a topologically inner invariant closed subspace of L∞(S; Ma(S)) containing
the constant functions. We say that a mean M is topological inner invariant on X
whenever

M(µ ◦ g) = M(g ◦ µ) (µ ∈ Ma(S), g ∈ X).

The notion of topological inner invariant means was introduced and studied by
the third author [24] for a large class of Banach algebras known as Lau algebras.
The subject of Lau algebras originated with the paper [15] published in 1983 by Lau
in which he referred to them as F -algebras. Later on, in his useful monograph, Pier
[26] introduced the name Lau algebra.
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As pointed out in [23], Ma(S) is a Lau algebra for all foundation semigroups S
with identity; in this case, any mixed identity with norm one in Ma(S)∗∗ is a topolog-
ical inner invariant mean on L∞(S, Ma(S)). Following [24], Ma(S) is called strictly
inner amenable if there is a topological inner invariant mean m on L∞(S; Ma(S))
which is not a mixed identity.

Proposition 3.1. Let S be a left compactly cancellative foundation semigroup with
identity e, and suppose that there is a topological inner invariant mean on LUC(S)
not equal to δe. Then Ma(S) is strictly inner amenable.

Proof. Suppose that M is a topological inner invariant mean on LUC(S) not equal
to δe, and M̃ is an extension of M from LUC(S) to a mean on L∞(S, Ma(S)). Then
for µ ∈ Ma(S) and g ∈ L∞(S, Ma(S)) we have

‖νγ ◦ (µ ◦ g)− µ ◦ g‖∞ = ‖(νγ ∗ µ− µ) ◦ g‖∞ → 0

and

‖µ ◦ (νγ ◦ g)− µ ◦ g‖∞ = ‖(µ ∗ νγ − µ) ◦ g‖∞ → 0,

where (νγ) is an approximate identity of probability measures for Ma(S); see [23].
It follows that

lim
γ

M̃(νγ ◦ (µ ◦ g)) = M̃(µ ◦ g) = lim
γ

M̃(µ ◦ (νγ ◦ g)).

For every γ we have νγ ◦ g ∈ LUC(S); see Lemma 2.1 from [10]. Therefore

M(µ ◦ (νγ ◦ g)) = M((νγ ◦ g) ◦ µ);

That is,

M̃(µ ◦ (νγ ◦ g)) = M̃((νγ ◦ g) ◦ µ;

moreover,

(νγ � M̃)(µ ◦ g) = M̃(νγ ◦ (µ ◦ g)),

M̃((νγ ◦ g) ◦ µ) = (νγ � M̃)(g ◦ µ).

Consequently,

lim
γ

(νγ � M̃)(µ ◦ g) = lim
γ

(νγ � M̃)(g ◦ µ).

Let E be a weak∗ cluster point of (νγ), Then E is a mixed identity and νγ � M̃

converges to E � M̃ in the weak∗ topology of Ma(S)∗∗, and hence we get

(E � M̃)(µ ◦ g) = (E � M̃)(g ◦ µ).

This means that E � M̃ is a topological inner invariant mean on L∞(S, Ma(S)).
Since M̃ is not a mixed identity, E � M̃ cannot be a mixed identity; that is Ma(S)
is strictly inner amenable. �



Invariant extensions of Dirac measures 705

The following example shows that there is a locally compact non-discrete semi-
group satisfying the hypothesis of Proposition 3.1 which is not a subset of any group.

Example 3.2. Let T := {0, 1, 2, ..., n} be the discrete semigroup with the operation
xy = 0 for all x, y ∈ T \ {1} and x1 = 1x = x for all x ∈ T . Then

S := T × SO(n, R)

is a compact foundation non-abelian semigroup with identity; see for example Palmer
[25], page 80. It follows from the proof of Lemma 6.3 and Proposition 6.4 in [14]
that LUC(S) has an invariant mean M ; that is, M(xg) = M(gx) = M(g) for all
x ∈ S and g ∈ LUC(S). In particular, M is not equal to the Dirac measure at the
identity element of S. Thus

M(µ ◦ g) = M(g ◦ µ) = M(g)

for all µ ∈ P1(Ma(S)) and g ∈ LUC(S); see [7], Lemma 2.3 and its proof, page 74.
That is, M is also a topological inner invariant mean on LUC(S).

Let S be a foundation semigroup with identity e. As pointed out δe is always an
inner invariant mean on Cb(S). We say that S is strictly inner amenable if there is
an inner invariant mean m on L∞(S, Ma(S)) which is not an extension of δe.

Proposition 3.3. Let S be a non-discrete foundation semigroup with identity e.
If there is a topological inner invariant mean in Ma(S), then S is strictly inner
amenable.

Proof. Let M ∈ Ma(S) be a topological inner invariant mean . Then M is in the
center of Ma(S), and so M ◦ g = g ◦M for all g ∈ L∞(S, Ma(S)). This implies that
for any x ∈ S and g ∈ L∞(S, Ma(S)),

M(xg) =
∫
S

g(xy) dM(y)

= (M ◦ g)(x)

= (g ◦M)(x)

=
∫
S

g(yx) dM(y)

= M(gx).

So, M is an inner invariant mean. Finally, since S is not discrete, Ma(S) does not
have identity; see [2]. It follows that M is not a mixed identity. Now the proof is
complete by Proposition 2.1. �

It is an open problem arising from [24] whether strict inner amenability of a
locally compact group G is equivalent to strict inner amenability of L1(G)?

In [21], Memarbashi and Riazi proved that strict inner amenability of G implies
strict inner amenability of L1(G). The first and second authors [13] have recently
shown that the converse is not true; however, they have proved that the converse is
true if δe has an inner invariant extension to a mean on L∞(G). Here, we show that
the later result remains valid for certain topological semigroups.
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Theorem 3.4. Let S be a left compactly cancellative foundation semigroup with
identity e. Suppose that δe has an inner invariant extension from Cb(S) to a mean
on L∞(S, Ma(S)). Then strict inner amenability of Ma(S) implies strict inner
amenability of S.

Proof. Since δe has an inner invariant extension to from Cb(S) to a mean on
L∞(S, Ma(S)), it follows from Theorem 2.4 that Ma(S) has an approximate identity
(νγ) of probability measures such that

‖δx ∗ νγ − νγ ∗ δx‖ → 0 (x ∈ S).

For each x ∈ S and g ∈ L∞(S, Ma(S)) we have

νγ ◦ (xg) = (δx ∗ νγ) ◦ g and (gx) ◦ νγ = g ◦ (νγ ∗ δx).

Now, let M be a topological inner invariant mean on L∞(S, Ma(S)). Then

(νγ �M)(xg) = M(νγ ◦ gx)

= M((δx ∗ νγ) ◦ g)

= M(g ◦ (δx ∗ νγ))

and

(νγ �M)(gx) = M(νγ ◦ gx)

= M(gx ◦ νγ)

= M(g ◦ (νγ ∗ δx)).

Thus

|(νγ �M)(xg − gx)| = |M(νγ ◦ xg − νγ ◦ gx)|
= |M(g ◦ (δx ∗ νγ)− g ◦ (νγ ∗ δx))|
≤ ‖M‖ ‖g‖∞ ‖δx ∗ νγ − νγ ∗ δx‖ → 0.

Next, let E be a weak∗ cluster point of (νγ) in Ma(S)∗∗. Since νγ �M converging
to E �M in the weak∗ topology of Ma(S)∗∗, it follows that

(E �M)(xg) = (E �M)(gx)

for all x ∈ S and g ∈ L∞(S, Ma(S)). That is E � M is inner invariant. Since M
is not a mixed identity, it follows that E � M is not a mixed identity. Therefore,
E �M is not an extension of δe from Cb(S) to L∞(S, Ma(S)) by Theorem 2.3 and
the proof is complete. �
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