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Abstract

Let (X,,) be a sequence of infinite-dimensional Banach spaces. For E being
the space @52, X, the following equivalences are shown: 1. E' [u(E', E)]
is B-complete. 2. Every separated quotient of E’ [u(E’, E)] is complete. 3.
Every separated quotient of E satisfies Mackey’s weak condition. 4. X, is
quasi-reflexive, n € N.

1 Introduction and notation

The linear spaces that we shall use here are assumed to be defined over the field
K of real or complex numbers, and the topologies on them will all be Hausdorff.
As usual, N represents the set of positive integers. If (F, F) is a dual pair, then
o(E,F), p(E, F) and B(FE, F') denote the weak, Mackey and strong topologies on F,
respectively. We shall write (-, -) for the bilinear functional associated to (E, F'). Let
E be alocally convex space and let 7 be its topology, if A is a subset of £ then A [7]
means the set A endowed with the topology induced by 7, A is the closure of A and
A° is the polar set of A in the topological dual E’ of E. E” is the topological dual of
E' [B(E', E)]. By p(E, E') we denote the topology on E of the uniform convergence
over each absolutely convex compact subset of E' [3(E’, E')]. We identify E, in the
usual fashion, with a linear subspace of E”. If B is a subset of E, by B we mean
the closure of B in E” [o(E", E')]. A linear functional u on E is said to be bounded
if it is bounded on every bounded subset of E.

Let A be a bounded absolutely convex subset of the locally convex space E. Then
E 4 denotes the linear span of A endowed with the norm defined by the gauge of A.
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The space E is said to be locally complete if E4 is complete for every bounded closed
absolutely convex subset A of E; if E is sequentially complete, and, in particular,
when it is complete, then it is locally complete. We say the E satisfies Mackey’s
weak condition if for an arbitrary sequence (z,) in F which converges to the origin,
there is a bounded closed absolutely convex subset A of F such that z, € A, n € N,
and (z,) converges to the origin in £, for the weak topology.

Following Ptak [6], (see also [2, p. 299]), a locally convex space E is B-complete
if every subspace F' of E' is o(FE’, E)-closed when F'N A is o(E’, E)-closed in A
for each equicontinuous subset A of E. If E is B-complete, then every separated
quotient of F is complete.

We shall say that a Banach space X is quasi-reflexive if it has finite codimension
in its bidual X”. In [3], R. C. James gives an example of a quasi-reflexive Banach
space that is not reflexive.

A locally convex space E is said to be an (LB)-space if it is the inductive limit
of a sequence of Banach spaces, or, equivalently, if it is the separated quotient of
the topological direct sum of a sequence of Banach spaces. The first example of an
(LB)-space which is not complete is due to Kéthe (see [5, pp. 434-435]). In [8] we
give the following result: a) Let (X,,) be a sequence of infinite-dimensional Banach
spaces. If E := @, X,,, then the following are equivalent: 1. E is B-complete. 2.
Every separated quotient of E is complete. 3. X,, is quasi-reflexive, n € N.

In Section 2 of this paper, we obtain a theorem containing an analogous result
to that of a) replacing E by E'[u(E', E)).

Let (x,) be a sequence in a linear space. We say that (y,) is a block-convex
sequence of (x,) if there are positive integers

1:n1<n2<...<nj<...

and, for each j € N, there is aj, > 0, r =n;,n; +1,...,n;1; — 1, such that

nj+1—1 nj+1—1
Z a, = 1, y; = Z Ty
r:nj T’:nj

We shall say that a Schauder basis (z,,) in a Fréchet space E has property P if there
is a continuous seminorm p on £ such that

inf{p(x,) : n€N} > 0

and the set {z1+x2+...4x, : n € N}is bounded in E. Property P was introduced
by L. Singer in [7] for Banach spaces.

Let E be a locally convex space. A family A of absolutely convex closed and
bounded subsets of E is said to be saturated when the following conditions are
satisfied:

1. WA : Ae A} =F.

2. Every finite union of elements of A is contained in an element of A.

3. Given any A € A and k € K, there is an element B in A such that kA C B.

Hence {A° : A € A} is a fundamental system of zero neighborhoods in E’ for
a locally convex topology that we shall denote by 74
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Proposition 1. Let E be a locally convex space. Let A be a saturated family of
absolutely convex closed bounded subsets of E. If T is an absolutely convex subset of
E such that, for each A € A, TN A is a neighborhood of the origin in A [o(E, E')],

then T° is a precompact subset of E' [1.4].

Proof. By G we denote the subspace of E” given by
G = U{A : Ac A}

By S we represent the closure of T"in G [0(G, E')]. We fix A € A. We find an
absolutely convex compact subset M of E' [o(E', E)] whose linear hull has finite
dimension and, if P is the polar set of M in E, then

PNA Cc TNA c SNA. (1)

The convex hull D of A°U M is o(E’, E)-closed and so D is the polar set of PN A
in E/. Then the polar set of D in G coincides with the closure F of P N A in
G [0(G, E")] and, after (1), we have that F is contained in SN A. On the other
hand, F' coincides with the polar set of A°U M in G and so, if () is the polar set of
M in G, having in mind that P is o(G, E’)-dense in @, it follows that

F =QnA c SnA.

Clearly, @ N A is a neighborhood of the origin in A[o(G, E')] and thus SN A is a
neighborhood of the origin in A[O’(G, E].

If B is an arbitrary subset of E’, we write B° to denote the polar set of B in G.
We consider now the locally convex space E’ [14]. It is clear that we may identify
the topological dual of this space with G, with {fl : A € A} being a fundamental
system of equicontinuous subsets. Let B stand for the family of all absolutely convex
closed and bounded subsets of E’ [r4] such that B° N A is a zero neighborhood in
Alo(G, E')] for every B € B and every A € A. It is no hard job to see that B is
saturated. Let 73 be the topology on G given by the uniform convergence over every

element of B. We fix now A € A and take in A a net
{ey + jed, =} (2)

such that it o(G, E')-converges to . We then find an element A; in A such that
2A C A;. Then the net

{z;—2 : jeJ >} (3)
is in A; and o(G, E')-converges to the origin. Consequently, the net (3) 7-converges
to the origin and so the net in (2) 7z-converges to z. It then follows that 75 and
o(G, E') coincide in A. Therefore, the elements of B are 74-precompact (see 4, 8.
Proposition, p. 180]). We then deduce that the polar set of S in E’, which coincides
with T°, is 74-precompact. [ |

Let E be a locally convex space. We say that a subset A of F is a Banach disk
if it is absolutely convex, bounded and F4 is a Banach space.

Let us consider now a dual pair (F,G). Let A be the family of all absolutely
convex closed and bounded subsets of F' [o(F,G)] such that A € A if and only if
there is a Banach disk B in F' [o(F, G)] such that A C B and A is weakly compact
in Ep. Clearly, A is a saturated family. We represent by 6(G, F') the topology on
G of the uniform convergence over every element of A.
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2 Mackey’s weak condition in (LB)-spaces

Theorem 1. Let (X,,) be a sequence of Banach spaces of infinite dimension. If X,
is not quasi-reflexive, then there is a separated quotient H of @,° X, such that it
does not satisfy Mackey’s weak condition.

Before giving the proof of this theorem, we shall construct H as it is done in [§]
and we shall establish some previous propositions. Hence, proceeding as in [8], we
find in X; an increasing sequence of separable closed subspaces (F,) such that

X £ X +F, X1+F, #X,+F,1, neN.

Let E be the closed linear hull of U2, F), in X;. As usual, we identify E” with E.
Let E, := X411, n € N. We take

x € Fy, 1 ¢ L, xn4 € Fovi, Tnga ¢ E+F, neN.

We write Z for the linear hull of £ U {x, : n € N}. Let B be the closed unit ball of
E. We put B, for the closed unit ball of E,,, n € N. It follows that B° [o(£', Z)] is
metrizable and separable. By T,, we denote the subspace of E’ orthogonal to F,.
In (B°NTy)[o(E', Z)] we choose a dense subset {u,, : n € N}. We then define a
mapping h from F into ¢>*°(N x N) by setting

h(z) = (<Zaum7L>)7n,neNa z € FE.

For each j € N, we find ([9, Lemma 1]) a one-to-one continuous linear mapping ¢,
from ¢°°[u(¢>,¢")] into E;. Let

QU'I EQOUN-X FD E— E&

be such that

(bj((amn)) = ‘Pj((ajn))> (amn) € £2°(N x N).
We now define . -
(: Ex @En — H E,
n=1 n=1

as

C((2, (215225 oy Zny o)) = ((Proh)(2) + 21, (Paoh)(2) + 29, oy (Pr o h)(2) + 20, ...,

o
z€E, (21,2, ...,20...) € P En.
n=1

Obviously, ¢ is continuous. We write

H = (Ex éEn)/g—l(O).
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Proposition 2. [8]. H is an (LB)-space which is not locally complete.

In the sequel, we shall consider, in the usual manner, £, @, _, E,, r € N,
and @, F, as subspaces of ' x @, F,. We take a closed absolutely convex
neighborhood of the origin U in []72; E,,. We then put

T = En ¢HU).
It is plain that, for each m € N,

(mp : (mB) [o(E,E")] ﬁl

is continuous and thus the barrel 7' of E meets (mB) [0(E, E’)] in a neighborhood
of the origin. We apply now Proposition 1 for

= {mB : meN}
to obtain that the polar set of T in E’ [G(F’, E)] is compact. Consequently,

(: Elp(E,E")x P E, — ][] En
n=1 n=1

is continuous. Let 7 be the locally convex topology on H such that
H [r] = (E[p(E, E")] EBE )/ ¢!

Clearly, 7 is compatible with the duality (H, H'). If we set F' := UX | F,, it
follows that (71(0) is contained in F' x @52, E,. If X denotes the restriction of ¢ to
Fx@®,;2, E, and S is the topology induced in @, ; E,, by the topology of [[7°; E

we then have . -
A i F[p(E, B x @ B, — (BB
n=1 n=1

is continuous and onto. If 7 is the canonical mapping from E x @, E, onto
(E x @2, E,)/¢1(0), we denote by G the subspace of H [r] given by the image
under n of FF x @72, E

Given an arbitrary z in G, we find y in F' x @;°, E, such that n(y) = x, and
we put @(z) = A(y). Then

is linear continuous one-to-one and onto. For an arbitrary element z of @, , E,,, we
fix the vector 0 € E and write a(z) := n((0, 2)). Then

a @En—>G
n=1

is linear continuous one-to-one and onto. It is immediate to see that ¢ o a is the

canonical injection from @;° | F, into (@, E,)[S]. We set

L:=n(E), L,:= n(@ E,), D:=n(B), D, :=n(@ B,), A, :==D+D,, r€N.
= n=1

Let M stand for the closure of D in H [7].
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Proposition 3. In H [7|, L, is a subspace isomorphic to @,,_, E,.

Proof. It is an immediate consequence of the fact that ¢ o Y@y g, 1S a

n=1

topological isomorphism from @, _, F,, onto (@;,_, E,)[S]. [
Proposition 4. D [1] is a precompact topological space.

Proof. Let {x;:i € I,>} be anet in D. We take y; in B such that n(y;) = x;,
i € 1. Since B [p(E, E')] is precompact, we find a Cauchy subnet {z; : j € J, >}
of {y; :i € I,>}. Then, {n(z;) : j € J, =} is a Cauchy subnet of {z; : 1 € [,>} in
D [7]. ]

Proposition 5. In H [r], M + L, and M + D, are closed subsets.

Proof.  Let x be a point in the closure of M + L, in H [r]. We take a net
{z;:i€1,>}in M + L, converging to x. We then write

T = Y; + zi, yiEM, ZZ'ELT, 1€ 1.

Since M is precompact, there is a subnet of {z; = x; —y; : ¢ € I,>} which is Cauchy
and, since L, is complete, it follows that {z; : i € I, >} has an adherent point z € L,..
Then, {y; : i € I, >} has z — z as adherent point and, consequently, x = (x — 2) + 2
belongs to M + L,.. The same proof works for M + D, just replacing L, by D,. =

Proposition 6. If A is bounded in H, then there is r € N such that A is contained
inr(M+ D,).

Proof. It is immediate that H is the inductive limit of the sequence of Banach
spaces (Hy, ). Therefore, if U, is the polar set of nA, in H’, it follows that

{U, : neN}

is a fundamental system of zero neighborhoods in H’ for a metrizable locally convex
topology V. Let K, be the closure of nA,, in H. We then have that

K:= {K, : neN}

is a saturated family of absolutely convex closed and bounded subsets of H such that
V coincides in H' with the topology of the uniform convergence over the elements of
K. Let u be an element in the completion of H' [V]. After Grothendieck’s completion
theorem ([5, p. 270]), u=1(0) N K,, is closed in H, n € N, and thus the restriction of
u to H,, is continuous, hence we have that u belongs to H'. Consequently, H'[V]
is a Fréchet space. If A° is the polar set of A in H’, it follows that A° is a barrel in
H'[V] and so it is a neighborhood of the origin, from where we deduce that there is
a positive integer r such that A is contained in K,. Now, since (M + D,) is closed
and contains rA,, we have that A is contained in (M + D,). ]
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Proposition 7. For each r € N, M + D, is not a Banach disk.

Proof.  After Proposition 1, there is a subset A of H which is absolutely convex
closed and bounded and is not a Banach disk. Applying the former proposition we
obtain s € N such that A is contained in s(M + Dy), hence we have that M + Dy is
not a Banach disk and so, having in mind that D, is a Banach disk, it follows that
M is not a Banach disk. Finally, given r € N, if M + D, was a Banach disk, since
M is closed in Hysyp,, we would have that M would then be a Banach disk, which
is a contradiction. [

Proof of Theorem 1. Let us assume that H satisfies Mackey’s weak condition. Since
{r(M +D,) : reN}

is a fundamental system of bounded sets in H, we apply ([10, (10), p.161]) to obtain
s € N such that the weak topology of H and the weak topology of Hj,.p, coincide
in M. Let ¢ be the canonical injection of the Banach space Hy, := Hp,p, into
Hy i p,. It follows that D is dense in M for the weak topology of Hp;yp,. Then
D+ Dy is dense in M + Dy in the normed space H ;. p, and so 1 is almost open. We
then apply (]2, p.296]) to obtain that v is a topological isomorphism from Hp,p,
onto Hy1p,. Hence Hysyp, is a Banach space, which is a contradiction. ]
We shall need later the following result that we proved in [12]: b) Let E be a
separable Fréchet space. Let (u,) be a sequence in E' [o(E', E)] converging to the
origin. If (u,) does not converge to the origin in Mackey’s weak sense, then there is
a block-convex sequence (w,,) of (u,) such that it satisfies the following properties:
1. (wy) is o(E', E)-basic.
2. If F is the o(E', E)-closed linear hull of {w, : n € N} and F*t is
the
subspace of E orthogonal to F, then the sequence (z,) of E/F*
such
that

<xmwn> = 1 <xn7wm> =0, m 7A n, m,n € N,
is a Schauder basis with property P in E/F*.

Lemma 1. Let E be a Fréchet space. Let (u,) be a sequence in E' [o(F', E)]
which converges to the origin. If (u,) does not converge in Mackey’s weak sense,
then there is a block-convez sequence (wy,) of (u,) such that, if F' is the subspace of
E' [o(E', E)] given by the closed linear hull of {w,, : n € N}, then there is a bounded
linear functional x on F such that (x,w,) =1, n € N.

Proof. We take in E' [o(F’, F)] a fundamental system of absolutely convex compact
subsets

AiCAyC...CA,C..

so that u, € Ay, n € N. By || - ||, we denote the norm in £, . Let A5 be the polar
set of A, in . We write H for the linear hull of {u, : n € N}. In E’; we take
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a dense subset {u,, : n € N} of H. For every m,n,r € N, we choose in A2 an
element z,,,, such that

mnry “mn > mn |[lm — -
| {@msrs ) | > i [l =
We denote by G the closed linear span of

{Zmnr + m,n,r € N}

in F. Let G+ be the subspace of E’ orthogonal to G and let ¢ be the canonical
mapping from E’ onto E'/G+. We identify, in the usual manner, E'/G* with the
topological dual of G. It follows that ¢(A,), n € N, is a fundamental system of
compact absolutely convex subsets of (E'/GL) [o(E'/G*,G)]. Tt is immediate that
(o(uy)) converges to the origin in (E'/G*) [o(E'/G*,G)].For an arbitrary n € N,
we show that ¢ is an isometry from the normed subspace H of E’; ~onto the normed
subspace ¢(H) of (E'/G*)p(a,,). We put | - |, to denote the norm of this Banach
space. If u € H, we clearly have that | o(u) |[n<|| @ ||;n. Given r € N, we find an
element u,,, in H such that

1
| w— tUmn ||m < —.
r
Then,
| o(u) [m= sup{] (z;p(u)) [: 2z € A}, NG}
= sup{| (z,u) |1 z € A}, NG} 2| (Tmnr, 1) |

Z | <xmnr>umn> | - | <xmnrau_umn> |
1 2
> || Umn ||m T H U — Umnn HmZ H Umn Hm T
2 3
ZHuHm - Humn_uHm __ZHuHm - .
T T

Consequently, || v [[m=| ¢(u) |n. We deduce from here that (¢(u,)) does not
converge to the origin in Mackey’s weak sense in (E'/Gt) [o(E'/G*,G)]. We then
apply result b) to obtain a block-convex sequence (w,,) of (u,) such that (¢(w,))
is basic in (E'/G*) [o(E'/G*, G)] and, if L represents the closed linear hull in this
space of {¢(w,) : n € N} and L' is the subspace of G orthogonal to L, then the
sequence (z,) of G/L* such that

(zn,p(wn)) = 1, (zm,(wn)) = 0, m#n, mnéEN,

is a Schauder basis with property P of G/L*. Thus, the sequence (z; + 23 + ... +
2p)9, is bounded in this space. Let y be an adherent point of this sequence
in (G/LY)" [o((G/L*Y)", L)]. Tt follows that y is a bounded linear functional in
L [o(L,G/LY)]. Let F be the subspace of E' [o(E’, E)| given by the closed linear
hull of {w,, : n € N}. Let = be the linear functional on F' such that

(z,u) = (y,p(u)), uweFL
Clearly, = is bounded in F. On the other hand,

(T,wn) = (y,(wn)) = lim(z 4+ 22+ .. + 2, p(wn)) = 1. ]
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Lemma 2. Let E be an (LB)-space. If E does not satisfy Mackey’s weak condition,
then there is a separated quotient of E' [§(E', E)] which is not complete.

Proof. We take a sequence (x,) in E converging to the origin and not doing so
in Mackey’s weak sense. Let

AiCAyC...CA,C..

a fundamental system of Banach disks in £. Then, E' [3(E’, E')] is a Fréchet space
and A7, n € N, is a fundamental system of zero-neighborhoods in this space. Clearly,
E is a subspace of E” [B(E", E')] and so (x,) is a sequence in E” [o(E", E')] that
converges to the origin and does not converge in Mackey’s weak sense. Applying
the former lemma we obtain a block-convex sequence (y,,) of (x,) such that, if F'is
the subspace of E” [o(E", E')] given by the closed linear hull of {y, : n € N}, then
there is a bounded linear functional v on F' such that

(Yn,u) = 1, neN. (4)

We write V for FFN E with the topology induced by that of E. It follows that A,NV,
n € N, is a fundamental system of Banach disks in V. We see next that V' [6(V', V)]
is not complete. Let v be the restriction of u to V. Given n € N, we take in A,,NV an
absolutely convex subset D weakly compact in V4 . Since v is bounded in V', we
have that v=1(0) N D is o(V, V’)-closed and, applying Grothendieck’s completeness
theorem, we have that v belongs to the completion of V' [6(V',V)]. Clearly, (yn)
converges to the origin in V' and, in light of (4), v does not belong to V’. Finally,
if V1 is the subspace of E’ orthogonal to V, it means no difficulty to show that
E' [6(E', E)]/V* is isomorphic to V' [§(V’, V)] and the result now follows. ]

Theorem 2. Let E be the direct topological sum of a sequence (X,,) of infinite-
dimensional Banach spaces. The following conditions are then equivalent:
1. E' [u(E', E)] is B-complete.
2. Every separated quotient of E' [u(E', E)] is complete.
3. Fvery separated quotient of E satisfies Mackey’s weak condition.
4. X, is quasi-reflexive, n € N.

Proof. Tt is plain that 1 = 2. We show now that 2 = 3. Let us assume
that condition 3 does not hold. We find a closed subspace L of E such that E/L
does not satisfy Mackey’s weak condition. Let L™ be the subspace of £’ orthogonal
to L. We apply Lemma 2 to obtain a closed subspace M of Lt [o(L*, E/L)] so
that L+ [6(L*, E/L)]/M is not complete. Let 7 be the restriction of u(E', E) to
L*. Tt is immediate that 7 is coarser than §(L*, F/L) and, since both topologies
are compatible with the duality (E/L,L*), it follows that Lt[r]/M is not com-
plete. Hence, E [u(E’, E)]/M is not complete either. 3 = 4. It is an immediate
consequence of Theorem 1. 4 = 1. Let F be a subspace of E such that every
absolutely convex weakly compact subset of E meets F' in a closed set. We consider
E, =X+ Xs+..+ X, as asubspace of £, n € N. Then, F, := FNE, is closed in
E. We set n; := 1. Proceeding inductively, let us assume that, for a positive integer
J, we have found the positive integer n;. Since E,  has finite codimension in £,
there is an integer n;41 > n; such that

F,NE, = F

Tj+1

ﬁEnj, n e N, n > UTES P
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We see now that H := U>, F, is o(E", E')-closed, making use for this purpose of
Krein-Smulian’s theorem (see [2, p.246]) applied to the Fréchet space E' [B(E', E)].
Let A be an absolutely convex compact subset of E” [o(E"”, E")]. We find a positive
integer r such that A is contained in E,. Then, ANH = ANFE,, , is o(E", E')-closed.
Consequently, H is o(E", E')-closed and so F' = H N E is closed in E. [

Note. Itissaid in [1] that a Fréchet space E is totally reflexive when every separated
quotient of E is reflexive and then the following problem is posed ([1, probl. 9]): Let
E: and E5 be totally reflexive Fréchet spaces. Is the product Ey x Ey also totally
reflexive? We proved in [11] that a Fréchet space is totally reflexive if and only if it
is isomorphic to a closed subspace of a countable product of reflexive Banach spaces.
This property is thus adequate to give a positive answer to Grothendieck’s question.
Lemma 1 can be used to obtain our characterization of the totally reflexive Fréchet
spaces in the following way: Let E be a totally reflexive Fréchet space and let F
be a closed subspace of E' [3(E’, E)]. If F* is the subspace of E orthogonal to F,
then E/F*1 is reflexive and thus every bounded linear functional u on F extends
to to a continuous linear functional on E’ [3(E’, E')]. Hence, after Lemma 1, every
sequence that converges to the origin in £’ [3(E’, E')| converges also in the weak sense
of Mackey. Then, given an absolutely convex compact subset A of E’ [o(E', E)],
there is a subset B in E’ [0(E’, E)], absolutely convex and compact, such that A is
contained in B and it is weakly compact in E’. (see [10, (10),p.161]). Proceeding
now as in [11] we obtain that £’ [3(E’, E)] is the inductive limit of a sequence of
reflexive Banach spaces and so E is isomorphic to a closed subspace of a countable
product of reflexive Banach spaces.
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