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Abstract

The space A (D) of all analytic functions in a complete n-circular domain
D in Cn, n ≥ 2, is considered with a natural Fréchet topology. Some sufficient
conditions for the isomorphism of such spaces are obtained in terms of certain
subtle geometric characteristic of domains D. This investigation complements
essentially the second author’s result [8] on necessary geometric conditions of
such isomorphisms.

1 Introduction

By A (D) we denote the Fréchet space of all analytic functions in a domain D ∈ C
n

with the natural topology of the uniform convergence on compact subsets of D. We
study the isomorphic classification of the spaces A (D) with D from the class Rn

of all complete logarithmically convex n-circular (Reinhardt) domains in Cn, n ≥ 2
(see also, [1, 7, 8, 10]). We represent the system of monomials zk := zk1

1 ·· · ··zkn
n , k =

(k1, . . . , kn) ∈ Zn
+, which forms an absolute basis in each space A (D) , D ∈ Rn, as

a sequence
ei (z) := zk(i), i ∈ N, (1)

so that |k (i)| := k1 (i) + . . . + kn (i) does not decrease. The characteristic function

of a domain D ∈ Rn: hD (θ) := sup
{

n∑
ν=1

θν ln |zν | : z = (zν) ∈ D
}
, defined on the

simplex Σ :=
{
θ = (θν) ∈ Rn

+ :
n∑

k=1
θk = 1

}
, is convex (hence continuous) on the

convex set π (D) := {θ ∈ Σ : hD (θ) < ∞}. It turns out that invariant properties
of spaces A (D) depend essentially on the topological behavior of the set π (D), for
example, A (D) is not isomorphic to A (G) if π (D) is relatively open in Σ but π (G) 6=
Σ is closed. In what follows we restrict ourselves to the class Rn

o of domains D for
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which π (D) is relatively open in Σ, π (D) 6= Σ (if π (D) = Σ, then A (D) ≃
A (Un) [1, 7]). In order to investigate the isomorphic classification for this class it
is convenient to introduce the following geometric characteristic of those domains:

g (α) := gD (α) :=

(
n! mes Σ

mes π (D)

)1/n

χ−1 (α) , 0 < α ≤ 1, (2)

where χ (t) :=
mes {θ ∈ π (D) : hD (θ) ≥ t}

mes π (D)
, t ≥ t0 := min

θ∈π(D)
{hD (θ)} and mes is

the Lebesgue measure on Σ.
Using this characteristic, the following necessary condition for the isomorphism

of spaces from the class An
o := {A (D) : D ∈ Rn

o} was obtained in [8].

Proposition 1. Given domains D, D̃ ∈ Rn
o and A (D) ≃ A

(
D̃
)
, then

∃c :
1

c
gD (cα) ≤ g

D̃
(α) ≤ cgD

(
α

c

)
, 0 < α ≤

1

c
.

As a corollary, it was proved in [8] that there is a continuum of pairwise noniso-
morphic spaces in An

o . Here we represent, in terms of the same characteristic (2),
some sufficient conditions for the isomorphism of those spaces. A distinction must
be made between two types of domains from An

o , described by one of the conditions:

(a) mes (Σ r π (D)) = 0; (b) mes (Σ r π (D)) > 0. (3)

It turns out that the spaces A (D) and A
(
D̃
)

are not isomorphic for domains of

different type (see, Proposition 5 and Remark 6).

Theorem 2. Suppose D, D̃ ∈ Rn
0 , g (α) := gD (α) , g̃ (α) := g

D̃
(α) and σ : [0, q]

→ [0, 1], 0 < q < 1, is the continuous increasing function, which is continuously
differentiable on (0, q] and satisfies the differential equation

σ′(α) =

(
g̃ (σ (α))

g (α)

)n

, 0 < α ≤ q, (4)

with the initial condition σ (0) = 0. If there is a constant L > 0 such that

1

L
≤ σ′(α) ≤ L, 0 < α ≤ q, (5)

and both domains are of the same type (3) , then A (D) is isomorphic to A
(
D̃
)
;

moreover, there is an isomorphism T : A (D) → A
(
D̃
)

such that Tei = ti eρ(i), i ∈

N, where ei is the monomial basis (1), ti a scalar sequence and ρ : N → N a
bijection.

This theorem will be an immediate consequence of some more general result
about the isomorphic classification on a certain class of Köthe spaces (see, Theorem
7 below).
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2 Modeled K öthe spaces

Köthe space K (A) defined by a Köthe matrix A = (ai,p)i,p∈N
(see, e.g., [4]) is the

Fréchet space of all sequences x = (ξi)i∈N
such that |x|p :=

∞∑
i=1

|ξi| ai,p < ∞ for all

p ∈ N, equipped with the topology generated by these seminorms. An operator
T : K (A) −→ K

(
Ã
)

is called quasidiagonal (with respect to the canonical bases

ei := (δi,j)
∞

j=1 , i ∈ N) if Tei = tieσ(i), where (ti) is a scalar sequence, σ : N → N; if

T is an isomorphism we say that the spaces K (A) and K
(
Ã
)

are quasidiagonally

isomorphic. Given (ai) ∈ ω+ (where ω+ is the set of all positive scalar sequences)
and λ = (λi) , λi ≥ 1, the space

F (λ, a) := K

(
exp

(
min

{
p, λi −

1

p

}
ai

))
, (6)

is called power Köthe space of second type (in contrast to those spaces of first type
[8, 9]); it is Montel if and only if ai → +∞.

A. Grothendieck considered ([3], II,p.122) the important special classes of Köthe
spaces:

Eα (a) := K (exp (αpai)) , (7)

where a = (ai)i∈N
∈ ω+, αp ↑ α, -∞ < α ≤ +∞. We will call them power Köthe

spaces of finite type (if α < ∞) or infinite type (if α < ∞) (centers of Riesz scales
in [5] or power series spaces in [6]).

The space (6) is quasidiagonally isomorphic to (i) the space (7) of finite type if
λi is bounded, (ii) the space (7) of infinite type if λi → ∞. Otherwise the space (6)
is called mixed power Köthe space of second type; it is essentially mixed if it is not
isomorphic quasidiagonally to a Cartesian product E0 (b) × E∞ (c).

Proposition 3. ([9], Lemma 2.3) . Let (ti) be a scalar sequence and ρ : N → N

a bijection. Then the rule Tei = tieρ(i), i ∈ N, defines a quasidiagonal isomorphism

from a Montel space F (λ, a) onto a space F
(
λ̃, ã

)
if and only if the following as-

sertions are valid: (a) ai ≍ ã
ρ(i)

, i.e. ai/c ≤ ã
ρ(i)

≤ cai, i ∈ N, with some constant

c > 1; (b) −∆ ≤
ln |ti|

ai
≤ ∆, i ∈ N, with some constant ∆ > 0; (c) for any

subsequence I ⊂ N, such that λi → l ∈ [1,∞], λ̃ρ(i) → l̃ ∈ [1,∞],
ãρ(i)

ai
→ γ as

i → ∞, i ∈ I,either l = l̃ = ∞ or both of l and l̃ are finite and lim
ln |ti|

ai
= l − l̃γ.

The following fact (see, e.g., [9], Proposition 3.3) will be useful later.

Proposition 4. Let ma (t) := |{k : ak ≤ t}|, mb (t) := |{k : bk ≤ t}| be the counting
functions of non-decreasing positive sequences a = (ai) and b = (bi). If ma (t) ≤
mb (Ct) , t > 0, with some constant C, then bk ≤ Cak, k ∈ N.

With an eye to spaces from the class An
o we deal with the following quite narrow

subclass of power Köthe spaces of the second type dealing only with ”thickly dis-
tributed” sequences λ: Φ(n) (ϕ, g) := F

(
(g (ϕ (i))) ,

(
i1/n

))
,where g : (0, 1] → R+ is
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a continuous function such that lim
ξ→0

g (ξ) = ∞ and ϕ : N → (0, 1] is a function with

equidistributed values, that is

lim
t→∞

|{i ≤ t : c < ϕ (i) ≤ d}|

t
= d − c, 0 ≤ c < d ≤ 1. (8)

Given D ∈ Rn
o we divide the sequence k (i) into two parts: the subsequence l (i) =

k (ji) covering the set

{
k ∈ Zn

+ :
k

|k|
∈ π (D)

}
and the complementary subsequence

m (i). By Lemma 2 from [8], certain asymptotics for the counting functions of the
sequences |k (i)| , |l (i)| , |m (i)| hold; from them, using Proposition 4, one can derive
the asymptotics:

|k (i)| ∼ (n! i)1/n , |l (i)| ∼

(
n! mes Σ

mes π (D)
i

)1/n

, |m (i)| ≍ i1/d, i → ∞, (9)

where d − 1 = dim (Σ r π (D)). Define the function ϕ = ϕD : N → (0, 1] by the
formula

ϕ (i) := χ (hD (θ (i))) , i ∈ N, (10)

where θ (i) :=
l (i)

|l (i)|
, i ∈ N. To prove that ϕ is a function with equidistributed

values we use the asymptotics (τ → ∞):

∣∣∣
{
i : |l (i)| ≤ τ, χ−1 (d) ≤ hD (θ (i)) ≤ χ−1 (c)

}∣∣∣ ∼
(d − c) mes π (D) τn

n! mes Σ
,

which follows from [8], Lemma 2. Then, taking into account (9), (10) and putting

t =
mes π (D) τn

n! mes Σ
, we arrive at (8).

A space A (D) ∈ An
o is represented as a direct sum of two closed basis subspaces

L (D) := span
{
zl(i) : i ∈ N

}
and M (D) := span

{
zm(i) : i ∈ N

}
. Due to the asymp-

totics (9) for |m (i)|, the space M (D) is isomorphic to the space E∞

(
i1/d

)
. On

the other hand, since by Proposition 3 F (λ, ca) = F (cλ, a) , c > 0, we obtain that
the space L (D) is isomorphic to the space Φ(n) (ϕ, g) with ϕ and g defined in (10)

and (2). Since the space E∞

(
i1/d

)
is contained in Φ(n) (ϕ, g) as a basic subspace if

d < n (what is the same, if mes (Σ r π (D)) = 0) we obtain the following statement.

Proposition 5. Suppose D ∈ Rn
o and ϕ, g are defined in (10), (2) . Then A (D) ≃

Φ(n) (ϕ, g) if mes (Σ r π (D)) = 0 and A (D) ≃ Φ(n) (ϕ, g)×E∞

((
i

1
n

))
, otherwise.

Remark 6. The spaces Φ(n) (ϕ, g)×E∞

((
i

1
n

))
and Φ(n) (ϕ, g̃) are not quasidiago-

nally isomorphic for any functions g, g̃, because the second space contains no basic
subspace isomorphic to E∞

((
i

1
n

))
. In fact, these spaces are not isomorphic ([2]),

but the proof of this fact is not the aim of the present paper.

Proposition 5 reduces Theorem 2 to the following more general result which will
be proved in section 4.
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Theorem 7. Suppose g (α) , g̃ (α) are two continuous functions on (0, 1] tending to
∞ as α → 0; ϕ, ϕ̃ are mappings from N onto (0, 1] with equidistributed values and
σ : [0, q] → [0, 1], 0 < q < 1, is the continuous increasing function, which satisfies
the differential equation (4) with the initial condition σ (0) = 0. If the condition (5)
holds, then the spaces Φ(n) (ϕ, g) and Φ(n) (ϕ̃, g̃) are quasidiagonally isomorphic.

3 Main Lemma

Lemma 8. Let α, β be two functions from N to (0, 1] with equidistributed values. Let
σ : [0, 1] → [0, 1] be an increasing continuous function, continuously differentiable
on (0, 1], such that σ (0) = 0, σ (1) = 1. Suppose that the condition (5) is fulfilled
with q = 1. Then there exists a bijection ρ : N → N, satisfying the conditions:

(i) i ≍ ρ (i) ; (ii ) β (ρ (ik)) → σ (a),
ik

ρ (ik)
→ σ

′

(a) for each a ∈ (0, 1] and any

subsequence (ik) such that α (ik) → a .

Proof. First we set α(s)
ν :=

ν

2s
, β(s)

ν := σ
(
α(s)

ν

)
, ν = 0, 2s, s ∈ Z+. By (5) we have

1

L
≤ d(s)

ν :=
β(s)

ν − β
(s)
ν−1

α
(s)
ν − α

(s)
ν−1

≤ L, ν = 1, 2s, s ∈ N. (11)

Take any sequence εs ↓ 0 with ε1 ≤ 1/6. Since the functions α and β are equidis-
tributed, for each s ∈ N we find Ts such that for t ≥ Ts, ν = 1, 2s, s ∈ N, the count-
ing functions n(s)

ν (t) :=
∣∣∣
{
i ≤ t : α

(s)
ν−1 < α (i) ≤ α(s)

ν

}∣∣∣, m(s)
ν (t) :=

∣∣∣
{
i ≤ t : β

(s)
ν−1 <

β (i) ≤ β(s)
ν

}∣∣∣ satisfy the estimates

t (1 − εs)
(
α(s)

ν − α
(s)
ν−1

)
≤ n(s)

ν (t) ≤ t (1 + εs)
(
α(s)

ν − α
(s)
ν−1

)
,

t (1 − εs)
(
β(s)

ν − β
(s)
ν−1

)
≤ m(s)

ν (t) ≤ t (1 + εs)
(
β(s)

ν − β
(s)
ν−1

) (12)

Now introduce the sets N (s)
ν =

{
i ∈ N : α

(s)
ν−1 < α (i) ≤ α(s)

ν , as < i ≤ as+1

}
, ν =

1, 2s−1, s ∈ Z+, where the sequence as is chosen so that

a0 = 0, 2LTs ≤ as ≤
εs as+1

8L2
, s ∈ N, (13)

and the sets M (s)
ν =

{
i ∈ N : β

(s)
ν−1 < β (i) ≤ β(s)

ν , b
(s)
ζ(ν) < i ≤ b(s+1)

ν

}
, ν = 1, 2s−1,

s ∈ Z+ where ζ (ν) is equal to the integral part of
ν + 1

2
and the parameters b

(0)
1 =

0, b(s)
ν , ν = 1, 2s−1, s ∈ N, are chosen so that

∣∣∣N (s)
ν

∣∣∣ =
∣∣∣M (s)

ν

∣∣∣ =: K (ν, s) , ν = 1, 2s−1, s ∈ Z+. (14)

Represent the sets N (s)
ν , M (s)

ν in the form of increasing finite sequences: i
(ν,s)
k

and j
(ν,s)
k with k = 1, K (ν, s) and construct the bijection ρ : N → N by the

rule ρ
(
i
(ν,s)
k

)
:= j

(ν,s)
k , k = 1, K (ν, s), ν = 1, 2s−1, s ∈ Z+. Let us show that this is
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the desired mapping. Using (13), (14), (12), (11), one can easily check by induction
that

b(s)
ν ≥

as

2L
, ν = 1, 2s−1, s ∈ N. (15)

Let us check the conditions (i), (ii). Setting rs :=
1 + εs

1 − 2εs

, and applying (14), (12),

we obtain the inequalities

as

rs−1d
(s−1)
ζ(ν)

≤ b(s)
ν ≤

rs−1as

d
(s−1)
ζ(ν)

, ν = 1, 2s−1, s ∈ N. (16)

The counting functions for the finite sequences i
(ν,s)
k and j

(ν,s)
k , k = 1, K (ν, s) can

be written in the following form

p(s)
ν (t) = max

{
0, min

{
n(s)

ν (t) − n(s)
ν (as) , K (ν, s)

}}

q(s)
ν (t) = max

{
0, min

{
m(s)

ν (t) − m(s)
ν

(
b
(s)
ζ(ν)

)
, K (ν, s)

}} (17)

Due to (17), (12), (16), we obtain, for as < t ≤ as+1, the estimates

p(s)
ν (t) ≤ ((1 + εs) t − (1 − εs) as)

(
α(s)

ν − α
(s)
ν−1

)

≤


(1 + εs) t

d
(s)
ν

−
(1 − εs) b

(s)
ζ(ν)d

(s−1)
ζ(ν)

rs−1d
(s)
ν



(
β(s)

ν − β
(s)
ν−1

)

≤ m(s)
ν

(
h(s)

ν t

d
(s)
ν

)
− m(s)

ν

(
b
(s)
ζ(ν)

)
= q(s)

ν

(
h(s)

ν t

d
(s)
ν

)
,

(18)

where

h(s)
ν =

(1 + εs) rs−1 + 2L
∣∣∣(1 − εs) d

(s−1)
ζ(ν) − (1 + εs) rs−1d

(s)
ν

∣∣∣

(1 − εs) rs−1d
(s)
ν

. (19)

Analogously, we obtain the estimate:

q(s)
ν (t) ≤ p(s)

ν

(
g(s)

ν d(s)
ν t
)
, (20)

with

g(s)
ν =

(1 + εs) rs−1d
(s−1)
ζ(ν) d(s)

ν + 2L
∣∣∣(1 − εs) d(s)

ν − (1 + εs) rs−1d
(s−1)
ζ(ν)

∣∣∣

(1 − εs) rs−1d
(s−1)
ζ(ν)

. (21)

By Lemma 4 and (18), (20) we have

i
(ν,s)
k

g
(s)
ν

≤ d(s)
ν j

(ν,s)
k ≤ h(s)

ν i
(ν,s)
k (22)

for k = 1, K (ν, s); ν = 1, 2s−1; s ∈ N. Taking into account (11), the definitions of
the numbers h(s)

ν and g(s)
ν and (22), we obtain that there is a constant M independent

of ν and s such that p(s)
ν (t) ≤ q(s)

ν (Mt), q(s)
ν (t) ≤ p(s)

ν (Mt), t > 0.Thus, the mapping
ρ : N → N is constructed so that the condition (i) is fulfilled.

It remains to check the condition (ii). Take any subsequence (in) such that
α (in) → a ∈ (0, 1]. For every n we find s = s (n) , ν = ν (n) and k = k (n) such
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that in = i
(ν(n),s(n))
k(n) ∈ N

(s(n))
ν(n) .Then α

(s(n))
ν(n)−1 < α (in) ≤ α

(s(n))
ν(n) and α

(s(n))
ν(n) → a.By

the construction, ρ (in) ∈ M
(s(n))
ν(n) , therefore β

(s(n))
ν(n)−1 < β (ρ (in)) ≤ β

(s(n))
ν(n) . Hence, by

smoothness of σ, we have

lim
n→∞

β (ρ (in)) = σ (a) , lim
n→∞

d
(s(n))
ν(n) = lim

n→∞
d

(s(n)−1)
ς(ν(n)) = σ′ (a) . (23)

Then, taking into account (19), (21), (23), we conclude that lim
n→∞

h
(s(n))
ν(n) = lim

n→∞
g

(s(n))
ν(n)

= 1.Combining this with (22), (23), we obtain that i
(ν(n),s(n))
k(n) ∼ σ′ (a) j

(ν(n),s(n))
k(n) .

Hence the condition (ii) is also proved. The proof is complete. �

4 Proof of Theorem 7

Lemma 9. Let ϕ, ϕ̃ be two functions from N to (0, 1] with equidistributed values and
g : (0, 1] → R+ a decreasing continuous function such that g (ξ) → +∞ as ξ → 0.

Then Φ(n) (ϕ, g) = F
(
g (ϕ (i)) ,

(
i

1
n

))
is quasidiagonally isomorphic to Φ(n) (ϕ̃, g) =

F
(
g (ϕ̃ (i)) ,

(
i

1
n

))
.

Proof. Assume that the mapping σ in Lemma 8 is the identity. Then the bijection ρ :
N → N, constructed there, satisfies the condition i ≍ ρ (i) and for any subsequence
ik such that ϕ (ik) → α 6= 0 the conditions ϕ̃ (ρ (ik)) → α and ik ∼ ρ (ik) hold. Then,
by Proposition 3, the operator T : Φ(n) (ϕ, g) → Φ(n) (ϕ̃, g) defined by Tei = eρ(i),
i ∈ N, is a required isomorphism. �

Proof of Theorem 7. By Lemma 9, we assume that ϕ̃ = ϕ. Let us introduce
the functions G (α) :=

∫ α
0

dλ
(g(λ))n , G̃ (α) :=

∫ α
0

dλ

(g̃(λ))
n and choose q ∈ (0, 1) so that

G (q) < G̃ (1). Then q̃ := G̃−1 (G (q)) < 1 and the function σ := G̃−1 ◦G : [0, q] −→
[0, q̃] is continuous on [0, q], continuously differentiable on (0, q] and satisfies the
equation (4) and the condition σ (0) = 0. We extend the function σ to a bijection of
the interval [0, 1] onto itself preserving continuous differentiability and denote this
mapping by the same symbol σ. The constructed mapping meets the conditions
of Lemma 8, hence there is a bijection ρ : N → N satisfying the conditions (i),
(ii) of this lemma. Applying Proposition 3, one can easily check that a required
isomorphism can be realized as the quasidiagonal operator defined by Tei := eρ(i)

for 0 < ϕ (i) ≤ q, and by Tei :=
(
exp

(
g (ϕ (i)) i1/n − g̃ (ϕ (ρ (i)))

)
(ρ (i))1/n

)
eρ(i)

for the rest of i’s.
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