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Abstract

Let (Xn) be a sequence of infinite-dimensional Banach spaces. For E being
the space

⊕∞
n=1 Xn, the following equivalences are shown: 1. E′ [µ(E′, E)]

is B-complete. 2. Every separated quotient of E′ [µ(E′, E)] is complete. 3.
Every separated quotient of E satisfies Mackey’s weak condition. 4. Xn is
quasi-reflexive, n ∈ N.

1 Introduction and notation

The linear spaces that we shall use here are assumed to be defined over the field
K of real or complex numbers, and the topologies on them will all be Hausdorff.
As usual, N represents the set of positive integers. If 〈E,F 〉 is a dual pair, then
σ(E,F ), µ(E,F ) and β(E,F ) denote the weak, Mackey and strong topologies on E,
respectively. We shall write 〈·, ·〉 for the bilinear functional associated to 〈E,F 〉. Let
E be a locally convex space and let τ be its topology, if A is a subset of E then A [τ ]
means the set A endowed with the topology induced by τ , A is the closure of A and
A◦ is the polar set of A in the topological dual E ′ of E. E ′′ is the topological dual of
E ′ [β(E ′, E)]. By ρ(E,E ′) we denote the topology on E of the uniform convergence
over each absolutely convex compact subset of E ′ [β(E ′, E)]. We identify E, in the
usual fashion, with a linear subspace of E ′′. If B is a subset of E, by B̃ we mean
the closure of B in E ′′ [σ(E ′′, E ′)]. A linear functional u on E is said to be bounded
if it is bounded on every bounded subset of E.

Let A be a bounded absolutely convex subset of the locally convex space E. Then
EA denotes the linear span of A endowed with the norm defined by the gauge of A.
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The space E is said to be locally complete if EA is complete for every bounded closed
absolutely convex subset A of E; if E is sequentially complete, and, in particular,
when it is complete, then it is locally complete. We say the E satisfies Mackey’s
weak condition if for an arbitrary sequence (xn) in E which converges to the origin,
there is a bounded closed absolutely convex subset A of E such that xn ∈ A, n ∈ N,
and (xn) converges to the origin in EA for the weak topology.

Following Ptak [6], (see also [2, p. 299]), a locally convex space E is B-complete
if every subspace F of E ′ is σ(E ′, E)-closed when F ∩ A is σ(E ′, E)-closed in A
for each equicontinuous subset A of E. If E is B-complete, then every separated
quotient of E is complete.

We shall say that a Banach space X is quasi-reflexive if it has finite codimension
in its bidual X ′′. In [3], R. C. James gives an example of a quasi-reflexive Banach
space that is not reflexive.

A locally convex space E is said to be an (LB)-space if it is the inductive limit
of a sequence of Banach spaces, or, equivalently, if it is the separated quotient of
the topological direct sum of a sequence of Banach spaces. The first example of an
(LB)-space which is not complete is due to Köthe (see [5, pp. 434-435]). In [8] we
give the following result: a) Let (Xn) be a sequence of infinite-dimensional Banach
spaces. If E :=

⊕∞
n=1Xn, then the following are equivalent: 1. E is B-complete. 2.

Every separated quotient of E is complete. 3. Xn is quasi-reflexive, n ∈ N.
In Section 2 of this paper, we obtain a theorem containing an analogous result

to that of a) replacing E by E ′[µ(E ′, E)].
Let (xn) be a sequence in a linear space. We say that (yn) is a block-convex

sequence of (xn) if there are positive integers

1 = n1 < n2 < ... < nj < ...

and, for each j ∈ N, there is ajr ≥ 0, r = nj , nj + 1, ..., nj+1 − 1, such that

nj+1−1∑

r=nj

αjr = 1, yj =
nj+1−1∑

r=nj

αjrxr.

We shall say that a Schauder basis (xn) in a Fréchet space E has property P if there
is a continuous seminorm p on E such that

inf{p(xn) : n ∈ N} > 0

and the set {x1+x2+ ...+xn : n ∈ N} is bounded in E. Property P was introduced
by I. Singer in [7] for Banach spaces.

Let E be a locally convex space. A family A of absolutely convex closed and
bounded subsets of E is said to be saturated when the following conditions are
satisfied:

1. ∪{A : A ∈ A} = E.
2. Every finite union of elements of A is contained in an element of A.
3. Given any A ∈ A and k ∈ K, there is an element B in A such that kA ⊂ B.

Hence {A◦ : A ∈ A} is a fundamental system of zero neighborhoods in E ′ for
a locally convex topology that we shall denote by τA
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Proposition 1. Let E be a locally convex space. Let A be a saturated family of

absolutely convex closed bounded subsets of E. If T is an absolutely convex subset of

E such that, for each A ∈ A, T ∩A is a neighborhood of the origin in A [σ(E,E ′)],
then T ◦ is a precompact subset of E ′ [τA].

Proof. By G we denote the subspace of E ′′ given by

G = ∪{Ã : A ∈ A}.

By S we represent the closure of T in G [σ(G,E ′)]. We fix A ∈ A. We find an
absolutely convex compact subset M of E ′ [σ(E ′, E)] whose linear hull has finite
dimension and, if P is the polar set of M in E, then

P ∩ A ⊂ T ∩A ⊂ S ∩ Ã. (1)

The convex hull D of A◦ ∪M is σ(E ′, E)-closed and so D is the polar set of P ∩ A
in E ′. Then the polar set of D in G coincides with the closure F of P ∩ A in
G [σ(G,E ′)] and, after (1), we have that F is contained in S ∩ Ã. On the other
hand, F coincides with the polar set of A◦ ∪M in G and so, if Q is the polar set of
M in G, having in mind that P is σ(G,E ′)-dense in Q, it follows that

F = Q ∩ Ã ⊂ S ∩ Ã.

Clearly, Q ∩ Ã is a neighborhood of the origin in Ã[σ(G,E ′)] and thus S ∩ Ã is a
neighborhood of the origin in Ã[σ(G,E ′)].

If B is an arbitrary subset of E ′, we write B◦ to denote the polar set of B in G.
We consider now the locally convex space E ′ [τA]. It is clear that we may identify
the topological dual of this space with G, with {Ã : A ∈ A} being a fundamental
system of equicontinuous subsets. Let B stand for the family of all absolutely convex
closed and bounded subsets of E ′ [τA] such that B◦ ∩ Ã is a zero neighborhood in
Ã[σ(G,E ′)] for every B ∈ B and every A ∈ A. It is no hard job to see that B is
saturated. Let τB be the topology on G given by the uniform convergence over every
element of B. We fix now A ∈ A and take in Ã a net

{xj : j ∈ J, ≥} (2)

such that it σ(G,E ′)-converges to x. We then find an element A1 in A such that
2A ⊂ A1. Then the net

{xj − x : j ∈ J, ≥} (3)

is in Ã1 and σ(G,E ′)-converges to the origin. Consequently, the net (3) τB-converges
to the origin and so the net in (2) τB-converges to x. It then follows that τB and
σ(G,E ′) coincide in Ã. Therefore, the elements of B are τA-precompact (see [4, 8.
Proposition, p. 180]). We then deduce that the polar set of S in E ′, which coincides
with T ◦, is τA-precompact. �

Let E be a locally convex space. We say that a subset A of E is a Banach disk
if it is absolutely convex, bounded and EA is a Banach space.

Let us consider now a dual pair 〈F,G〉. Let A be the family of all absolutely
convex closed and bounded subsets of F [σ(F,G)] such that A ∈ A if and only if
there is a Banach disk B in F [σ(F,G)] such that A ⊂ B and A is weakly compact
in EB. Clearly, A is a saturated family. We represent by δ(G,F ) the topology on
G of the uniform convergence over every element of A.
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2 Mackey’s weak condition in (LB)-spaces

Theorem 1. Let (Xn) be a sequence of Banach spaces of infinite dimension. If X1

is not quasi-reflexive, then there is a separated quotient H of
⊕∞

n=1Xn such that it

does not satisfy Mackey’s weak condition.

Before giving the proof of this theorem, we shall construct H as it is done in [8]
and we shall establish some previous propositions. Hence, proceeding as in [8], we
find in X1 an increasing sequence of separable closed subspaces (Fn) such that

X1 6= X1 + F̃1, X1 + F̃n 6= X1 + F̃n+1, n ∈ N.

Let E be the closed linear hull of ∪∞
n=1Fn in X1. As usual, we identify E ′′ with Ẽ.

Let En := Xn+1, n ∈ N. We take

x1 ∈ F̃1, x1 /∈ E, xn+1 ∈ F̃n+1, xn+1 /∈ E + F̃n, n ∈ N.

We write Z for the linear hull of E ∪ {xn : n ∈ N}. Let B be the closed unit ball of
E. We put Bn for the closed unit ball of En, n ∈ N. It follows that B◦ [σ(E ′, Z)] is
metrizable and separable. By Tm we denote the subspace of E ′ orthogonal to Fm.
In (B◦ ∩ Tm)[σ(E ′, Z)] we choose a dense subset {umn : n ∈ N}. We then define a
mapping h from E into ℓ∞(N × N) by setting

h(z) = (〈z, umn〉)m,n∈N, z ∈ E.

For each j ∈ N, we find ([9, Lemma 1]) a one-to-one continuous linear mapping ϕj

from ℓ∞[µ(ℓ∞, ℓ1)] into Ej . Let

Φj : ℓ∞(N × N) −→ Ej

be such that

Φj((amn)) = ϕj((ajn)), (amn) ∈ ℓ∞(N × N).

We now define

ζ : E ×
∞⊕

n=1

En −→
∞∏

n=1

En

as

ζ((z, (z1, z2, ..., zn, ...))) = ((Φ1 ◦h)(z)+ z1, (Φ2 ◦h)(z)+ z2, ..., (Φn ◦h)(z)+ zn, ...),

z ∈ E, (z1, z2, ..., zn...) ∈
∞⊕

n=1

En.

Obviously, ζ is continuous. We write

H := (E ×
∞⊕

n=1

En)/ζ−1(0).
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Proposition 2. [8]. H is an (LB)-space which is not locally complete.

In the sequel, we shall consider, in the usual manner, E,
⊕r

n=1En, r ∈ N,
and

⊕∞
n=1En as subspaces of E ×

⊕∞
n=1En. We take a closed absolutely convex

neighborhood of the origin U in
∏∞

n=1En. We then put

T := E ∩ ζ−1(U).

It is plain that, for each m ∈ N,

ζ|mB : (mB) [σ(E,E ′)] −→
∞∏

n=1

En

is continuous and thus the barrel T of E meets (mB) [σ(E,E ′)] in a neighborhood
of the origin. We apply now Proposition 1 for

A := {mB : m ∈ N}

to obtain that the polar set of T in E ′ [β(E ′, E)] is compact. Consequently,

ζ : E[ρ(E,E ′)] ×
∞⊕

n=1

En −→
∞∏

n=1

En

is continuous. Let τ be the locally convex topology on H such that

H [τ ] = (E[ρ(E,E ′)] ×
∞⊕

n=1

En)/ζ−1(0).

Clearly, τ is compatible with the duality 〈H,H ′〉. If we set F := ∪∞
n=1Fn, it

follows that ζ−1(0) is contained in F ×
⊕∞

n=1En. If λ denotes the restriction of ζ to
F ×

⊕∞
n=1En and S is the topology induced in

⊕∞
n=1En by the topology of

∏∞
n=1En,

we then have

λ : F [ρ(E,E ′)] ×
∞⊕

n=1

En −→ (
∞⊕

n=1

En)[S]

is continuous and onto. If η is the canonical mapping from E ×
⊕∞

n=1En onto
(E ×

⊕∞
n=1En)/ζ−1(0), we denote by G the subspace of H [τ ] given by the image

under η of F ×
⊕∞

n=1En.
Given an arbitrary x in G, we find y in F ×

⊕∞
n=1En such that η(y) = x, and

we put ϕ(x) = λ(y). Then

ϕ : G −→ (
∞⊕

n=1

En)[S]

is linear continuous one-to-one and onto. For an arbitrary element z of
⊕∞

n=1En, we
fix the vector 0 ∈ E and write α(z) := η((0, z)). Then

α :
∞⊕

n=1

En −→ G

is linear continuous one-to-one and onto. It is immediate to see that ϕ ◦ α is the
canonical injection from

⊕∞
n=1En into (

⊕∞
n=1En)[S]. We set

L := η(E), Lr := η(
r⊕

n=1

En), D := η(B), Dr := η(
r⊕

n=1

Bn), Ar := D+Dr, r ∈ N.

Let M stand for the closure of D in H [τ ].
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Proposition 3. In H [τ ], Lr is a subspace isomorphic to
⊕r

n=1En.

Proof. It is an immediate consequence of the fact that ϕ ◦ α|
⊕r

n=1
En

is a

topological isomorphism from
⊕r

n=1En onto (
⊕r

n=1En)[S]. �

Proposition 4. D [τ ] is a precompact topological space.

Proof. Let {xi : i ∈ I,≥} be a net in D. We take yi in B such that η(yi) = xi,
i ∈ I. Since B [ρ(E,E ′)] is precompact, we find a Cauchy subnet {zj : j ∈ J,�}
of {yi : i ∈ I,≥}. Then, {η(zj) : j ∈ J,�} is a Cauchy subnet of {xi : i ∈ I,≥} in
D [τ ]. �

Proposition 5. In H [τ ], M + Lr and M +Dr are closed subsets.

Proof. Let x be a point in the closure of M + Lr in H [τ ]. We take a net
{xi : i ∈ I,≥} in M + Lr converging to x. We then write

xi = yi + zi, yi ∈ M, zi ∈ Lr, i ∈ I.

Since M is precompact, there is a subnet of {zi = xi−yi : i ∈ I,≥} which is Cauchy
and, since Lr is complete, it follows that {zi : i ∈ I,≥} has an adherent point z ∈ Lr.
Then, {yi : i ∈ I,≥} has x− z as adherent point and, consequently, x = (x− z) + z
belongs to M +Lr. The same proof works for M +Dr, just replacing Lr by Dr. �

Proposition 6. If A is bounded in H, then there is r ∈ N such that A is contained

in r(M +Dr).

Proof. It is immediate that H is the inductive limit of the sequence of Banach
spaces (HAn

). Therefore, if Un is the polar set of nAn in H ′, it follows that

{Un : n ∈ N}

is a fundamental system of zero neighborhoods in H ′ for a metrizable locally convex
topology V. Let Kn be the closure of nAn in H . We then have that

K := {Kn : n ∈ N}.

is a saturated family of absolutely convex closed and bounded subsets of H such that
V coincides in H ′ with the topology of the uniform convergence over the elements of
K. Let u be an element in the completion ofH ′ [V]. After Grothendieck’s completion
theorem ([5, p. 270]), u−1(0)∩Kn is closed in H , n ∈ N, and thus the restriction of
u to HAn

is continuous, hence we have that u belongs to H ′. Consequently, H ′[V]
is a Fréchet space. If A◦ is the polar set of A in H ′, it follows that A◦ is a barrel in
H ′[V] and so it is a neighborhood of the origin, from where we deduce that there is
a positive integer r such that A is contained in Kr. Now, since r(M +Dr) is closed
and contains rAr, we have that A is contained in r(M +Dr). �
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Proposition 7. For each r ∈ N, M +Dr is not a Banach disk.

Proof. After Proposition 1, there is a subset A of H which is absolutely convex
closed and bounded and is not a Banach disk. Applying the former proposition we
obtain s ∈ N such that A is contained in s(M +Ds), hence we have that M +Ds is
not a Banach disk and so, having in mind that Ds is a Banach disk, it follows that
M is not a Banach disk. Finally, given r ∈ N, if M + Dr was a Banach disk, since
M is closed in HM+Dr

, we would have that M would then be a Banach disk, which
is a contradiction. �

Proof of Theorem 1. Let us assume that H satisfies Mackey’s weak condition. Since

{r(M +Dr) : r ∈ N}

is a fundamental system of bounded sets in H , we apply ([10, (10), p.161]) to obtain
s ∈ N such that the weak topology of H and the weak topology of HM+Ds

coincide
in M . Let ψ be the canonical injection of the Banach space HAs

:= HD+Ds
into

HM+Ds
. It follows that D is dense in M for the weak topology of HM+Ds

. Then
D+Ds is dense in M+Ds in the normed space HM+Ds

and so ψ is almost open. We
then apply ([2, p.296]) to obtain that ψ is a topological isomorphism from HD+Ds

onto HM+Ds
. Hence HM+Ds

is a Banach space, which is a contradiction. �

We shall need later the following result that we proved in [12]: b) Let E be a
separable Fréchet space. Let (un) be a sequence in E ′ [σ(E ′, E)] converging to the
origin. If (un) does not converge to the origin in Mackey’s weak sense, then there is
a block-convex sequence (wn) of (un) such that it satisfies the following properties:

1. (wn) is σ(E ′, E)-basic.
2. If F is the σ(E ′, E)-closed linear hull of {wn : n ∈ N} and F⊥ is

the

subspace of E orthogonal to F , then the sequence (xn) of E/F⊥

such

that

〈xn, wn〉 = 1, 〈xn, wm〉 = 0, m 6= n, m, n ∈ N,

is a Schauder basis with property P in E/F⊥.

Lemma 1. Let E be a Fréchet space. Let (un) be a sequence in E ′ [σ(E ′, E)]
which converges to the origin. If (un) does not converge in Mackey’s weak sense,

then there is a block-convex sequence (wn) of (un) such that, if F is the subspace of

E ′ [σ(E ′, E)] given by the closed linear hull of {wn : n ∈ N}, then there is a bounded

linear functional x on F such that 〈x, wn〉 = 1, n ∈ N.

Proof. We take in E ′ [σ(E ′, E)] a fundamental system of absolutely convex compact
subsets

A1 ⊂ A2 ⊂ ... ⊂ An ⊂ ...

so that un ∈ A1, n ∈ N. By ‖ · ‖n we denote the norm in E ′
An

. Let A◦
n be the polar

set of An in E. We write H for the linear hull of {un : n ∈ N}. In E ′
Am

we take



572 M. Valdivia

a dense subset {umn : n ∈ N} of H . For every m,n, r ∈ N, we choose in A◦
m an

element xmnr such that

| 〈xmnr, umn〉 | > ‖ umn ‖m −
1

r
.

We denote by G the closed linear span of

{xmnr : m,n, r ∈ N}

in E. Let G⊥ be the subspace of E ′ orthogonal to G and let ϕ be the canonical
mapping from E ′ onto E ′/G⊥. We identify, in the usual manner, E ′/G⊥ with the
topological dual of G. It follows that ϕ(An), n ∈ N, is a fundamental system of
compact absolutely convex subsets of (E ′/G⊥) [σ(E ′/G⊥, G)]. It is immediate that
(ϕ(un)) converges to the origin in (E ′/G⊥) [σ(E ′/G⊥, G)].For an arbitrary n ∈ N,
we show that ϕ is an isometry from the normed subspace H of E ′

Am
onto the normed

subspace ϕ(H) of (E ′/G⊥)ϕ(Am). We put | · |m to denote the norm of this Banach
space. If u ∈ H , we clearly have that | ϕ(u) |m≤‖ u ‖m. Given r ∈ N, we find an
element umn in H such that

‖ u− umn ‖m <
1

r
.

Then,
| ϕ(u) |m= sup{| 〈z, ϕ(u)〉 |: z ∈ A◦

m ∩G}

= sup{| 〈z, u〉 |: z ∈ A◦
m ∩G} ≥| 〈xmnr, u〉 |

≥ | 〈xmnr, umn〉 | − | 〈xmnr, u− umn〉 |

≥ ‖ umn ‖m −
1

r
− ‖ u− umn ‖m≥ ‖ umn ‖m −

2

r

≥‖ u ‖m − ‖ umn − u ‖m −
2

r
≥‖ u ‖m −

3

r
.

Consequently, ‖ u ‖m=| ϕ(u) |m. We deduce from here that (ϕ(un)) does not
converge to the origin in Mackey’s weak sense in (E ′/G⊥) [σ(E ′/G⊥, G)]. We then
apply result b) to obtain a block-convex sequence (wn) of (un) such that (ϕ(wn))
is basic in (E ′/G⊥) [σ(E ′/G⊥, G)] and, if L represents the closed linear hull in this
space of {ϕ(wn) : n ∈ N} and L⊥ is the subspace of G orthogonal to L, then the
sequence (zn) of G/L⊥ such that

〈zn, ϕ(wn)〉 = 1, 〈zm, ϕ(wn)〉 = 0, m 6= n, m, n ∈ N,

is a Schauder basis with property P of G/L⊥. Thus, the sequence (z1 + z2 + ... +
zn)∞n=1 is bounded in this space. Let y be an adherent point of this sequence
in (G/L⊥)′′ [σ((G/L⊥)′′, L)]. It follows that y is a bounded linear functional in
L [σ(L,G/L⊥)]. Let F be the subspace of E ′ [σ(E ′, E)] given by the closed linear
hull of {wn : n ∈ N}. Let x be the linear functional on F such that

〈x, u〉 = 〈y, ϕ(u)〉, u ∈ F.

Clearly, x is bounded in F . On the other hand,

〈x, wn〉 = 〈y, ϕ(wn)〉 = lim
m
〈z1 + z2 + ... + zm, ϕ(wn)〉 = 1. �
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Lemma 2. Let E be an (LB)-space. If E does not satisfy Mackey’s weak condition,

then there is a separated quotient of E ′ [δ(E ′, E)] which is not complete.

Proof. We take a sequence (xn) in E converging to the origin and not doing so
in Mackey’s weak sense. Let

A1 ⊂ A2 ⊂ ... ⊂ An ⊂ ...

a fundamental system of Banach disks in E. Then, E ′ [β(E ′, E)] is a Fréchet space
and A◦

n, n ∈ N, is a fundamental system of zero-neighborhoods in this space. Clearly,
E is a subspace of E ′′ [β(E ′′, E ′)] and so (xn) is a sequence in E ′′ [σ(E ′′, E ′)] that
converges to the origin and does not converge in Mackey’s weak sense. Applying
the former lemma we obtain a block-convex sequence (yn) of (xn) such that, if F is
the subspace of E ′′ [σ(E ′′, E ′)] given by the closed linear hull of {yn : n ∈ N}, then
there is a bounded linear functional u on F such that

〈yn, u〉 = 1, n ∈ N. (4)

We write V for F ∩E with the topology induced by that of E. It follows that An∩V ,
n ∈ N, is a fundamental system of Banach disks in V . We see next that V ′ [δ(V ′, V )]
is not complete. Let v be the restriction of u to V . Given n ∈ N, we take in An∩V an
absolutely convex subset D weakly compact in VAn∩V . Since v is bounded in V , we
have that v−1(0) ∩D is σ(V, V ′)-closed and, applying Grothendieck’s completeness
theorem, we have that v belongs to the completion of V ′ [δ(V ′, V )]. Clearly, (yn)
converges to the origin in V and, in light of (4), v does not belong to V ′. Finally,
if V ⊥ is the subspace of E ′ orthogonal to V , it means no difficulty to show that
E ′ [δ(E ′, E)]/V ⊥ is isomorphic to V ′ [δ(V ′, V )] and the result now follows. �

Theorem 2. Let E be the direct topological sum of a sequence (Xn) of infinite-

dimensional Banach spaces. The following conditions are then equivalent:

1. E ′ [µ(E ′, E)] is B-complete.

2. Every separated quotient of E ′ [µ(E ′, E)] is complete.

3. Every separated quotient of E satisfies Mackey’s weak condition.

4. Xn is quasi-reflexive, n ∈ N.

Proof. It is plain that 1 ⇒ 2. We show now that 2 ⇒ 3. Let us assume
that condition 3 does not hold. We find a closed subspace L of E such that E/L
does not satisfy Mackey’s weak condition. Let L⊥ be the subspace of E ′ orthogonal
to L. We apply Lemma 2 to obtain a closed subspace M of L⊥ [σ(L⊥, E/L)] so
that L⊥ [δ(L⊥, E/L)]/M is not complete. Let τ be the restriction of µ(E ′, E) to
L⊥. It is immediate that τ is coarser than δ(L⊥, E/L) and, since both topologies
are compatible with the duality 〈E/L, L⊥〉, it follows that L⊥[τ ]/M is not com-
plete. Hence, E [µ(E ′, E)]/M is not complete either. 3 ⇒ 4. It is an immediate
consequence of Theorem 1. 4 ⇒ 1. Let F be a subspace of E such that every
absolutely convex weakly compact subset of E meets F in a closed set. We consider
En := X1 +X2 + ...+Xn as a subspace of E, n ∈ N. Then, Fn := F ∩En is closed in
E. We set n1 := 1. Proceeding inductively, let us assume that, for a positive integer
j, we have found the positive integer nj . Since Enj

has finite codimension in Ẽnj
,

there is an integer nj+1 > nj such that

F̃n ∩ Ẽnj
= F̃nj+1

∩ Ẽnj
, n ∈ N, n ≥ nj+1.
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We see now that H := ∪∞
n=1F̃n is σ(E ′′, E ′)-closed, making use for this purpose of

Krein-Smulian’s theorem (see [2, p.246]) applied to the Fréchet space E ′ [β(E ′, E)].
Let A be an absolutely convex compact subset of E ′′ [σ(E ′′, E ′)]. We find a positive
integer r such that A is contained in Ẽr. Then, A∩H = A∩F̃nr+1

is σ(E ′′, E ′)-closed.
Consequently, H is σ(E ′′, E ′)-closed and so F = H ∩ E is closed in E. �

Note. It is said in [1] that a Fréchet space E is totally reflexive when every separated
quotient of E is reflexive and then the following problem is posed ([1, probl. 9]): Let
E1 and E2 be totally reflexive Fréchet spaces. Is the product E1 × E2 also totally
reflexive? We proved in [11] that a Fréchet space is totally reflexive if and only if it
is isomorphic to a closed subspace of a countable product of reflexive Banach spaces.
This property is thus adequate to give a positive answer to Grothendieck’s question.
Lemma 1 can be used to obtain our characterization of the totally reflexive Fréchet
spaces in the following way: Let E be a totally reflexive Fréchet space and let F
be a closed subspace of E ′ [β(E ′, E)]. If F⊥ is the subspace of E orthogonal to F ,
then E/F⊥ is reflexive and thus every bounded linear functional u on F extends
to to a continuous linear functional on E ′ [β(E ′, E)]. Hence, after Lemma 1, every
sequence that converges to the origin in E ′ [β(E ′, E)] converges also in the weak sense
of Mackey. Then, given an absolutely convex compact subset A of E ′ [σ(E ′, E)],
there is a subset B in E ′ [σ(E ′, E)], absolutely convex and compact, such that A is
contained in B and it is weakly compact in E ′

B. (see [10, (10),p.161]). Proceeding
now as in [11] we obtain that E ′ [β(E ′, E)] is the inductive limit of a sequence of
reflexive Banach spaces and so E is isomorphic to a closed subspace of a countable
product of reflexive Banach spaces.
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