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Abstract

We give an example of a complete locally convex m-topology on the alge-
bra of infinite differentiable functions on [0, 1] which is strictly coarser than
the natural Fréchet-topology but finer than the topology of pointwise conver-
gence. A similar construction works on the algebra of continuous functions on
[0, 1]. Using this examples we can separate different notions of diffotopy and
homotopy.

1 Introduction

Our notation concerning locally convex spaces is standard, we refer e.g. to [2] and
[3]. Let £ be a family of compact subsets of [0, 1] which is closed with respect to
finite unions. We introduce locally convex topologies 6 and 7, on %([0,1]) and
%> (|0, 1]), respectively. Namely, 6 is defined by the family of seminorms

pr(f) = Sl;(p|f|, KeXx,

and 7 is defined by the family of seminorms

Do = Sup p(f), K € # ,neN.

0<v<n

To force the topologies to be finer than the topology of pointwise convergence, we
assume, in addition, that U#" = [0, 1]. Equipped with the pointwise multiplication,
(€¢([0,1]),0.%) and (€°>(]0,1]), 7% ) are locally m-convex algebras, i.e. they admit
a fundamental system of submultiplicative seminorms. % := {[0, 1]} leads to the
natural topologies. We write J# < J#; if for every K, € J#] there exists Ky €
with K7 C K,. The following proposition is easy to prove.
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Proposition 1 The following statements are equivalent:
1. < Js,
2. 0y COy,
3. T C Ty

In particular, if [0,1] ¢ 2 then 6, and 7, are strictly coarser than the natural
topologies on ([0, 1]) and €*°(]0, 1]), respectively.

2 Completeness

Let us denote ., the system of all compact subsets of [0, 1] having only finitely
many accumulation points and let us denote ,%/sgq the system of all compact subsets

K of [0, 1] such that there is ¢ > 0 with [0,¢] N K € H,.

Theorem 2
1. If Hey < then (€([0,1]),0) is complete.
2. It #° < 2 then (€([0,1]), ) is complete.

seq —

Proof. (1) Let 6 := 0, and let ® be a Cauchy filter in (%'([0,1]),#). Since
UZ = [0, 1] this filter converges pointwise to a function f and for any K € %
its restriction to K converges in the Banach space € (K) to a function fx with
flg = fx. In particular, f|x is continuous. Since %, < # the function f is
sequentially continuous, hence continuous. Therefore ¢ converges in all the spaces
(€([0,1]),pr), K € 2, to f and this means precisely that it is f-convergent to f.
(2)  Set 7 := T4 and let ® be a Cauchy filter in (¢°>([0,1]),7). Then D :
(€>([0,1]),7) — (€(]0,1]),0)"°, f 1+ (f™),en, is an isomorphism onto its range.
Using (1) we obtain that D(®) converges to some F' = (f)nen,. It remains to show
that the continuous functions f,, are differentiable and f! = f,+1, n € Ny. To this
end, we use that J¢), < ¢ . Since [e,1] € . for each € € (0,1), we see that f, is
differentiable on (0, 1] and its derivative is f,11](0,1). Since f,41 is continuous this
shows that f,, is also differentiable at 0 and that f/(0) = f,+1(0). n

Remark 3 If % = .., then (¢°°([0,1]), 7») is not complete since D (taken
from the preceding proof) has in this case a dense range. Indeed, let fi,..., f, €
% ([0,1]), and K € H, be given. We may assume that K has only one accumation
point, say zo. We choose a polynomial p with p®)(zo) = f,(z0), 0 < v < n. For
every € > 0 there is a neighbourhood of x5 on which [p™) — f,| < e. Outside this
neighbourhood there are only finitely many points of K, hence we find a smooth
function g which coincide with p on a neighbourhood Uof z, and satifies ¢*) = f,
on K\ U.

Theorem 2 allows to construct an example separating two natural notions of diffo-
topy of homomorphisms between m-algebras (i.e. complete locally m-convex alge-
bras), see also [1], 1.1.
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Let A and B be m-algebras. Two continuous homomorphisms ¢, : A — B are
called diffotopic if there is a continuous homomorphism « : A — ([0, 1], B) with
a(-)(0) = ¢ and «a(-)(1) = ¢. Here ([0, 1], B) is identified with the complete 7-
tensor product ([0, 1])®, B, where ([0, 1]) carries its natural Fréchet-topology.
(Since €*°([0, 1]) is nuclear we can choose also the complete e-tensor product)

Let us call ¢ and v pointwise diffotopic if there is a family of continuous homomor-
phisms o : A — B, t € [0,1] such that oy = ¢, a3 = ¢ and for any a € A the
map t — oy (a) from [0, 1] to B is smooth. Let % := #0, and A := (€>[0,1],7.4),
B:=C.

We show that the evaluations dy : A — C and 6; : A — C are not diffotopic. Assume
that there is a continuous homomorphism a : A — ¢*°([0, 1]) connecting &y and ;.
Then f — a(f)(z) is a continuous character on A for every z € [0, 1], hence there
is g(z) € [0,1] with a(f)(xz) = f(g(x)). So a(f) = fog and «a is a composition
operator. Applying a to f(z) = x we see that g is smooth. Since « connects dy and
d; we obtain ¢g(0) = 0 and g(1) = 1. The continuity of o ensures the existence of
Kec#° necN,and C > 1 such that

seq’

sup |f(g(z))| < C sup sup |f(y)]
z€[0,1] 0<v<nyeK

for every f € €>°([0,1]). But there is ¢ € [0,1] with g(x¢) ¢ K. This contradicts
the estimate above.

On the other hand, the homomorphism « : A — €*°([0,1]), f — f connects ¢y and
d1. If we equip €°°([0, 1]) with the topology of pointwise convergence, o becomes
continuous. Hence ¢y and d; are pointwise diffotopic.

Remark 4 1) With the obvious modifications in the definitions (replace smooth by
continuous and ([0, 1])®, B by €([0, 1])®.B) one can introduce also the concepts
of homotopy and pointwise homotopy. Then §y and d; are not even homotopic.

ii) If A is ultrabornogical (e.g. if A is Fréchet) and €>°([0, 1])®,B has a web (e.g.
if B is Fréchet) then the closed graph theorem implies that both notions of diffotopy
coincide. An analogous result holds in case of homotopy.
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