On conjugate harmonic pairs (U_r, V_{r-1}) of multi-vector valued functions

Richard Delanghe

Dedicated to my dear friend Professor Jean Schmets on the occasion of his 65-th birthday

Abstract

Let $\mathbb{R}_{0,m}$ be the real Clifford algebra constructed over the real quadratic space $\mathbb{R}^{0,m}$ with signature (0,m) and let U_r be an $\mathbb{R}^+_{0,m}$ -valued harmonic function in an appropriate open domain Ω of \mathbb{R}^{m+1} ($0 < r \le m; m \ge 2$). Then a necessary and sufficient condition is given upon U_r for the existence of an $\mathbb{R}^{r-1}_{0,m}$ -valued harmonic function in Ω which is conjugate to U_r .

1 Introduction

Clifford analysis, a function theory for the Dirac operator ∂_x in Euclidean space $\mathbb{R}^{m+1} (m \geq 2)$, generalizes classical complex analysis in the plane to higher dimensional space and refines the theory of harmonic functions.

If $\mathbb{R}^{0,m+1}$ denotes the space \mathbb{R}^{m+1} provided with a real quadratic form of signature (0, m+1) and $e = (e_0, e_1, ..., e_m)$ is an orthogonal basis for $\mathbb{R}^{0,m+1}$, then ∂_x is given by

$$\partial_x = \sum_{i=0}^m e_i \partial_{x_i}.$$

Taking into account the basic multiplication rules

$$\begin{aligned} e_i^2 &= -1 &, & i = 0, 1, ..., m \\ e_i e_j + e_j e_i &= 0 &, & i \neq j, 0 \leq i, j \leq m, \end{aligned}$$

¹⁹⁹¹ Mathematics Subject Classification: 30G35.

 $[\]it Key\ words\ and\ phrases$: Clifford analysis, multi-vector valued functions, conjugate harmonic pairs.

in the Clifford algebra $\mathbb{R}_{0,m+1}$ constructed over $\mathbb{R}^{0,m+1}$, then for an $\mathbb{R}^{0,m+1}$ -valued \mathcal{C}_1 -function $F = \sum_{i=0}^m F_i e_i$ in $\Omega \subset \mathbb{R}^{m+1}$ open, are equivalent:

$$\partial_x F = 0 \Longleftrightarrow \begin{cases} \sum_{i=0}^m \frac{\partial F_i}{\partial x_i} = 0 \\ \frac{\partial F_i}{\partial x_j} - \frac{\partial F_j}{\partial x_i} = 0 \end{cases}$$

As is well known, the latter system of equations is called the Riesz system. It clearly generalizes the classical Cauchy-Riemann system for the plane. In [3] E. Stein and G. Weiss called an (m+1)-tuple $(u_0, u_1, ..., u_m)$ of \mathbb{R} -valued harmonic functions in Ω conjugate harmonic in Ω if it satisfies the Riesz system.

More generally, using the decomposition $\mathbb{R}_{0,m+1} = \mathbb{R}_{0,m} \oplus \overline{e}_0 \mathbb{R}_{0,m}$ where $\overline{e}_0 = -e_0$ and where $\mathbb{R}_{0,m}$ is the Clifford algebra constructed over $\mathbb{R}^{0,m}$ with orthogonal basis $(e_1, e_2, ..., e_m)$, a pair (U, V) of $\mathbb{R}_{0,m}$ -valued harmonic functions in Ω is called conjugate harmonic in Ω if $F = U + \overline{e}_0 V$ satisfies $\partial_x F = 0$ in Ω (see [1]).

Now let $0 < r \le m$ be fixed and consider the subspace $\mathbb{R}^r_{0,m+1}$ of $\mathbb{R}_{0,m+1}$ consisting of so-called r-vectors, i.e. $\mathbb{R}^r_{0,m+1} = \operatorname{span}_{\mathbb{R}}(e_A:|A|=r)$, where for $A=\{i_1,i_2,...,i_r\} \subset \{0,...,m\}$ with $0 \le i_1 < i_2 < ... < i_r \le m$, $e_A=e_{i_1}...e_{i_r}$.

In section 3 of this paper, we give an answer to the following problem: Given U_r , a harmonic and $\mathbb{R}^r_{0,m}$ -valued function in Ω , under which conditions upon U_r does there exist V_{r-1} , $\mathbb{R}^{r-1}_{0,m}$ -valued and harmonic in Ω , such that the pair (U_r, V_{r-1}) is conjugate harmonic in Ω , i.e. the $\mathbb{R}^r_{0,m+1}$ -valued function $F_r = U_r + \overline{e}_0 V_{r-1}$ satisfies $\partial_x F_r = 0$ in Ω . Such functions F_r are also called monogenic r-vector valued functions in Ω . For convenience of the reader, in section 2 we briefly recall some notions and results concerning monogenic r-vector valued functions.

2 Monogenic r-vector valued functions

Let again $\mathbb{R}^{0,m+1}(m \geq 2)$ be the space \mathbb{R}^{m+1} provided with a quadratic form of signature (0, m+1) and let $\mathbb{R}_{0,m+1}$ be the universal real Clifford algebra constructed over $\mathbb{R}^{0,m+1}$. If $e = (e_0, e_1, ..., e_m)$ is an orthogonal basis for $\mathbb{R}^{0,m+1}$, then the basic multiplication rules in $\mathbb{R}_{0,m+1}$ are governed by

$$\begin{cases} e_i^2 = -1 &, i = 0, 1, ..., m \\ e_i e_j + e_j e_i = 0 &, i \neq j, 0 \leq i, j \leq m \end{cases}.$$

A basis for $\mathbb{R}_{0,m+1}$ is given by the set of elements $e_A = e_{i_1}e_{i_2}...e_{i_r}$ where for $A = \{i_1,...,i_r\} \subset \{0,1,...,m\}, 0 \leq i_1 < i_2 < ... < i_r \leq m$ and where $e_{\phi} = 1$, the identity element in $\mathbb{R}_{0,m+1}$.

Putting for $r \in \{0, 1, ..., m+1\}$ fixed, $\mathbb{R}^r_{0,m+1} = \operatorname{span}_{\mathbb{R}} (e_A : |A| = r)$, it is clear that

$$\mathbb{R}_{0,m+1} = \sum_{r=0}^{m+1} \bigoplus \mathbb{R}_{0,m+1}^r.$$

The space $\mathbb{R}^r_{0,m+1}$ is called the space of r-vectors and the projection operator from $\mathbb{R}^r_{0,m+1}$ is denoted by $[\]_r$.

Notice that \mathbb{R} and \mathbb{R}^{m+1} may thus be identified with $\mathbb{R}\cong\mathbb{R}^0_{0,m+1}$ and $\mathbb{R}^{m+1}\cong\mathbb{R}^0_{0,m+1}$.

The product of a 1-vector u and an r-vector $v_r(r \ge 1)$ splits into the sum of an (r-1)-vector $u \bullet v_r$ and an (r+1)-vector $u \wedge v_r$, i.e.

$$uv_r = u \bullet v_r + u \wedge v_r$$

where

$$u \bullet v_r = [uv_r]_{r-1} = \frac{1}{2} (uv_r - (-1)^r v_r u)$$

and (2.1)

$$u \wedge v_r = [uv_r]_{r+1} = \frac{1}{2} (uv_r + (-1)^r v_r u)$$

Now decompose \mathbb{R}^{m+1} into $\mathbb{R}^{m+1} = \mathbb{R} \times \mathbb{R}^m$; denote an arbitrary element $x = (x_0, x_1, ..., x_m) \in \mathbb{R}^{m+1}$ as $x = (x_0, \underline{x})$; identify \mathbb{R}^{m+1} and \mathbb{R}^m with the subspaces $\operatorname{span}_{\mathbb{R}}(e_0, e_1, ..., e_m)$ and $\operatorname{span}_{\mathbb{R}}(e_1, ..., e_m)$ in $\mathbb{R}_{0,m+1}$ and put $x = \sum_{i=0}^m x_i e_i$ and $\underline{x} = \sum_{j=1}^m x_j e_j$. Then inside $\mathbb{R}_{0,m+1}$, the Clifford algebra $\mathbb{R}_{0,m}$ is generated by $\underline{e} = (e_1, ..., e_m)$ and obviously

$$\mathbb{R}_{0,m+1} = \mathbb{R}_{0,m} \bigoplus \overline{e}_0 \mathbb{R}_{0,m}$$

Clearly, for $0 < r \le m$ fixed,

$$\mathbb{R}_{0,m+1}^r = \mathbb{R}_{0,m}^r \bigoplus \overline{e}_0 \mathbb{R}_{0,m}^{r-1} \tag{2.2}$$

The Dirac operators ∂_x and ∂_x in \mathbb{R}^m are defined by

$$\partial_x = \sum_{i=0}^m e_i \partial_{x_i}$$

and

$$\partial_{\underline{x}} = \sum_{j=1}^{m} e_j \partial_{x_j}$$

whence

$$\partial_x = e_0 \partial_{x_0} + \partial_{\underline{x}}.$$

The Cauchy-Riemann operator D_x in \mathbb{R}^{m+1} is determined by

$$D_x = \overline{e}_0 \partial_x = \partial_{x_0} + \overline{e}_0 \partial_x.$$

Now let $\Omega \subset \mathbb{R}^{m+1}$ be open, let $\tilde{\Omega}$ be its orthogonal projection onto \mathbb{R}^m and let $0 < r \le m$ be fixed. Then the space of C_{∞} -functions from Ω into $\mathbb{R}^r_{0,m+1}$, respectively from $\tilde{\Omega}$ into $\mathbb{R}^r_{0,m}$, is denoted by $\mathcal{E}_r(\Omega)$, respectively $\mathcal{E}_r(\tilde{\Omega})$.

An element $F_r \in \mathcal{E}_r(\Omega)$ is said to be left monogenic in Ω if $\partial_x F_r = 0$ in Ω . Taking into account the relations (2.1) we thus have that the action of ∂_x on F_r splits into

$$\partial_x F_r = [\partial_x F_r]_{r-1} + [\partial_x F_r]_{r+1}$$

$$= \partial_x \bullet F_r + \partial_x \wedge F_r$$
(2.3)

We put $\partial_x^+ F_r = \partial_x \wedge F_r$ and $\partial_x^- F_r = \partial_x \bullet F_r$. Clearly, on $\mathcal{E}_r(\Omega)$,

$$\partial_x = \partial_x^+ + \partial_x^-$$

Moreover,

$$\partial_x^2 = -\Delta_x; \partial_x^{+^2} = 0; \partial_x^{-^2} = 0,$$
 (2.4)

 \triangle_x being the Laplacian in \mathbb{R}^{m+1} .

Consequently, on $\mathcal{E}_r(\Omega)$,

$$\Delta_x = -(\partial_x^+ \partial_x^- + \partial_x^- \partial_x^+) \tag{2.5}$$

Notice also that, as

$$[\partial_x F_r]_{r-1} = (-1)^{r+1} [F_r \partial_x]_{r-1}$$

and

$$[\partial_x F_r]_{r+1} = (-1)^r [F_r \partial_x]_{r+1},$$

$$\partial_x F_r = 0 \iff F_r \partial_x = 0,$$

i.e. for $F_r \in \mathcal{E}_r(\Omega)$, the notions of left and right monogenicity coincide. Applying the decomposition (2.2) to $F_r \in \mathcal{E}_r(\Omega)$, we may write F_r as

$$F_r = U_r + \overline{e}_0 V_{r-1}$$

where U_r and V_{r-1} are $\mathbb{R}_{0,m}$ -valued r- and (r-1)-vector functions in Ω . In what follows, for $0 < s \le m$ fixed, $\mathcal{E}_s(\Omega; \mathbb{R}_{0,m})$ denotes the space of $\mathbb{R}_{0,m}^s$ -valued smooth functions in Ω . Clearly, for $F_r \in \mathcal{E}_r(\Omega)$,

$$\partial_x F_r = 0 \Longleftrightarrow D_x F_r = 0 \Longleftrightarrow \begin{cases} \partial_{x_0} U_r + \partial_{\underline{x}} V_{r-1} = 0 \\ \partial_{\underline{x}} U_r + \partial_{x_0} V_{r-1} = 0 \end{cases}$$
 (2.6)

We put

$$\ker^r \partial_x = \{ F_r \in \mathcal{E}_r(\Omega) : \partial_x F_r = 0 \text{ in } \Omega \}$$
$$\ker^r \partial_r^+ = \{ F_r \in \mathcal{E}_r(\Omega) : \partial_r^+ F_r = 0 \text{ in } \Omega \}$$

and

$$\ker^r \partial_x^- = \{ F_r \in \mathcal{E}_r(\Omega) : \partial_x^- F_r = 0 \text{ in } \Omega \}.$$

Let us recall that if Ω is contractible to a point, then

$$\partial_x^+ \partial_x^- : \ker^r \partial_x^+ \longrightarrow \ker^r \partial_x^+$$

and
$$(2.7)$$

$$\partial_x^- \partial_x^+ : \ker^r \partial_x^- \longrightarrow \ker^r \partial_x^-$$

are surjective.

Of course, similar definitions may be given for the operator $\partial_{\underline{x}}$ acting on $\mathcal{E}_r(\tilde{\Omega})$ and relations analogous to (2.3), (2.4), (2.5) and (2.7) may then be formulated.

Let us also point out the relationship between r-vector valued functions F_r and smooth differential forms ω^r in Ω .

Denoting by $\wedge^r(\Omega)$, $0 \le r \le m+1$, the algebra of smooth differential forms ω^r on Ω , then a natural isomorphism Θ between $\mathcal{E}_r(\Omega)$ and $\wedge^r(\Omega)$ considered as real vector spaces may be defined in the following way.

Let $\omega^r = \sum_{|A|=r} \omega_A^r dx^A \in \wedge^r(\Omega)$ and $F_r = \sum_{|A|=r} F_A^r e_A \in \mathcal{E}_r(\Omega)$ where for $A = \{i_1, ..., i_r\} \subset \{0, ..., m\}, dx^A = dx^{i_1} \wedge dx^{i_2} \wedge ... \wedge dx^{i_r}$.

Then $\Theta F_r = \omega^r$ if and only if $\omega_A^r = F_A^r$ for all A.

Finally notice that through this isomorphism, $\partial_x^+ \longleftrightarrow d$ and $\partial_x^- \longleftrightarrow d^*$, d and d^* being the exterior derivative and co-derivative on $\wedge^r(\Omega)$. It thus follows that for $F_r \in \mathcal{E}_r(\Omega)$ and $\omega^r = \Theta F_r \in \wedge^r(\Omega)$ are equivalent (0 < r < m+1)

$$\partial_x F_r = 0 \Longleftrightarrow \begin{cases} d\omega^r &= 0 \\ d^*\omega^r &= 0 \end{cases}$$

i.e. F_r monogenic in Ω is equivalent to saying that $\omega^r = \Theta F_r$ is a harmonic r-form in Ω .

For more details concerning the notions and results mentioned in this section, we refer the reader to [2].

3 Conjugate harmonic pairs (U_r, V_{r-1})

In this section $\Omega \subset \mathbb{R}^{m+1}$ open is supposed to satisfy the following conditions:

- (i) Ω is normal w.r.t. the e_0 -direction, i.e. there exists $x_0^* \in \mathbb{R}$ such that for each $\underline{x} \in \tilde{\Omega}$, $\Omega \cap \{\underline{x} + t\overline{e}_0 : t \in \mathbb{R}\}$ is connected and it contains the element (x_0^*, \underline{x})
- (ii) Ω is contractible to a point.

Condition (i) is sufficient for ensuring the existence of a conjugate harmonic function V to a given U, $\mathbb{R}_{0,m}$ -valued and harmonic in Ω , while condition (ii) is sufficient to guarantee the validity of the properties (2.7).

We wish to solve the following

<u>Problem</u>: Let $U_r \in \mathcal{E}_r(\Omega; \mathbb{R}_{0,m})(0 < r \leq m)$ be harmonic. Give necessary and sufficient condition(s) upon U_r such that there exists a $V_{r-1} \in \mathcal{E}_{r-1}(\Omega; \mathbb{R}_{0,m})$ which is conjugate harmonic to U_r , i.e.

(C1)
$$\triangle_x V_{r-1} = 0$$
 in Ω

(C2) $F_r = U_r + \overline{e}_0 V_{r-1}$ is monogenic in Ω .

If such V_{r-1} exists, then condition (C2) together with the second equation in (2.6) readily imply the following condition upon U_r to be satisfied in Ω :

$$\partial_x^+ U_r = 0 \tag{3.1}$$

We now claim that condition (3.1) is also sufficient.

To this end, let us first recall that the general form of a function V conjugate harmonic to U_r reads (see [1])

$$V = -\partial_x H$$

where

$$H(x_0, \underline{x}) = \int_{x_0^*}^{x_0} U_r(t, \underline{x}) dt - \tilde{h}(\underline{x}) - h(\underline{x}).$$

Hereby

- (i) $\triangle_{\underline{x}}\tilde{h}(\underline{x}) = \partial_{x_0}U_r(x_0^*,\underline{x})$ in $\tilde{\Omega}$ with \tilde{h} $\mathbb{R}_{0,m}$ -valued in $\tilde{\Omega}$
- (ii) $\triangle_x h(\underline{x}) = 0$ in $\tilde{\Omega}$.

Let us also recall that for any $\mathbb{R}_{0,m}$ -valued solution $\tilde{h}(\underline{x})$ to $\triangle_{\underline{x}}\tilde{h}(\underline{x})=\partial_{x_0}U_r(x_0^*,\underline{x}),$

$$\tilde{H}(x_0, \underline{x}) = \int_{x_0^*}^{x_0} U_r(t, \underline{x}) dt - \tilde{h}(\underline{x})$$
(3.2)

is harmonic and $\mathbb{R}_{0,m}$ -valued in Ω .

Now assume that $\partial_x^+ U_r = 0$ in Ω . Then from

$$\partial_{\underline{x}}H(x_0,\underline{x}) = \int_{x_0^*}^{x_0} \partial_{\underline{x}}U_r(t,\underline{x})dt - \partial_{\underline{x}}(\tilde{h}(x) + h(\underline{x}))$$

it follows that, as $\partial_{\underline{x}}U_r = \partial_{\underline{x}}^+ U_r + \partial_{\underline{x}}^- U_r$,

$$\int_{x_0^*}^{x_0} \partial_{\underline{x}} U_r(t,\underline{x}) dt = \int_{x_0^*}^{x_0} \partial_{\underline{x}}^- U_r(t,\underline{x}) dt \in \mathcal{E}_{r-1}(\Omega;\mathbb{R}_{0,m}).$$

Moreover, as $\Delta_{\underline{x}}: \mathcal{E}_r(\tilde{\Omega}) \longrightarrow \mathcal{E}_r(\tilde{\Omega})$ is surjective, there exists $\tilde{h}_r \in \mathcal{E}_r(\tilde{\Omega})$ such that $\Delta_{\underline{x}}\tilde{h}_r(\underline{x}) = \partial_{x_0}U_r(x_0^*,\underline{x})$.

Take such \tilde{h}_r fixed. Then we claim that we can find $h_r \in \mathcal{E}_r(\tilde{\Omega})$ such that in $\tilde{\Omega}$

To this end first notice that, as by assumption $\partial_{\underline{x}}^+ U_r(x_0,\underline{x}) = 0$ in Ω , we also have that $\partial_{\underline{x}}^+ \partial_{x_0} U_r(x_0,\underline{x}) = 0$ in Ω , whence $\partial_{\underline{x}}^+ \partial_{x_0} U_r(x_0^*,\underline{x}) = 0$ in $\tilde{\Omega}$.

It thus follows that $\partial_{x_0} U_r(x_0^*, \underline{x}) \in \ker^r \overline{\partial}_{\underline{x}}^+$.

Consequently, by virtue of (2.7), there ought to exist $W_r \in \ker^r \partial_{\underline{x}}^+$ such that $\partial_{\underline{x}}^+ \partial_{\underline{x}}^- W_r = -\partial_{x_0} U_r(x_0^*, \underline{x})$, i.e. W_r satisfies in $\tilde{\Omega}$ the equations

$$\begin{cases}
\partial_{\underline{x}}^{+}W_{r} = 0 \\
\partial_{x}^{+}\partial_{x}^{-}W_{r} = -\partial_{x_{0}}U_{r}(x_{0}^{*},\underline{x})
\end{cases}$$
(3.4)

Define $h_r \in \mathcal{E}_r(\tilde{\Omega})$ by

$$h_r + \tilde{h}_r = W_r$$

Then clearly $\partial_{\underline{x}}^+(\tilde{h}_r + h_r) = 0$ in $\tilde{\Omega}$.

Moreover, as

$$\Delta_x(\tilde{h}_r + h_r) = \Delta_x W_r,$$

we obtain on the one hand that

$$\begin{array}{rcl} \triangle_{\underline{x}}(\tilde{h}_r + h_r) & = & -(\partial_{\underline{x}}^- \partial_{\underline{x}}^+ + \partial_{\underline{x}}^+ \partial_{\underline{x}}^-) W_r \\ & = & -\partial_{\underline{x}}^+ \partial_{\underline{x}}^- W_r \\ & = & \partial_{x_0} U_r(x_0^*, \underline{x}) \end{array}$$

while on the other hand

$$\begin{array}{rcl} \triangle_{\underline{x}}(\tilde{h}_r + h_r) & = & \triangle_{\underline{x}}\tilde{h}_r + \triangle_{\underline{x}}h_r \\ & = & \partial_{x_0}U_r(x_0^*,\underline{x}) + \triangle_x h_r. \end{array}$$

Consequently $\triangle_x h_r = 0$ in $\tilde{\Omega}$.

We have thus proved the existence of $h_r \in \mathcal{E}_r(\tilde{\Omega})$ satisfying (3.3). Putting

$$H_r(x_0, \underline{x}) = \int_{x_0^*}^{x_0} U_r(t, \underline{x}) dt - \tilde{h}_r(\underline{x}) - h_r(\underline{x}),$$

we thus have that

- (i) H_r is harmonic and $\mathbb{R}^r_{0,m}$ -valued in Ω
- (ii) $V_{r-1} = -\partial_x H_r$ is harmonic and $\mathbb{R}^{r-1}_{0,m}$ -valued in Ω

(iii)
$$F_r = \overline{D}_x H_r = U_r + \overline{e}_0 V_{r-1} \in \ker^r \partial_x$$
,

where $\overline{D}_x = \partial_{x_0} - \overline{e}_0 \partial_{\underline{x}}$.

Summarizing we get

Theorem 3.1. Let $U_r \in \mathcal{E}_r(\Omega; \mathbb{R}_{0,m})$ $(0 < r \le m)$ be harmonic in Ω . Then U_r admits a conjugate harmonic function $V_{r-1} \in \mathcal{E}_{r-1}(\Omega; \mathbb{R}_{0,m})$ if and only if $\partial_{\underline{x}}^+ U_r = 0$ in Ω .

Now let $V_{r-1}^* \in \mathcal{E}_{r-1}(\Omega; \mathbb{R}_{0,m})$ also be conjugate harmonic to U_r , or equivalently, let $F_r^* = U_r + \overline{e}_0 V_{r-1}^*$ be monogenic in Ω . Then clearly $F_r^* - F_r = \overline{e}_0 (V_{r-1}^* - V_{r-1})$ is monogenic in Ω , which implies that $V_{r-1}^* - V_{r-1}$ is independent of x_0 and satisfies $\partial_{\underline{x}}(V_{r-1}^* - V_{r-1}) = 0$ in $\tilde{\Omega}$.

Putting

$$V_{r-1}^* = V_{r-1} + W_{r-1}$$

we have that

$$F_r^* = U_r + \overline{e}_0(V_{r-1} + W_{r-1})$$

We so obtain

Theorem 3.2. Let $U_r \in \mathcal{E}_r(\Omega; \mathbb{R}_{0,m})$ $(0 < r \le m)$ be harmonic in Ω such that $\partial_{\underline{x}}^+ U_r = 0$ in Ω . Then the most general harmonic function $V_{r-1}^* \in \mathcal{E}_{r-1}(\Omega; \mathbb{R}_{0,m})$ conjugate to U_r in Ω has the form

$$V_{r-1}^* = -\partial_{\underline{x}} H_r + W_{r-1}$$

Hereby

(i)
$$H_r(x_0, \underline{x}) = \int_{x_0^*}^{x_0} U_r(t, \underline{x}) dt - \tilde{h}_r(\underline{x}) - h_r(\underline{x})$$

where

- (i.1) $\tilde{h}_r \in \mathcal{E}_r(\tilde{\Omega})$ satisfies $\triangle_{\underline{x}} \tilde{h}_r(\underline{x}) = \partial_{x_0} U_r(x_0^*, \underline{x})$ in $\tilde{\Omega}$
- (i.2) $h_r \in \mathcal{E}_r(\tilde{\Omega})$ is harmonic in $\tilde{\Omega}$ such that $\partial_{\underline{x}}^+(\tilde{h}_r + h_r) = 0$ in $\tilde{\Omega}$
- (ii) $W_{r-1} \in \mathcal{E}_{r-1}(\tilde{\Omega})$ satisfies $\partial_{\underline{x}} W_{r-1} = 0$ in $\tilde{\Omega}$

Remark 3.1. As Dr. D. Eelbode pointed out to us, $F_r \in \ker^r \partial_x$ is equivalent to saying that $F_M^r = F_r e_M \in \ker^{m+1-r} \partial_x$. Hereby e_M is the pseudo-scalar in $\mathbb{R}_{0,m+1}$, i.e. $e_M = e_0 e_1 ... e_m$.

It thus follows that a pair (U_r, V_{r-1}) with $U_r \in \mathcal{E}_r(\Omega; \mathbb{R}_{0,m})$ and $V_{r-1} \in \mathcal{E}_{r-1}(\Omega; \mathbb{R}_{0,m})$ is conjugate harmonic in Ω if and only if the pair $(V_{r-1} \stackrel{\circ}{e}_M, U_r \stackrel{\circ}{e}_M)$ is conjugate harmonic in Ω . Hereby $\stackrel{\circ}{e}_M = \overline{e}_0 e_M = e_1 e_2 ... e_m$, the pseudoscalar in $\mathbb{R}_{0,m}$.

Notice that $F_M^r = (-1)^{r-1} [V_{r-1} \stackrel{\circ}{e}_M + \overline{e}_0 U_r \stackrel{\circ}{e}_M].$

In the case m=1, this remark expresses the well known property stating that a pair (u,v) of \mathbb{R} -valued harmonic functions in $\Omega \subset \mathbb{C}$ open is conjugate harmonic if and only if (-v,u) is conjugate harmonic in Ω .

Example. The case r=1

Let $U_1 = \sum_{j=1}^m e_j U_1^j \in \mathcal{E}_1(\Omega; \mathbb{R}_{0,m})$ be harmonic in Ω and suppose U_1 satisfies condition (3.1) in Ω , or equivalently

$$\partial_{x_i} U_1^j - \partial_{x_j} U_1^i = 0 \text{ in } \Omega, i \neq j, i, j = 1, ..., m.$$

Define the harmonic potential field H_1 by

$$H_1(x_0, \underline{x}) = \int_{x_0^*}^{x_0} U_1(t, \underline{x}) dt - \tilde{h}_1(\underline{x}) - h_1(\underline{x})$$

with

- (i) $\tilde{h}_1 \mathbb{R}^1_{0,m}$ -valued in $\tilde{\Omega}$ such that $\Delta_{\underline{x}} \tilde{h}_1(\underline{x}) = \partial_{x_0} U_1(x_0^*, \underline{x})$.
- (ii) $h_1 \mathbb{R}^1_{0,m}$ -valued and harmonic in $\tilde{\Omega}$ such that $\partial_{\underline{x}}^+(\tilde{h}_1 + h_1) = 0$ in $\tilde{\Omega}$. Then $H_1 \in \mathcal{E}_1(\Omega; \mathbb{R}_{0,m})$ satisfies $\Delta_x H_1 = 0$ in Ω and $F = \overline{D}_x H_1 = U_1 + \overline{e}_0 V_0 \in \ker^1 \partial_x$, where $V_0 = -\partial_{\underline{x}} H_1$ is \mathbb{R} -valued.

References

- [1] F. Brackx, R. Delanghe and F. Sommen. On conjugate harmonic functions in Euclidean space. Math. Meth. Appl. Sci. 2002; **25**: 1553-1562.
- [2] F. Brackx, R. Delanghe and F. Sommen. Differential Forms and/or Multi-vector Functions. CUBO 2005; 7: 139-169.
- [3] E. Stein and G. Weiss. On the theory of harmonic functions of several variables, I: The theory of H^p -spaces. Acta Mathematica 1960; **103**: 25-62.

Department of Mathematical Analysis, Ghent University, Galglaan 2, B-9000 Gent, Belgium