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Abstract

We characterize the surjective convolution operators 7}, on the space (P**)’
of Fourier ultra-hyperfunctions by means of a slowly decreasing condition for
the Fourier transform fi and then study the existence of continuous linear
right inverses for T},.

1 Introduction

The subject of this paper are convolution operators on the space (P,.)" of Fourier
ultra-hyperfunctions defined as the dual space of the space

Py =P, (C% = {f € H(C) |VEk : || fllx == sup |f(z)|e"*! < o0}

IS(2)[<k

of entire test functions (see [12]). Notice the analogy to the definition of standard
Fourier hyperfunctions (see [4, 5]) and of Schwartz’ tempered distributions. (P..)’
is a space of entire rather than of real analytic functionals which has some inter-
esting features that suggest to study convolution operators in this space (e.g., the
exponentials fy(z) := exp(X \;z;) are contained in (P.)" for any A € C¢ hence
the kernels of an ordinary differential equation coincide in C*°(R%) and in (P..)’,
which is not true for the standard Fourier hyperfunctions, see [8]). Though some of
the proofs in the present paper are based on similar ideas as in the case of Fourier
hyperfunctions (see [7]), the results are rather different and sometimes more natural
for Fourier ultra-hyperfunctions.

References to the huge literature on division problems in various spaces are given
in more detail in [7].
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The paper is organized as follows: In the next section we show that p € (P..)
defines a convolution operator T}, on (P,,)" iff the Fourier transform fi is defined by
an entire function F such that for any k£ there is K such that

|F(2)] < CrefFif |S(2)| < K.

For these p we then show that 7}, is surjective on (P.,)" iff 7}, admits an elementary
solution v € (P.,)" iff there is C' > 0 such that for any ¢ € R? with [¢t| > C there is
¢ € C¢ such that

¢ =] < C and |f(¢)] > e L.

We do not need here a specific condition on the connected components of 7i~*(0)
unlike to the case of standard Fourier hyperfunctions (see [7]).

In section 3 we show that a surjective convolution operator 7}, on P,.(C)’ admits
a continuous linear right inverse in P, (C)j iff there is ko such that

fi(z) # 0 i [S(2)] > ko.

We also show that 7}, admits a continuous linear right inverse in P,.(C%)} if fi
satisfies a condition of hyperbolic type or of hypoelliptic type (see 3.1 and 3.3).
Some examples are discussed at the end of sections 2 and 3.

2 Convolution operators

For f € P., and p € (P..) we define the Fourier transformation by
f(z) = / f@)e™ ) dx and (fi, g) == (1, g) if g € P,

where (w, 2) := Z?le]—zj for z,w € C%.

The Fourier transform is a topological isomorphism in P,, and in (P, )} (see [6,
3.6 and 5.5]).

To define a convolution operator on (P,.)" we start with the usual convolution
of functions: since

m:fﬁ andf?q:(Qﬁ)_df*ﬁfor frge P CS (2.1)
we see that f x g € P, if f,g € P,, and that the mapping
fx: Py — Piy,g — [ *g, is continuous.

Therefore, we can define the convolution S,(f) € (P.)" of a fixed p € (P..)" and
f € P, by the usual formula

(Su(f), g) = (., f = g) if g € P, (2.2)

where f := f(—-) for f € P,,.
Let ve f denote the product of v € (P..)’ and a testfunction f € P... Via Fourier
transformation, S,(f) is the product of i and f since

—
~ o~ ~

(e fr9) = (. fg) = (. [ G) = ((Su(f)) 9) if g € P (2.3)
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by (2.1) and Fourier inversion formula. We say that v € (P,.)" is defined by an
exponentially bounded measurable function F on R¢ iff

v.g) = [ F@)gla)dwif g € P..

If S,(f) is defined by a function f, € P, and if S, defines a continuous linear
operator in P, in this way, the convolution operator 7, on (P,.)" is defined by
duality, i.e.

T i= (Sp)' s (P) = (P
We now have the following characterization:

!/

Proposition 2.1. The following are equivalent for p € (Pe)':
a) For any f € P, S,(f) is defined by some f, € P.,.
b) S, : Pu — P is defined and continuous.
c) fi is defined by F € H(C?) such that for any k there is K such that

IF(2)] < CreFl on Wy = {2 € C | [3(2)] < k}. (2.4)

—

We then have S,(f)(2) = 21) " EFf)(—z) for any f € P,,.

Proof. 7a) = ¢)” By (2.3), the Fourier inversion formula and a), S(f) :=
jief = (27r)_d(5u(f))A is defined by some f, € P, for any f € P... Since
P., is continuously embedded in (P,.)’, S is a continuous operator in P,, by the

closed graph theorem, that is, for any k& there is K such that we have for the norms
on P,

[ e fllr < Cellfllx if f € P (2.5)

For t > 1let g, := fi® f, for fi(z) := e~ *?/*. g, € P,, by a) since f, € P,,. By
the definition of e we see that g4 = g;f4/f; for any t > 1. For the entire function
F := g4/ f4 this implies by (2.5)

F(2)] = 190(2)/ fi(2)] < Cullfell s/ Ife(2)] < Cpe? /A

if t > 1 and z € Wy. Taking the infimum with respect to ¢t > 1 we get (2.4).
Let h; denote the Hermite polynomials. Then the Hermite functions are defined by
H; := c;jh;fs and we thus get by the definition of e

[ F@H@)dr = [ (i f0@)(fihy)@)dr = (o fu i)

= c;{fi, hjf2) = (i, H;) for any j € N{.

Since the Hermite functions are a basis in P, by [6, 5.5], ¢) is proved.

”¢) = b)” By (2.3) and ¢) we know that S,,(f) = (2r)"%(Ff)" for any f € P...
This shows b) since the Fourier transformation and the multiplication with F are
continuous operators in P, by (2.4). m
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Notice that (2.4) is not always satisfied: Easy counterexamples are provided by
i € (P.) such that i is a hyperfunction with compact support. In the simplest
case we can take p = 1, i.e. g = 2wd. Also, elementary solutions v € (P,,)" of
surjective convolution operators T}, on (P,.)" do not satisfy (2.4) if there is 2o € C?
such [i(zp) = 0 since the first assumption would imply that the kernel of 7}, is trivial
contradicting the second assumption.

From now on we will always assume that p satisfies (2.4). Therefore,

Sy Po— Poand T), = (Sp)" : (Pu)) — (Pus))

are defined, linear and continuous, and fi is an entire function.
Recall that v € (P,,)" is an elementary solution for 7}, if 7),(v) = §. Surjective
convolution operators on (P,,)" can now be characterized as follows:

Theorem 2.2. Let j € (P,.) satisfy (2.4). The following are equivalent:
a) The convolution operator T), : (Py.) — (Ps)" is surjective.
b) T, admits an elementary solution v € (Py.)' .
¢) There is C > 0 such that for any t € R? with |t| > C there is ( € C? such
that
¢ =t < C and [a(¢)] > e . (2.6)

Proof. "b) = ¢)” Let v € (P..)’ be an elementary solution for 7},. Then v € (P,.)’
and thus there are 7 and C) such that

(7. 0] < Cullhll; if h e (P..)' (2.7)
If (2.6) does not hold, for any I € N there is ¢; € R? with |t;| > 41 such that
Q)] < e i ¢ =t < 1. (2.8)

Let fi(z) :== exp(i(z,tl) — (Z,Z)/(QC[)) for ¢, := |t;|/l. Then f; € P,, and

~

filz) = (27‘['Cl)d/2 exp(—(z —t, 2 — tl>cl/2) =: qi(2)

~ A

1= £i(0) = {Tu(v), fi)l = @m) [0, ifi)] < Cillgull; (2.9)

by 2.1 and (2.7). We will show that the right hand side of (2.9) tends to 0, a
contradiction: let |z — ¢;| < [. Since |t;| > 4l, we get by (2.8)

(2)g1(2)] < Coc”® exp(—llz] = [R(z — t)Pe/2 + [S(2) Per/2)

< 02021/26_1(\2\—#”/2) < Cyel=l+uD/8, (2.10)

Choose J > j2 for j by (2.4). If |z — ;] > [ and z € W; we then get
i(2)q(z)| < 0407/2€J|2|+(2\%(Z)|2—\z—tzlz)Cz/2 < e—dll=ltl (2.11)
if [ is large, since

‘tl| + (j + J)‘Z| -+ (2]2 — |Z — tl|2)Cl/2 S 2J|Z — tl| — ‘Z — tl|2cl/2 + 3J‘tl|
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< 2J01—=1Ut|/2 4 3J|t)| < —|t;| for large [.

The above claim follows from (2.10) and (2.11).

7c) = a)’ P, is a (F'S)—space, hence reflexive. By Fourier transformation,
Proposition 2.1 and the closed range theorem [11, 26.3] we thus get: 7T}, is surjective
in (P..)" iff S, is injective with closed range in P, iff iP,. is closed in P,, iff for any
k € N there are 5 > k and C; > 1 such that

Lfllx < Cullif 1l if f € P (2.12)

We now recall the following fact (see [1, 3.1]): Let F,G and F/G be holomorphic
on {z € C?| |2| < R}.

(F/G)) < sup [Fo)l (sup |G TGO FH it sl < R (213)

[n|<R [n|<R

Fix k € N and let w := t + iy € W,. Choose ( € C? for ¢t by (2.6) and apply
(2.13) to F(2) == a(C+ 2)f(C + 2), f € P, G(2) := (¢ + 2), R := 2(C + k) and
|z| < R/2. Since |w — (| < R/2 we get

|f (w) ]! < Cy sup |A(C +n) f(¢+n)| sup 2SN < Oy |IAf];
Inl<R In|<R

for j:=2J+ k+ 3C, if J is chosen for W, g by (2.4). This proves (2.12). u

T,, is obviously defined for any pu € H(C?);, however T}, need not be surjective
(see [7, 3.2]). A simple example of a non SurJectlve operator T}, is provided by
w(z) == e 2z € R, since fi(z) = (2m)2e*"/? does not satlsfy (2.6). On the
other hand, if ,u(x) = /2 1 € R, then i(z) = 7'/2(1 + i)e /2 (see [3, 7.6.1])
and T, is defined and surjective (and in fact bijective) since |fi(z)| = (27)/2eR=)3()
satisfies (2.4) and (2.6).

Differential-delay equations are always surjective in (P, )". In fact, we then have
p € span{d®d,, | a € NI w € C?} and i € span{z®exp({z,w)) | a € Nd,w €
C4}. Thus, let fi := Z;‘?Zl pje<'7wj> with distinct w; € C? and polynomials p;. Let
deg p; := m; < m and max;<y |[R(w,)| := r. Then

.l) )6<t W) .

zZ,wj)

1 (zw;
el € spaanM”Sm{z el w1>}.

ge(2) = fi(t + 2) = Zip

j=11=0

Since all norms on this space are equivalent, (2.6) follows:

sup |a(t +z)| > Cy  sup \pgl)(t)eﬁ,wj)v“ > Coe "M,
lz]<1 J<k l|<m
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3 Rightinverses

As a first class of convolution operators admitting a continuous linear right inverse
we consider a condition of hyperbolic type:

Theorem 3.1. Let u € (P..) satisfy (2.4) and (2.6). T, admits a continuous linear
right inverse in (P..) if there is N € R? such that for any k there is ko such that

a(z+itN) #0 if z € Wy and |1] > k. (3.1)

Proof. Let [N| = 1 (wlo.g.) and M;(f) := if for f € P.,. By Fourier trans-
formation, it is sufficient to show that M; has a continuous linear left inverse in
P,..

a) For any k there is ky such that any j > k; there are A, Cy > 0 such that

|i(w 4 iTN)| > Coe ™ 1®lif w € Wy, and j > |7| > ky. (3.2)

When proving (3.2) we need the following minimum modulus theorem (see e.g. [9,
1.11]): Let 0 # g be holomorphic near |z| < p,z € C. For any 0 < r < /4 there
are H = H(r/p) >0 and r < < ¢/4 such that

19()] = |g(0)["*"/ sup [g(m)|" if €] = o. (3.3)

Inl=p
Fix k and choose k; for 2C' +3k by (3.1) with C' from (2.6). Let k; <7 < j (w.lLo.g.)
and let w € Wj. We first choose ¢ € C? for t := R(w) by (2.6) and then apply (3.3)
to g(z) :== (¢ + zN),r := 7 and p := 4(1 + k/j)7. Using also (2.4) we thus obtain
C1,A; > 0 (independent of w and 7) and 7 < § < (1 + k/j)7 < 7 + k such that

(¢ 4 i6N)| > Cre~ vl

(2.13) is now applied to F' = 1,G(z) := a((+i6N+z), R :== C+3k and |z| < C+2k
(notice, that G(z) # 0 for |z| < R by (3.1) and the choice of k since (+2z € Wacysk).
Since |w + iTN — ( —i0N| < C 4 2k we get by (2.4)

|i(w 4 iTN)| > Coe~ 2l

for some constants A, Cy > 0.

b) We may assume that N = ey := (0,...,1) and write z = (2/, z4) € C¢! x C.
The left inverse for M can now be given by means of an explicit formula which is
a Cl—variant of 7, (4.5)]: For f € P.. let

1 / —(7—24)?
Lf)(2) == /%(T):kl ﬁf (2, 7)e dr if z € W, (3.4)

T omi (=2, —7)(T — 2q)
where k; > k is the constant from (3.2).
Indeed, for f € P.., L(f)(z) is defined for any z by (3.2). L(f) is welldefined
by Cauchy’s theorem and (3.2) again. It is also clear that L(f) is an entire function

and that L(M,f) = f by Cauchy’s integral formula. Finally, L(f) € P.. by an easy
estimate and L : P,, — P,. is continuous. ]
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Hyperbolic polynomials P satisfy (3.1). To see this, let P, denote the principal
part of P and let Q(x,t) := (X, ]QY(z,1)|*t?*1)/2 for a polynomial Q. By [3,
12.4.6(iii)] we know that

Py (x, ¢t
lim sup M =0if a # 0 and tl m sup ——— =0 (3.5)

i
t—00 z€R4 Pm (LU, t) 0 zeRd Pm (SL’, t)

if P is hyperbolic w.r.t. N. For z =z 4+ iy € Wy and t > k we thus get by Taylor
expansion, [10, 3.3] and (3.5)
|P(z +itN)|

> Bl +itN)| = 3 [P (@ + N[y = D [(P — Pu) (@)]|(y + itN)°|
a#0 «a

> Oy Py () = Co (3 [P (@ +itN)| + (P = Pu)(w, k +1))
a#0

> CuB(,t) = Co (P, 0] + (P = PuT (e, 1)) 2 CiPa(e,1)/2 £ 0
a#0

if ¢ is large.

The condition (DN) of Vogt is fundamental for the existence of continuous linear
right inverses. It is defined as follows (see e.g. [11, p. 359]): Let E be a Frechet
space with fundamental system (|| ||x)ren of seminorms. FE has (DN) iff there is p
such that for each k there are n and C such that

|z|l7 < C|lz|lp||lz||. for all x € E.

If T}, is surjective on (P.,)’, the sequence

1 T

0 — ker(7,) — (Pw) —= (Pu) — 0

is exact. By Fourier transformation it is split iff the dual sequence

M~

splits (again, M;(f) := if for f € P,,). Since P,, is isomorphic to a power series

space of infinite type by [6], the splitting theorem of Vogt (see [11, 30.1 and 29.2])
implies that

T, has a right inverse in (P..)} iff (ker(7},)); =~ P../(iiP..) € (DN). (3.6)
For operators T}, in one variable we thus get

Theorem 3.2. Let d =1 and let u € (P..) satisfy (2.4) and (2.6). Then T, admits
a continuous linear right inverse in P,.(C)} iff there is ki such that

fi(z) # 0 if [3(2)] = Ky (3.7)
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Proof. (3.7) is sufficient by 3.1. If 7}, admits a continuous linear right inverse in
P..(C)}, Pu/(ftP.s) has (DN) by (3.6), hence P../(fiP..) has a continuous norm,
that is, a quotient seminorm | [, is a norm. Let fi(—w) = 0. Then g(z) :=
fi(—2) exp(—(z —w, z —w))/(z — w) € P,, and [g] # 0 in P,,/(fiP..).

We now notice that for any k£ there is ko such that

P, is dense in Hy, :={f € H(Wk,) | || fllr, < 00} wrt. || |lg+x (3.8)

where K is chosen for k by (2.4). Indeed, the proof of [6, 3.4] shows that there is ko
such that the Hermite expansion of f € Hy, converges to f with respect to || ||x+x-

If [(w)| > ko then h(z) := exp(—(z —w,z — w))/(z — w) € Hj, and we may
choose h,, € P,. by (3.8) such that ||h — h,|[r+x — 0, and therefore

0% Nlg]llx = IE(h — ha)lllx < I(h = ha) [k < Cillh = hallesse — O,

a contradiction. m

A right inverse also exists for operators of hypoelliptic type (see 3.3 below). This
is based on the following observation: Let F' be an entire function such that there
is N € C¢ such that for any k there is K such that

(2, V)| < K if F(2) = 0 and |[I(2)| < k, (3.9)

where II is the orthogonal projection onto N+. Then

H(C) /(FH(CY) has (DN). (3.10)
Indeed, we may assume that N = ey := (0,...,1). A left inverse for the multiplica-
tion operator Mp on H(C?) is then provided by

1 f(,7)
L(f)(z) := o /|7—:K+1 F(2,1)(T — zq)

dr if |z| <k

for K > k from (3.9). Hence, F'H(C?) is a complemented (closed) subspace of H(C%)
and the sequence

0 — H(C?) 5 H(C?) — H(CY/(FH(CT) — 0

is split. Hence, H(C?)/(FH(C?)) is isomorphic to a subspace of H(C?), and (3.10)
follows from [11, 29.2] since H(C?) has (DN). .
(3.9) is satisfied for N = eq if F(2) := ¥i_y Fj(2)z} and F; € H(C™).

Theorem 3.3. Let i satisfy (2.4), (2.6) and (3.9). T, admits a continuous linear
right inverse in (P} if

|S(2)] — o0 if fi(z) = 0 and |R(2)] — oo. (3.11)
Proof. By (3.6) and (3.10), it is sufficient to show that the canonical mapping

St Pu/(f1P.) — H(CY)/(AH(C))
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is a topological isomorphism. To prove this we first notice that S is clearly wellde-
fined. S is injective by the proof of "¢) = a)” in 2.2 (use (2.6) and (2.13)). Let

Vi i={zeC’|fi(—2) =0}.

The surjectivity of S is seen as follows: choose ¢ € C*(C?) such that ¢(z) = 1 if
dist(z,V;) < 1 and ¢(2) = 0 if dist(z,V;) > 2 and such that [p| and [|gradep| are
bounded on C% We must show that for any f € H(C?) there are f, € P,, and
fa € H(CY) such that f = f, + fifs. For this, we will find

g€ Li={ge L (Ch |k |f]} = [ 1F()Pedz < oo}

k

solving
dg = d(ef/h). (3.12)

Then f, := of —ig and f, := (1—¢) f/f1+g will prove the claim (use the arguments
from below). To solve (3.12) we notice that

Fi(2) = 0(f(2)p(2)e™? /u(=2)), 2 € W,

is bounded and has bounded support by (3.11). Hence F}, € L?*(W}) and by [2, 4.4.2]
there is Gy, such that 9G), = Fj, on W, and G/(1 + |- |*) € L?*(W},). Therefore,
gr = Grexp(—(z, z)) satisfies (3.12) on W}, and |gx|; is finite. For j > k, gj; =
(9; — 9&) |w, is holomorphic on W), and g¢;;, € Ly. We therefore can switch from
L*—norms to sup —norms for g;x, that is, g;x |w,_,€ Hr—1. By (3.8), for any k

there is ko such that £ Nker(d) = P.. is dense in Hy, w.r.t. || ||[x. The classical
Mittag-Leffler argument therefore shows that (3.12) can be solved with g € L. =

Any hypoelliptic partial differential operator with constant coefficients admits a
continuous linear right inverse on (P,.)" by 3.3.

An interesting example for 3.2 is given by p = (6; — §_;)/2 € P..(C). Then
T, = (1, — 7_;)/2, where 74, is the shift by +i. [i(z) = sinh(z) satisfies (2.6), but
not (3.7). 1), is surjective but does not admit a right inverse in P,,(C);. The kernel
of T, (i.e. the 2i—periodic elements in P,,(C)’) is span{e’™ | j € Z} ~ ¢, where ¢
is the space of all finite sequences (see [8]).

On the other hand, if p := (0_; — 61)/(2¢), then T, = (7—; — 71)/(24) and
fi(z) = sin(z) satisfies (2.6) and (3.7). 7T}, admits a right inverse, that is, the space
of 2—periodic elements is complemented in P,.(C); (see [8] for more details).
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