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Abstract

A characterization in terms of the weights of quasinormable weighted
Fréchet spaces of holomorphic functions on the disc is presented, when the
weights are radial and grow logarithmically.

1 Introduction and Notation

This article studies quasinormable weighted Fréchet spaces of holomorphic functions
HW (D) resp. HWy(ID). For an increasing sequence W = (w,, ),en of strictly positive
continuous functions (weights) on the open unit disc D of C we consider the projec-
tive limit of the Banach spaces Hw, (D) := {f € H(D); || f|ln := sup,ep wa(2)|f(2)] <
oo} resp. H(wy,)o(D) := {f € H(D);w,f vanishes at co on D}, n € N.

Under rather general assumptions we obtained in [19] a necessary condition for
quasinormability in terms of the sequence of weights (which are considered as growth
conditions in the sense of [6]) and their associated growth conditions. A method of
Bonet-Englis-Taskinen (see [9]) is used to see that, under some restrictions on the
weights, the necessary condition is also sufficient. This result complements those we
obtained in [19] for radial weights satisfying a polynomial growth condition.

The class of quasinormable Fréchet spaces was studied by Grothendieck in [10] as
a class ”containing the most usual Fréchet function spaces” (see [10] p. 107). In
the case of Kothe echelon spaces quasinormability was studied by Bierstedt-Meise-
Summers [8], Meise-Vogt [13], Valdivia [16], [17] and Vogt [18]. For weighted Fréchet
spaces of continuous functions Bierstedt-Meise [7] and Bastin-Ernst [2] obtained a
characterization in terms of the weights. In fact, we get a result similar to the one of
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Bastin-Ernst. In contrast to the case of continuous functions the so called associated
growth conditions mentioned by Anderson and Duncan in [1] and studied thoroughly
by Bierstedt-Bonet-Taskinen in [6] are needed to get the characterization. The suf-
ficiency is obtained here under the assumption that the systems of weights satisfy
the condition (LOG) of Bonet-Englis-Taskinen (see [9]), see the details below.

Our notation on locally convex spaces is standard; see for example Jarchow
[11], Kéthe [12], Meise-Vogt [14] and Pérez Carreras-Bonet [15]. For a locally con-
vex space E, E’ is the topological dual and Ej the strong dual. If E is a locally
convex space, Uy(F) and B(E) stand for the families of all absolutely convex 0-
neighborhoods and absolutely convex bounded sets in E, respectively.

A locally convex space E is called quasinormable if

YU € Up(E) IV € Up(E) YA > 03B € B(E): V C B+ \U.

Each normed space is quasinormable. By [14, Lemma 26.14] a Fréchet space E with
a 0-neighborhood base (U, )nen is quasinormable if and only if

VneNdIm>nVk>nVe>03>0: U, C U, +eU,.

In the sequel D denotes the open unit disc of C. The space H(ID) of all holomorphic
functions on I is endowed with the topology co of uniform convergence on the

compact subsets of . Let W = (wy,)neny be an increasing sequence of strictly
positive continuous functions on ID. For every n € N the spaces
Huw,(D) = {f € HD); |[flln = supwn(2)|f(2)] < 0o} and
zE
H(w,)o(D) = {f € H(D);w,f vanishes at co on D}

endowed with the norm ||.||,, are Banach spaces. The weighted Fréchet spaces of
holomorphic functions are defined by

HW (D) := proj, Hw, (D) and HWy(D) := proj,, H (w,)o(D).
For each n € N, let B,, resp. B,, be the closed unit ball of Hﬂn(]D), resp.
H(wy)o(D), and C), :== B,NHW (D), resp. C,, o := B, oNHWy(D). By B,,, B0, Chn,

Cy,0 we denote the co-closures of the corresponding sets. The sequence (%C’n) .

resp. (%CR’O)nEN’ constitutes a 0-neighborhood base of HW (D), resp. HWy(D).

Without loss of generality we may assume that (C,)nen, resp. (Cpo)nen, is a 0-
neighborhood base. Put

W = {w: D —]0, 0o[; W continuous on D, w,®w is bounded on D Vn € N},

and Cg := {f € HW(D);|f| < w on D}, resp. Cgo := Cx N HWy(D), w € W.
We write C7 and Cg to refer to the co-closure. (Cg)uc resp. (Cz0)mer 1S a
fundamental system of bounded subsets of HW (D), resp. HW;(D).

Let v be a weight on D. Its associated growth condition (see [6]) is defined by

v(z) = sup{|g(z)];g € HD), |g| < v}, 2 € D.

A weight v on D is said to be radial if v(z) = v(|z|) holds for every z € D.
We recall the following result. In [5] it is given in a more general setting, but we
will restrict ourselves to the setting described in this paper.
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Theorem 1 (Bierstedt-Bonet-Galbis [5]) Let W = (w,)nen be an increasing se-
quence of non-negative continuous and radial functions on .

(1) If HWy(D) contains the polynomials, then B, o = B, and C, = B, hold for
every n € N.

(2) If each w, is strictly positive, then the Cy for w € W radial constitute a basis
of bounded sets in HW (D) and Cy = C N HWo(D) = Cg g for everyw € W

radial.

(3) If each w, approaches 0 monotonically as r — 1— the polynomials are dense

2 Main Result

All the weights in this section are defined on the unit disc D of the complex plane. For
every n € N we denote r, := 1 —27%" ry:=0, and I, := [r,,7,+1]. The following
definition is inspired by a condition introduced by Bonet, Englis and Taskinen 9,
Section 4].

Definition 2 A sequence W = (wy)nen of weights on D satisfies the condition
(LOG) if each weight in the sequence is radial and approaches monotonically 0 as
r — 1— and there exist constants 0 < a < 1 < A such that

(a) Awy(rpe1) > wi(ry) and
(b) wi(rps1) < awg(rn).

for every k and n.

Theorem 3 Let W = (wy,)nen be an increasing sequence of strictly positive contin-
wous radial functions on the unit disc D such that each w, approaches monotonically
0 as r — 1— and such that (LOG) is satisfied. The following are equivalent:

(a) HWy(D) is quasinormable.
(b) HW (D) is quasinormable.

(c) For everyn € N there is m > n such that for every k > n and for every > 0
we can find & > 0 such that

Cmo C ECk o + pChp.

(d) For every n € N there is m > n such that for every k > n and for every e > 0
we can find A > 0 such that

<L> Si%—i on D.

W Wi, Wp,
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(e) For everyn € N there is m > n such that for every o > 0 there isw € W with

1\~
(—) §w+ﬁ on D.

W Wn

Proof. Since HW;(D) is a Fréchet space, the equivalence of (a) and (c) follows from
[14, Lemma 26.14]. The equivalence of (a) and (b) and the fact that (b) implies
(e) are particular cases of results in a more general setting given in [19, Proposition
17 and 19]. It is easy to see that (d) follows from (e). It remains to show that (d)
yields (3). Our proof was inspired by [9, Theorem 5].

Let C > 0 denote a constant such that C' > Y ,cna®, 0 < a < 1 as in (b) of
Definition 2, and C' > 2‘4;22: “forallt and n > t, 1 < A as in (a) of Definition 2.
We fix n € N and select m > n as in (d). For fixed & > n and g > 0 we choose
€ = jearmsc- Then we select A > 0 according to (d).

We fix f € C,, 0. Hence f € HWy(D) and

1\” A 2\ 2
|f\§(—) <——|——<ma'x
Wm

Wi Wp, wk Wp,

Put u := min(g¥, §2). Hence f € Cyo := {f € HWy(D);sup,pu(z)|f(2)] < 1}.
We write u = min(ajuq, agus) where a; = %, Qs = 2—15, u; = wy and Uy = w,,.

u is a radial, continuous and non-increasing function. Each g € HW;(D) can be
approximated in HWy(D) by the functions g,, (2) = g(r,2) for large n; see e.g. [5].
Hence it suffices to show that f,, belongs to {C o + pCh, ¢ for each n big enough.
Since the weight u is non-increasing, we get

inf w(z) = u(rpi1) > u(rppe) = inf w(z) > A 2u(r,). (1)
|Z|Eln ‘Z‘Eln+1

For every n € N we can thus pick a k(n) € {1,2} such that

u(rn) = Qk(n)Uk(n) (Tn) = Qk(n) |S|UI[) uk(n)(z). (2)

z|€ln
For v € Nlet Ny = {n < v; k(n) = 1} and Ny = {n < v; k(n) = 2}. Let us
define, for all n the function g,(2) := f(rp+12) — f(raz) and go(z) := f(0), and, for

i€ {1,2},

= 9 (3)

neN;

and h; := 0 if N; = (. Clearly f,., = hi + ha + go. The constant function gy belongs
to H(uz)o(D) and |£(0)| < ay'uy'(0), hence gy € a;'Cho. Let us fix i € {1,2}. We
pick n € N;, and estimate |g,(z)| for different z.

1. Assume first |z| > r,_1. Then
Pzl > (1=221 -2 >1-2-22""el,,
and similarly for |r,.12[; hence

Tn—2 < |rpz| < |rps1z| < rpga. (4)
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Since f € C, o we have for these z, by (1)
90 () < |f(ra2)| + [ f(ran2)| €2 sup  u(r)™ =2u(ruea) ™. (5)

rn—2<r<rp41
Now (5) can still be estimated using (2) by
2A%u(r,) " = 2A%a; u(rn) 7t (6)

2. Assume 2 <t <n and |z| € I,,_;. We have
g(2)] = 1f(rnz) = fran2)| < sup [ f(rnsr — 7l

SEInftUInftfl

< sup |f(§)127%" (7)

é-EInftUInftfl
We estimate | f/(£)] using the Cauchy formula
f 77 _ n—t
s [ TGy <y 0
nl=rn [ — €]
since |n —&| > 22" _9-2" 5 9-1. 92" YW yge 27 — 2n—tHl > on—1 g
from (7) and (8) we obtain
gn(2)] <2777 cu(r) T <27 gty () (9)

Here we used (2). Moreover, using (a) of Definition 2 ¢ times, we can continue
the estimate by

<2787 Alaggyurg (2) 7" (10)
Since n > t we have 272" A* < 027" (for all n and t), hence (10) is bounded
by
C2_("_t)a,;(1n)uk(n)(z)_1 = 2~ DLy (2) 7 (11)
So altogether
|9n(2)] < €27 Va; g (2) 7 (12)
To complete the proof, let now z € D; we want to show that
|hi(2)| < (2CA% + C)a; . (13)
Let t € N be such that |z| € I}, then

()l < > g2+ X lg(2)l = Gi(z) + Hi(2).  (14)
neN;,n<t+1 neN;,n>t+1
(a) Consider G;(z). In this case (6) of 1. implies
Gi(z) < > 24% 'w(r,)
neN; n<t+1

By using (b) of Definition 2 (¢t — n) times, this is bounded by a constant
times

> 2A% u(ry) e < 20 A% M (2) T (15)

n<t+1

Remember that a < 1 and C' > 3, oy a”.
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(b) Consider H;(z). Then 2. (12) implies

Hi(z)< Y 27 e u(2) 7 < Caytug(z) 7 (16)

neN;,n>t+1
We obtain

fro = Go+hi+hy€(1+2CA%+C)a;'Cro+ (2CA% + Cay ' Crrp
= (2+4CA* +2C)A\Cr + (4CA* + 20)eCh g
= &Cko+ pChyo,

where £ := (2 + 4CA? 4 20)\. [

A characterization of weighted Fréchet spaces of holomorphic functions having
Stefan Heinrich’s density condition similar to the one above can be given with a
similar, technically more complicated approach. A Fréchet space has the density
condition if every bounded set of its strong dual is metrizable. This condition was
studied thoroughly by Bierstedt-Bonet (see [3, 4]).
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