Integrability of homogeneous polynomials on the unit ball

Piotr Kot

Abstract

We construct some measure Θ^{α} such that if $0 < \alpha \le 2n - 2$, $\beta = n - \frac{2+\alpha}{2}$ and E is a circular set of type G_{δ} such that $E \subset \partial \mathbb{B}^n$ and $\Theta^{\alpha}(E) = 0$ then there exists $f \in \mathbb{O}(\mathbb{B}^n) \cap L^2(\mathbb{B}^n)$ such that

$$E = E^{\beta}(f) := \left\{ z \in \partial B^n : \int_{\mathbb{D}^z} |f|^2 \, \chi_{\beta} d\mathfrak{L}^2 = \infty \right\}$$

where $\chi_s: \mathbb{B}^n \ni z \longrightarrow \chi_s(z) = (1 - ||z||^2)^s$ and \mathbb{D} denotes the unit disc in \mathbb{C} .

1 Introduction

In the paper [6] a natural number K and a sequence $\{p_n\}_{n=0}^{\infty}$ of homogeneous polynomials in \mathbb{C}^d was constructed so that $|p_n(z)| \leq 2$ and $\sum_{j=Km}^{K(m+1)-1} |p_n(z)| \geq 0.5$ for all z belonging to the boundary of the unit ball $\partial \mathbb{B}^d$. In the paper [1] we introduced some additional arguments in such a way that for any circular set $E \subset \partial \mathbb{B}^d$ of type G_{δ} and F_{σ} we could construct a holomorphic function f on the unit ball \mathbb{B}^d such that $E^2_{\mathbb{B}^d}(f) = E$.

Let $\chi_s : \mathbb{B}^n \ni z \longrightarrow \chi_s(z) = (1 - ||z||^2)^s$. In the paper [3, Lemma 2.6, Theorem 2.7] we showed that there exists a constant C > 0 such that

$$\int_{\mathbb{D}z} |f|^2 \chi_{n-1} d\mathfrak{L}^2 \le C \int_{\mathbb{B}^n} |f|^2 d\mathfrak{L}^{2n}$$

Received by the editors August 2005.

Communicated by F. Brackx.

1991 Mathematics Subject Classification: 32A05, 32A35.

 $\it Key\ words\ and\ phrases$: homogeneous polynomials, exceptional sets, highly nonintegrable holomorphic functions.

for a holomorphic, square integrable function f. In particular $E^{n-1}(f) = \emptyset$. Due to the above inequality the following question can be posed: what additional conditions have to be fulfilled for the set E of type G_{δ} from $\partial \mathbb{B}^n$ so that there exists a holomorphic function f square integrable such that, for some 0 < s < n-1, $E = E^s(f) := \left\{z \in \partial B^n : \int_{\mathbb{D}z} |f|^2 \, \chi_s d\mathfrak{L}^2 = \infty \right\}$. In this paper we investigate this question.

Geometric notions. 1.1

Let X be a metric space with a pseudometric ρ . Assume that topology of X is given by countable base of open sets.

The set $E \subset X$ is ρ complete iff $\rho(z,w) > 0$ for $z \in E$ and $w \in X \setminus E$. If $D, T \subset X$ then we denote $\rho(D, T) := \inf_{z \in D, w \in T} \rho(z, w)$.

We say that τ is a premeasure on X iff $0 \le \tau(D) \le \infty$ for $D \subset X$. Moreover μ is a measure defined from premeasure τ on (X, ρ) iff

$$d_{\rho}(E) := \sup_{z,w \in E} \rho(z,w),$$

$$\mu_{\delta}(E) := \inf \left\{ \sum_{i \in \mathbb{N}} \tau(E_i) : E \subset \bigcup_{i \in \mathbb{N}} E_i, d_{\rho}(E_i) \le 2\delta, E_i = \overline{E_i} \subset X \right\},$$

$$\mu(E) := \sup_{\delta > 0} \mu_{\delta}(E)$$

for $E \subset X$.

If ρ is a norm on \mathbb{R}^n or \mathbb{C}^n then we write symbol Y in place of Y_{ρ} .

Observe that if H^{α} is a measure from $h^{\alpha}(\circ) = (d(\circ))^{\alpha}$ on \mathbb{R}^{n} , then H^{α} is a Hausdorff measure. We also denote \mathfrak{L}^n -n-dimensional Lebesgue measure on \mathbb{R}^n .

We denote $K_{\rho}(D,\varepsilon) := \{z \in X : \inf_{w \in D} \rho(z,w) < \varepsilon\}$ and $K_{\rho}(x,\varepsilon) = K_{\rho}(\{x\},\varepsilon)$ for $x \in X$. Now we define $s_{\rho\varepsilon}$ index of D as

$$s_{\rho\varepsilon}(D) := \inf \left\{ s : \{x_i\}_{i=1}^s \subset D \subset \sum_{i=1}^s K_{\rho}(x_i, \varepsilon) \subset X \right\}.$$

We say that X is (n, ρ, η) -regular if there exist constants $\kappa_1, \kappa_2, \varepsilon_0 > 0$, measure η constructed from some premeasure so that $\kappa_1 \varepsilon^n \leq \eta(K_\rho(x,\varepsilon)) \leq \kappa_2 \varepsilon^n$ for $x \in X$ and $0 < \varepsilon < \varepsilon_0$.

Now we can consider the following premeasure

$$\tau_{\rho}^{\alpha}(D) := \limsup_{\varepsilon \to 0} 2^{\alpha} \varepsilon^{\alpha} s_{\rho \varepsilon}(D).$$

If additionally X is (n, ρ, η) -regular then we consider the premeasure

$$\nu_{\rho\mu}^{\alpha}(D) := \limsup_{\varepsilon \to 0} 2^{\alpha} \varepsilon^{\alpha - n} \eta \left(K_{\rho}(D, \varepsilon) \right).$$

We also define measure Q^{α}_{ρ} from τ^{α}_{ρ} and $\Theta^{\alpha}_{\rho\mu}$ from $\nu^{\alpha}_{\rho\mu}$. We use the pseudometric $\rho(z,w) := \sqrt{1 - |\langle z,w \rangle|}$ and σ -(2n - 1)-dimensional, natural measure on $\partial \mathbb{B}^n$.

Definition 1.1. Let $T \subset \partial \mathbb{B}^n$ and C > 0. If $A = \{\xi_1, ..., \xi_s\} \subset T$ and $\rho(\xi_i, \xi_j) > \beta$ for $i \neq j$ then we say that A is β -separated subset of T. Let us define homogeneous polynomials for the pair (C, T) as:

$$p_m(z) = p_{m,A}(z) = \sum_{\xi \in A} \langle z, \xi \rangle^m$$

where $A \subset T$, A is $\frac{C}{\sqrt{N}}$ -separated subset of T and $N \leq m \leq 2N$.

2 $Q^{lpha}_{ ho}$ and $\Theta^{lpha}_{ ho\mu}$ measure

In this section we describe some basic properties of measures Q^{α}_{ρ} , $\Theta^{\alpha}_{\rho\mu}$. Let us define relation $y \in [x]$ iff $\rho(x,y) = 0$ and the metric space $X_{\sim} := \{[x] : x \in X\}$.

Lemma 2.1. We have the following properties:

- 1. If D is a closed subset of X_{\sim} then $H^{\alpha}_{\rho}(D) \leq \liminf_{\varepsilon \to 0} 2^{\alpha} \varepsilon^{\alpha} s_{\rho\varepsilon}(D) \leq \tau^{\alpha}_{\rho}(D)$.
- 2. If E is a Borel subset of X_{\sim} then $H_{\rho}^{\alpha}(E) \leq Q_{\rho}^{\alpha}(E)$.
- 3. If E is a Borel subset of X_{\sim} then E is H^{α}_{ρ} , Q^{α}_{ρ} and $\Theta^{\alpha}_{\rho\mu}$ measurable.

Proof. Observe that $H^{\alpha}_{\rho\varepsilon}(D) \leq 2^{\alpha}\varepsilon^{\alpha}s_{\rho\varepsilon}(D)$ for $\varepsilon > 0$. Therefore property (1) is clear

Let E be a Borel subset of X_{\sim} such that $Q_{\rho}^{\alpha}(E) < \infty$. Let $\delta, \varepsilon > 0$. There exists a sequence $\{K_i\}_{i\in\mathbb{N}}$ of closed subsets of X_{\sim} such that $E \subset \bigcup_{i\in\mathbb{N}} K_i$, $d_{\rho}(K_i) \leq 2\delta$ and $\sum_{i\in\mathbb{N}} \tau_{\rho}^{\alpha}(K_i) \leq Q_{\rho\delta}^{\alpha}(E) + \varepsilon$. We may estimate

$$H_{\rho}^{\alpha}(E) \leq H_{\rho}^{\alpha}\left(\bigcup_{i \in \mathbb{N}} K_{i}\right) \leq \sum_{i \in \mathbb{N}} H_{\rho}^{\alpha}(K_{i}) \leq \sum_{i \in \mathbb{N}} \tau_{\rho}^{\alpha}(K_{i}) \leq Q_{\rho\delta}^{\alpha}(E) + \varepsilon.$$

We conclude that $H^{\alpha}_{\rho}(E) \leq Q^{\alpha}_{\rho}(E)$.

Property (3) follows from [4, Theorem 19].

Lemma 2.2. Let X be (n, ρ, μ) -regular. There exists $\kappa_1, \kappa_2, \varepsilon_0 > 0$ such that:

- 1. If D is a closed subset of X_{\sim} then $\kappa_1 s_{\rho\varepsilon}(D) \leq \varepsilon^{-n} \mu(K_{\rho}(D,\varepsilon)) \leq \kappa_2 s_{\rho\varepsilon}(D)$ for $0 < 3\varepsilon < \varepsilon_0$.
- 2. If $\{K_i\}_{i\in\mathbb{N}}$ is a sequence of closed subsets of X_{\sim} such that $\rho(K_i, K_j) > 0$ for $i \neq j$ then $\nu_{\rho\mu}^n(\bigcup_{i\in\mathbb{N}} K_i) = \sum_{i\in\mathbb{N}} \nu_{\rho\mu}^n(K_i)$.
- 3. If D is a closed subset of X_{\sim} then $\kappa_1 \tau_{\rho}^{\alpha}(D) \leq \nu_{\rho\mu}^{\alpha}(D) \leq \kappa_2 \tau_{\rho}^{\alpha}(D)$ for $\alpha > 0$.
- 4. If E is a Borel subset of X_{\sim} then $\kappa_1 Q_{\rho}^{\alpha}(E) \leq \Theta_{\rho\mu}^{\alpha}(E) \leq \kappa_2 Q_{\rho}^{\alpha}(E)$ for $\alpha > 0$.
- 5. If E is a Borel subset of X_{\sim} then $\Theta_{\rho\mu}^n(E) \leq \kappa_2 H_{\rho}^n(E)$.

Proof. Due to X is (n, ρ, μ) -regular, there exists $\kappa_1, \kappa_2, \varepsilon_0 > 0$ such that $2^n \kappa_1 \le \varepsilon^{-n} \mu(K_{\rho}(x, \varepsilon)) \le 3^{-n} \kappa_2$ for $x \in X$ and $0 < \varepsilon < \varepsilon_0$. We denote $s = s_{\rho\varepsilon}(D)$. Let r be a maximal natural number such that there exist points $x_1, ..., x_r$ in D such that $\rho(x_i, x_j) \ge \varepsilon$ for $i \ne j$. Observe that $D \subset \bigcup_{i=1}^r K_{\rho}(x_i, \varepsilon)$. Therefore $s \le r$. Moreover $\bigcup_{i=1}^r K_{\rho}(x_i, \frac{\varepsilon}{2}) \subset K_{\rho}(D, \varepsilon)$. If $s = \infty$ then $r = \infty$ and $\mu(K_{\rho}(D, \varepsilon)) \ge \sum_{i=1}^\infty \mu(K_{\rho}(x_i, \frac{\varepsilon}{4})) = \infty$. Therefore we can assume that $s, r < \infty$.

There exist points $y_1, ..., y_s$ such that $\{y_i\}_{i=1}^s \subset D \subset \bigcup_{i=1}^s K_\rho(y_i, \varepsilon)$. We define the sequence i(1), ..., i(t) such that i(1) = 1 and i(k+1) is a minimal index such that $\rho(y_{i(k+1)}, y_{i(j)}) > \varepsilon$ for j = 1, ..., k. Observe that $t \leq s$. We prove that

$$D \subset \bigcup_{k=1}^{t} K_{\rho}(y_{i(k)}, 2\varepsilon).$$

Let $z \in D$. There exists $m \in \{1, ..., s\}$ such that $z \in K_{\rho}(y_m, \varepsilon)$. There exists maximal $k \leq t$ such that $i(k) \leq m$. If i(k) = m then $y \in K_{\rho}(y_{i(k)}, 2\varepsilon)$. If i(k) < m, then there exists an index $k_1 \leq k$ such that $\rho(y_m, y_{i(k_1)}) \leq \varepsilon$. In particular $\rho(z, y_{i(k_1)}) \leq \rho(z, y_m) + \rho(y_m, y_{i(k_1)}) < 2\varepsilon$. We conclude that $z \in K_{\rho}(y_{i(k_1)}, 2\varepsilon)$. Now we have

$$\bigcup_{k=1}^{r} K_{\rho}\left(x_{k}, \frac{\varepsilon}{2}\right) \subset K_{\rho}(D, \varepsilon) \subset \bigcup_{k=1}^{t} K_{\rho}(y_{i(k)}, 3\varepsilon).$$

Due to $\rho(x_i, x_j) \ge \varepsilon$ for $i \ne j$ we can estimate

$$\kappa_1 s \varepsilon^n \leq \sum_{k=1}^r \mu\left(K_\rho\left(x_k, \frac{\varepsilon}{2}\right)\right) \leq \mu\left(K_\rho(D, \varepsilon)\right) \leq \sum_{k=1}^t \mu\left(K_\rho\left(y_{i(k)}, 3\varepsilon\right)\right) \leq \kappa_2 s \varepsilon^n.$$

Now we prove (2). Observe that

$$\nu_{\rho\mu}^n(T) = \lim_{\varepsilon \to 0} \mu(K_{\rho}(T,\varepsilon)) = \mu(\overline{T}).$$

Moreover

$$\sum_{j < i \Rightarrow \rho(T_i, T_j) > 2\varepsilon} \mu\left(K_{\rho}\left(T_i, \varepsilon\right)\right) \leq \mu\left(K_{\rho}\left(\bigcup_{i \in \mathbb{N}} T_i, \varepsilon\right)\right) \leq \sum_{i \in \mathbb{N}} \mu\left(K_{\rho}\left(T_i, \varepsilon\right)\right).$$

In particular

$$\nu_{\rho\mu}^{n}\left(\bigcup_{i\in\mathbb{N}}T_{i}\right)=\sum_{i\in\mathbb{N}}\nu_{\rho\mu}^{n}\left(T_{i}\right).$$

The properties (3)-(4) are consequences of (1).

We prove (5). Let E be a Borel subset of X_{\sim} such that $H^n_{\rho}(E) < \infty$. Let $\delta, \varepsilon > 0$. There exists a sequence $\{K_i\}_{i \in \mathbb{N}}$ of closed subsets of X_{\sim} such that $E \subset \bigcup_{i \in \mathbb{N}} K_i$, $r_i := d_{\rho}(K_i) \leq 2\delta$ and $\sum_{i \in \mathbb{N}} r_i^n \leq H^n_{\rho\delta}(E) + \varepsilon$. There exists a sequence of points $\{x_i\}_{i \in \mathbb{N}}$ such that $K_i \subset K_{\rho}(x_i, 2r_i)$. In particular for δ small enough we may estimate $\Theta^n_{\rho\mu(8\delta)}(E) \leq \sum_{\in \mathbb{N}} \nu^n_{\rho\mu}(\overline{K_{\rho}(x_i, 2r_i)}) \leq \sum_{\in \mathbb{N}} \mu(\overline{K_{\rho}(x_i, 2r_i)}) \leq \sum_{i \in \mathbb{N}} 3^{-n}\kappa_2 2^n r_i^n \leq \kappa_2 H^n_{\rho\delta}(E) + \kappa_2 \varepsilon$. Now we conclude that $\Theta^n_{\rho\mu}(E) \leq \kappa_2 H^n_{\rho}(E)$.

Lemma 2.3. Let $0 < q < \frac{1}{2}$, $m \in \mathbb{N}$ and $\alpha_0 = \frac{-m \log 2}{\log q}$. If $E_0 := [0,1]^m \subset \mathbb{R}^m$, $E_{j+1} := ([0,q] \cup [1-q,1]) E_j$ and $E = \bigcap_{j \in \mathbb{N}} E_j$ then $H^{\alpha}(E) = Q^{\alpha}(E) = 0$ where $\alpha_0 < \alpha$. Moreover $H^{\alpha}(E) = Q^{\alpha}(E) = \infty$ for $0 < \alpha < \alpha_0$ and $2^{-2m} \le H^{\alpha_0}(E) \le Q^{\alpha_0}(E) \le \sqrt{m^{\alpha_0}}q^{-\alpha_0}$. Additionally E is $(\alpha_0, \|\circ\|, Q^{\alpha_0})$ regular.

Proof. Let ε be such that $\sqrt{m}q^k < 2\varepsilon < \sqrt{m}q^{k-1}$ for some k. Since E_k can be covered by 2^{mk} cubes with the edge equal to q^k therefore we may estimate: $2^{\alpha}\varepsilon^{\alpha}s_{\varepsilon}(D) \leq 2^{\alpha}\varepsilon^{\alpha}2^{mk} \leq \sqrt{m^{\alpha}}q^{-\alpha}(q^{\alpha}2^m)^k$.

If $\alpha_0 < \alpha \le m$ then $2^m q^{\alpha} < 1$ and $\tau^{\alpha}(E) = \liminf_{\varepsilon \to 0} 2^{\alpha} \varepsilon^{\alpha} s_{\varepsilon}(D) = 0$. In particular $Q^{\alpha}(E) = 0$ for $\alpha_0 < \alpha \le m$.

Observe that $2^m q^{\alpha_0} = 1$. Moreover E_k is the sum of 2^{mk} disjoint cubes $I_1, ..., I_{2^{mk}}$ with the edges equal to q^k . Due to $2^{mk} \tau^{\alpha_0}(E \cap I_s) = \tau^{\alpha_0}(E \cap E_k) = \tau^{\alpha_0}(E) \le \sqrt{m^{\alpha_0}} q^{-\alpha_0}$ we conclude that $Q^{\alpha_0}(E) \le \sqrt{m^{\alpha_0}} q^{-\alpha_0}$.

Let U be an open subset of \mathbb{R}^m . Let $f_n(U)$ be a number of cubes from E_n which intersects U. Let $g_n(U) = 2^{-nm} f_n(U)$. Observe that $f_{n+1}(U) \leq 2^m f_n(U)$ and $g_{n+1}(U) = 2^{-(n+1)m} f_{n+1}(U) \leq 2^{-nm} f_n(U) = g_n(U)$. Let $g(U) = \lim_{n \to \infty} g_n(U)$. If $[0,1]^m \subset U$ then g(U) = 1. Moreover $g(U \cup V) \leq g(U) + g(V)$.

Let I be an open cube with the edges equal to r < q. There exists $n \in \mathbb{N}$ such that $q^{n+1} \leq r < q^n$. Observe that $f_n(I) \leq 2^m$. In particular

$$q(I) < 2^{-nm} f_n(I) < 2^{-nm} 2^m < q^{\alpha_0 n} 2^m < q^{-\alpha_0} 2^m r^{\alpha_0}$$
.

Let $I_1, ..., I_s$ be a covering of E so that I_k is an open cube with the edges equal to r_k with $r_k < q$. We can estimate

$$\sum_{k=1}^{s} r_k^{\alpha_0} \ge q^{\alpha_0} 2^{-m} \sum_{k=1}^{s} g(I_k) \ge q^{\alpha_0} 2^{-m} g(\bigcup_{k=1}^{s} I_k) \ge q^{\alpha_0} 2^{-m} = 2^{-2m}.$$

Therefore $2^{-2m} \leq H^{\alpha_0}(E) \leq Q^{\alpha_0}(E)$ and $\infty = H^{\alpha}(E) \leq Q^{\alpha}(E)$ for $0 < \alpha < \alpha_0$.

Let $x \in E$ and $\varepsilon > 0$ be such that $0 < 2\varepsilon < q$. There exist $n, r \in \mathbb{N}$ such that $q^r < \varepsilon \le q^{r-1}$ and $q^{n+1} \le 2\varepsilon < q^n$. The set E_k is the sum of 2^{mk} disjoint, identical cubes $I_1^k, ..., I_{2^{mk}}^k$ with the edges equal to q^k . In particular $2^{nm}Q^{\alpha_0}(I_{i(k)}^n \cap E) = \sum_{i=1}^{2^{nm}} Q^{\alpha_0}(I_i^n \cap E) = Q^{\alpha_0}(E)$ for $k = 1, ..., 2^{nm}$. Due to $f_n(K(x, \varepsilon)) \le 2^m$ we conclude that there exist $I_{i(1)}^n, ..., I_{i(s)}^n$ cubes such that $K(x, \varepsilon) \cap E \subset \bigcup_{k=1}^s I_{i(k)}$ and $s \le 2^m$. Moreover there exists k_0 such that $I_{k_0}^r \cap E \subset K(x, \varepsilon) \cap E$. We may estimate

$$q^{\alpha_0}\varepsilon^{\alpha_0}\leq q^{\alpha_0r}=2^{-mr}\leq \frac{Q^{\alpha_0}(K(x,\varepsilon)\cap E)}{Q^{\alpha_0}(E)}\leq 2^{m-nm}=q^{\alpha_0(n-1)}\leq q^{-2\alpha}2^{\alpha_0}\varepsilon^{\alpha_0}.$$

We conclude that E is $(\alpha_0, \| \circ \|, Q^{\alpha_0})$ regular.

Lemma 2.4. Assume that $H^{\alpha}_{\rho}(U) = \infty$ for $0 < \alpha < m$ and all the open U non empty subsets of X. There exists a set $G \subset X$ of type G_{δ} such that $0 = H^{\alpha}_{\rho}(G) < Q^{\alpha}_{\rho}(G) = \infty$ for $0 < \alpha < m$.

Proof. Let $A = \{x_i\}_{i \in \mathbb{N}}$ be a countable and dense subset of X such that $x_{\lfloor i, j \rfloor} = x_{\lfloor i, 1 \rfloor}$ for all $i, j \in \mathbb{N}$. Let $U_i := \bigcup_{j=i}^{\infty} K_{\rho}\left(x_j, 2^{-j^2}\right)$ and $G = \bigcap_{i \in \mathbb{N}} U_i$. Let $\alpha > 0$ and $\delta, \varepsilon > 0$. Let j_0 be such that $\alpha(j^2 - 1) \geq j$, $2^{-j^2} < \delta$, $2^{-j+1} \leq \varepsilon$ for $j \geq j_0$. We may estimate

$$H^{\alpha}_{\rho\delta}(G) \le \sum_{j=j_0} 2^{-\alpha j^2 + \alpha} \le \sum_{j=j_0} 2^{-j} = 2^{-j_0+1} \le \varepsilon.$$

We now conclude that $H^{\alpha}_{\rho}(G) = 0$ for $\alpha > 0$.

Observe that $A \subset G$. Therefore $\overline{G} = X$. Suppose that $\tau_{\rho}^{\alpha_0}(G) < \infty$ for some $0 < \alpha_0 < m$. There exists a sequence $\{F_i\}_{i \in \mathbb{N}}$ of closed subsets of X such that $G \subset \bigcup_{i \in \mathbb{N}} F_i$ and $\sum_{i \in \mathbb{N}} \tau_{\rho}^{\alpha_0}(F_i) < \infty$. Moreover because G is of type G_{δ} there exists a sequence of closed sets $\{H_i\}_{i \in \mathbb{N}}$ with empty interiors such that $X \setminus G = \bigcup_{i \in \mathbb{N}} H_i$. Observe that:

$$X \subset X \setminus G \cup G \subset \bigcup_{i \in \mathbb{N}} H_i \cup \bigcup_{i \in \mathbb{N}} F_i.$$

Due to Bair's Theorem we conclude that there exists k such that interior of F_k is non empty. In particular due to Lemma 2.1 we conclude a contradiction $\infty = H_{\rho}^{\alpha_0}(F_k) \le \tau_{\rho}^{\alpha_0}(F_k)$.

Therefore
$$Q^{\alpha}_{\rho}(G) = \infty$$
 for $0 < \alpha < m$.

Lemma 2.5. There exists a compact E subset of \mathbb{R}^m which is uncountable and $Q^{\alpha}(E) = \tau^{\alpha}(E) = 0$ for $\alpha > 0$.

Proof. Let $E_0 := [0,1]^m \subset \mathbb{R}^m$, $E_{j+1} := ([0,4^{-j-1}] \cup [1-4^{-j-1},1]) E_j$ and $E = \bigcap_{j \in \mathbb{N}} E_j$. Let $\alpha > 0$ and $\sqrt{m} 2^{-k(k+1)} < 2\varepsilon \le \sqrt{m} 2^{-(k-1)k}$. Since E_k has 2^{mk} cubes with the edges equal to $\prod_{j=1}^k 4^{-j} = 2^{-k(k+1)}$ therefore we may estimate: $2^{\alpha} \varepsilon^{\alpha} s_{\varepsilon}(E) \le 2^{\alpha} \varepsilon^{\alpha} s_{\varepsilon}(E_k) \le 2^{\alpha} \varepsilon^{\alpha} 2^{mk} \le \sqrt{m^{\alpha}} 2^{mk - \alpha k(k-1)}$. Due to $\lim_{k \to \infty} mk - \alpha k(k-1) = -\infty$ we have $\tau^{\alpha}(E) = 0$. In particular $Q^{\alpha}(E) = 0$.

We prove that the set E is uncountable. Let U be an open set such that $U \cap E \neq \emptyset$. Observe that there exists $k \in \mathbb{N}$ such that $U \cap E_k \neq \emptyset$. Therefore there exists a sequence $\{x_n\}_{n\in\mathbb{N}} \subset U \cap E$ such that $x_i \neq x_j$ for $i \neq j$. We may conclude that if $x \in E$ then $\{x\}$ is a not open subset of E. Suppose that E is countable and there exists a sequence $\{w_n\}_{n\in\mathbb{N}} = E$. Due to Bair's Theorem the interior of $\{w_{n_0}\}$ in E is not empty for some n_0 . Therefore $\{w_{n_0}\}$ is an open subset of E which is impossible.

Lemma 2.6. Let X be a metric space with pseudometric ρ and \tilde{X} - metric space with the pseudometric $\tilde{\rho}$. Let $f: X \to \tilde{X}$ be a continuous function such that $c_1\rho(x,y) \le \tilde{\rho}(f(x), f(y)) \le c_2\rho(x,y)$ for $x, y \in X$ and some constants $c_1, c_2 > 0$. Then

- 1. $c_1^{\alpha} \tau_{\rho}^{\alpha}(D) \leq \tau_{\tilde{\rho}}^{\alpha}(f(D)) \leq c_2^{\alpha} \tau_{\rho}^{\alpha}(D) \text{ for } \alpha > 0 \text{ and } D \subset X.$
- $2. \ c_1^{\alpha}Q_{\rho}^{\alpha}(D) \leq Q_{\tilde{\rho}}^{\alpha}(f(D)) \leq c_2^{\alpha}Q_{\rho}^{\alpha}(D) \ \text{for} \ \alpha > 0 \ \ \text{and} \ D \subset X.$

Proof. Let $\{x_i\}_{i=1}^s \subset D$ be such that $D \subset \bigcup_{i=1}^s K_\rho(x_i, \varepsilon)$. Observe that $f(D) \subset \bigcup_{i=1}^s f(K_\rho(x_i, \varepsilon)) \subset \bigcup_{i=1}^s K_{\tilde{\rho}}(f(x_i), c_2\varepsilon)$. In particular $\tau_{\tilde{\rho}}^{\alpha}(f(D)) \leq c_2^{\alpha} \tau_{\tilde{\rho}}^{\alpha}(D)$.

Let $\{y_i\}_{i=1}^s \subset D$ be such that $f(D) \subset \bigcup_{i=1}^s K_{\tilde{\rho}}(f(y_i), c_1\varepsilon)$. Observe that $D \subset \bigcup_{i=1}^s f^{-1}(K_{\tilde{\rho}}(f(y_i), c_1\varepsilon)) \subset \bigcup_{i=1}^s K_{\rho}(y_i, \varepsilon)$. In particular $c_1^{\alpha} \tau_{\rho}^{\alpha}(D) \leq \tau_{\tilde{\rho}}^{\alpha}(f(D))$.

The property (2) follows directly from (1).

Lemma 2.7. Let M be k-dimensional, C^1 class submanifold of \mathbb{R}^m . Then $Q^{\alpha}(M) = 0$ for $k < \alpha$ and $Q^{\alpha}(M) = \infty$ for $0 < \alpha < k$.

Proof. Observe that M is a local graph of class C^1 function. Let $x \in M$. There exists an open, convex set U and C^1 function $f \in C^1(U)$ such that $\psi : \mathbb{R}^k \supset U \ni x \to (x, f(x)) \in M \subset \mathbb{R}^m$ and $x \in \psi(U) \subset M$. We can assume that f' is bounded on U. Observe that

$$||x - y|| \le ||\psi(x) - \psi(y)|| \le \sqrt{1 + ||f'||} ||x - y||.$$

Due to $H^{\alpha}(U) = \infty$ for $0 < \alpha < k$ and Lemma 2.1 we may conclude that $Q^{\alpha}(U) = \infty$ for $0 < \alpha < k$. Now due to Lemma 2.6 we have $\infty = Q^{\alpha}(\psi(U)) \leq Q^{\alpha}(M)$ for $0 < \alpha < k$. Moreover due to Lemma 2.2 $Q^{k}(U) < \infty$ and therefore $Q^{k}(\psi(U)) < \infty$ and $Q^{\alpha}(M) = 0$ for $k < \alpha$.

3 Homogeneous polynomials

In this section we consider $\rho(z,w) := \sqrt{1 - |\langle z,w \rangle|}$ and a natural (2n-1)-dimensional measure σ on $\partial \mathbb{B}^n$. Observe that $\partial \mathbb{B}^n$ is $(2n-2,\rho,\sigma)$ -regular. In fact there exist constants κ_1, κ_2 such that $\kappa_1 \varepsilon^{2n-2} \le \sigma(K_\rho(x,\varepsilon)) \le \kappa_2 \varepsilon^{2n-2}$ for $x \in \partial \mathbb{B}^n$ and $0 < \varepsilon < 1$. In particular $\nu_{\rho\sigma}^{\alpha}(\partial \mathbb{B}^n) = 0$ for $\alpha > 2n-2$.

Definition. Let us denote $\chi_s : \mathbb{B}^n \ni z \longrightarrow \chi_s(z) = (1 - ||z||^2)^s$ and

$$E^{s}(f) := \left\{ z \in \partial B^{n} : \int_{\mathbb{D}_{z}} |f|^{2} \chi_{s} d\mathfrak{L}^{2} = \infty \right\}.$$

Definition 3.1. Let $\alpha > 0$. A subset $A \subset \partial \mathbb{B}^n$ is called α -separated iff $\rho(z_1, z_2) > \alpha$ for different elements $z_1, z_2 \in A$.

Definition. Let a sequence of the pairs (i, j) be ordered according to the formula

$$\lfloor i, j \rfloor < \lfloor k, l \rfloor \Leftrightarrow \begin{cases} i + j < k + l & \text{gdy } i + j \neq k + l \\ i < k & \text{gdy } i + j = k + l \end{cases}$$

Lemma 3.2. Let C > 2. Assume that a set A is $\frac{C}{\sqrt{N}}$ -separated. For $z \in \partial \mathbb{B}^n$ we define

$$A_m(z) := \left\{ \xi \in A : \frac{mC}{2\sqrt{N}} \le \rho(z,\xi) \le \frac{(m+1)C}{2\sqrt{N}} \right\}.$$

Therefore for m=1,2,... a set $A_m(z)$ has up to $2^{n-1}(m+2)^{2n-2}$ elements. A set $A_0(z)$ has up to one element. Additionally $s \leq N^{n-1}$.

Proof. First part of the Lemma it is in fact the [6, Lemma 1]. To prove that $s \leq N^{n-1}$ we can estimate

$$s \frac{C^{2n-2}}{2^{2n-2}N^{n-1}} \le \sum_{j=1}^{s} \sigma(K_{\rho}(\zeta_j; \frac{C}{2\sqrt{N}})) \le 1$$

since the balls $B(\zeta_j; C/(2\sqrt{N}))$ are disjoint. Therefore we get $s \leq N^{n-1}$.

Lemma 3.3. [6, Lemma 2] If $A \subset \partial \mathbb{B}^n$ is α/\sqrt{N} -separated then for each $\beta > \alpha$ there exists an integer $K = K(\alpha, \beta)$ such that A can be partitioned into K disjoint β/\sqrt{N} -separated sets.

Proposition 3.4. We can estimate $\left(1+\frac{1}{x}\right)^x < e < \left(1+\frac{1}{x}\right)^{x+1}$ for $x \ge 1$.

Proof. For 0 < y < 1 we have the following inequality $y - \frac{y^2}{2} \le \ln(1+y) < y$. Let $f(x) = x \ln\left(1 + \frac{1}{x}\right)$ and $g(x) = (x+1) \ln\left(1 + \frac{1}{x}\right)$. We may estimate $f'(x) = \ln\left(1 + \frac{1}{x}\right) - \frac{1}{x+1} \ge \frac{1}{x} - \frac{1}{2x^2} - \frac{1}{x+1} = \frac{x^2 - x}{2x^3(x+1)} > 0$ for x > 1. Moreover $g'(x) = \ln\left(1 + \frac{1}{x}\right) - \frac{1}{x} < 0$ for x > 1. In particular $f(x) < f(\infty) = 1 = g(\infty) < g(x)$ for $x \ge 1$.

Theorem 3.5. There exists a constant C_0 such that $C_0 > 2$ and for all $C > C_0$, $\delta \in (0,1)$, $0 < \alpha \leq 2n-2$ there exists a natural number K = K(C) such that if T, D are compact, circular, disjoint subsets of $\partial \mathbb{B}^n$, such that $\nu^{\alpha}(T) < \infty$ then there exists $m_0 \in \mathbb{N}$ such that homogeneous polynomials for (C,T) fulfills properties:

1. $|p_m(z)| \leq 2$ for $z \in \partial \mathbb{B}^n$ and $m \in \mathbb{N}$.

2.

$$\int_{\partial \mathbb{B}^n} \left| p_m \right|^2 d\sigma \le \frac{6C^{2n} \left(\nu_{\rho\sigma}^{\alpha}(T) + \delta \right)}{m^{n - \frac{2+\alpha}{2}}}$$

for $m \geq m_0$.

- 3. $|p_m(z)| \le 2^{-\sqrt{Km}} \text{ for all } z \in D, m \ge m_0.$
- 4. For $\alpha \geq 0$, $Km \geq m_0$ and $z \in T$ we have $\sum_{j=Km}^{K(m+1)-1} j^{\alpha} |p_j(z)|^2 \geq \frac{(Km)^{\alpha}}{4}$

Proof. Let $\beta = n - \frac{2+\alpha}{2}$. There exist $M, \varepsilon_0 > 0$ such that $M - \delta \leq \nu_{\rho\sigma}^{\alpha}(T)$ and $\sigma(K_{\rho}(T,\varepsilon)) \leq M\varepsilon^{2\beta}$ for $\varepsilon \in (0,2\varepsilon_0)$. Denote $S := \partial \mathbb{B}^n \setminus K(T,\varepsilon_0)$. We may assume that ε_0 is so small that $D \subset S$.

Let $A = \{\xi_1, ..., \xi_s\}$ be $\frac{C}{\sqrt{N}}$ -separated subset of T. Let

$$A_j(z) = \left\{ \xi \in A : \frac{jC}{2\sqrt{N}} \le \rho(z,\xi) < \frac{(j+1)C}{2\sqrt{N}} \right\}.$$

There exists $C_0 > 0$ such that

$$\exp\left(-\left(\frac{jC}{2}\right)^2\right)(j+2)^{2n-2} \le \frac{1}{(j+2)^{2n}2^{j+n}}$$

for $C > C_0$ and $j \ge 1$.

Let N be so large that $\frac{C}{\sqrt{N}} \leq \varepsilon_0$ and $\rho(z, w) > \frac{1}{N^{0.1}}$ for $\xi \in A$, $w \in S$. Due to Lemma 3.2 we can estimate

$$|p_m(z)| \leq \sum_{\xi \in A} |\langle z, \xi_j \rangle|^m \leq \sum_{\xi \in A} \left(1 - \frac{1}{N^{0.2}}\right)^N \leq (2N)^{n-1} \left(1 - N^{0.2}\right)^{N^{0.2}N^{0.8}}$$

$$\leq 2^{-N^{0.8}} \leq 2^{-\sqrt{Km}} \leq \frac{\delta}{2m^{\beta}}$$

for $z \in S$, N high enough and $N \leq m \leq 2N$. We have proved the property (3). Moreover we may estimate

$$\int_{S} |p_m(z)|^2 \le \int_{S} \frac{\delta}{2m^{\beta}} \le \frac{\delta}{2m^{\beta}} \le \frac{MC^{2n}}{m^{\beta}}.$$

Let us denote

$$B_0 := K_{\rho} \left(T, \frac{C}{2\sqrt{N}} \right)$$

$$B_{k+1} := K_{\rho} \left(T, \frac{(k+2)C}{2\sqrt{N}} \right) \setminus B_k.$$

If $z \in B_{k+1}$ then $\rho(z, w) \geq \frac{(k+1)C}{2\sqrt{N}}$ for $w \in T$. In particular $A_j(z) = \emptyset$ for $j \leq k$. There exists $N_1 \in \mathbb{N}$ such that $K(T, \varepsilon_0) \subset \bigcup_{k=0}^{N_1} B_k \subset K(T, 2\varepsilon_0)$. We may estimate

$$|p_{m}(z)| \leq \sum_{\xi \in A} |\langle z, \xi \rangle|^{m} \leq \sum_{j=0}^{\infty} \sum_{\xi \in A_{j}(z)} |\langle z, \xi \rangle|^{m}$$

$$\leq \sum_{j=0}^{\infty} \sum_{\xi \in A_{j}(z)} \left(1 - \frac{j^{2}C^{2}}{4N}\right)^{N} \leq \sum_{j=0}^{\infty} \sum_{\xi \in A_{j}(z)} \exp\left(-\frac{j^{2}C^{2}}{4}\right)$$

$$\leq \sum_{j=0}^{\infty} \#A_{j}(z) \exp\left(-\frac{j^{2}C^{2}}{4}\right)$$

$$\leq 1 + \sum_{j=1}^{\infty} 2^{n-1} (j+2)^{2n-2} \exp\left(-\frac{j^{2}C^{2}}{4}\right) \leq 1 + \sum_{j=1}^{\infty} 2^{-j-1} \leq 2$$

for $z \in \partial \mathbb{B}^n$ and now we have the property (1). Moreover

$$|p_m(z)| \le \sum_{j=k}^{\infty} 2^{n-1} (j+2)^{2n-2} \exp\left(-\frac{j^2 C^2}{4}\right) \le \sum_{j=k}^{\infty} (j+2)^{-2n} 2^{-j-1} \le \frac{1}{(k+2)^{2n} 2^k}$$

for $z \in B_k$ and $k \ge 1$. Observe that

$$\sigma(B_k) \le M \left(\frac{(k+1)C}{2\sqrt{N}} \right)^{2\beta} \le M \frac{(k+1)^{2n}C^{2n}}{2^{2\beta}N^{\beta}} \le M \frac{(k+1)^{2n}C^{2n}}{2^{\beta}m^{\beta}}$$

for $k \geq 0$, $N \leq m \leq 2N$. We can estimate

$$\int_{K_{\rho}(T,\varepsilon_{0})} |p_{m}|^{2} d\sigma \leq \sum_{k=0}^{N_{1}} \int_{B_{k}} |p_{m}|^{2} d\sigma \leq 4\sigma(B_{0}) + \sum_{k=1}^{N_{1}} \sigma(B_{k})(k+2)^{-2n} 2^{-2k}
\leq \frac{4MC^{2n}}{m^{\beta}} + \sum_{k=1}^{\infty} \frac{MC^{2n}}{m^{\beta} 2^{2k}} \leq \frac{5MC^{2n}}{m^{\beta}}.$$

In particular we may prove the property (2):

$$\int_{\partial \mathbb{B}^n} |p_m|^2 d\sigma \leq \int_{K_{\rho}(T,\varepsilon_0)} |p_m|^2 \sigma + \int_{S} |p_m|^2 \sigma \leq \frac{6MC^{2n}}{m^{\beta}}$$

$$\leq \frac{6C^{2n} \left(\nu^{\alpha}(T) + \delta\right)}{m^{\beta}}.$$

Now we prove the property (4).

Let $K = K(\alpha, \beta)$ be from Lemma 3.3 for $\alpha = 0.25$ and $\beta = C$. For N = Km fix a maximal $1/(4\sqrt{N})$ -separated subset $B \subset T$. Using Lemma 3.3 we can divide B into at least K disjoint C/\sqrt{N} -separated subsets $B_0, B_1, ..., B_{K-1}$. We define

$$p_{Km+j}(z) := \sum_{\xi \in B_j} \langle z, \xi \rangle^{Km+j}$$

for j = 0, 1, ..., K - 1. There exists $C_0 > 0$ such that

$$\exp\left(-\left(\frac{kC}{2}\right)^{2}\right)k^{2n}2^{3n} \le \frac{1}{2^{k+3}}$$

for $C > C_0$ and $k \ge 1$.

Let

$$A_{i,j}(z) = \left\{ \xi \in B_i : \frac{jC}{2\sqrt{N}} \le \rho(z,\xi) < \frac{(j+1)C}{2\sqrt{N}} \right\}.$$

Due to Lemma 2.2 $\#A_{i,0} = 0$ and $\#A_{i,j} \le 2^{n-1}(j+2)^{2n-2}$

Due to Proposition 3.4 we have $\left(1 - \frac{1}{x+1}\right)^x > e^{-1} > \left(1 - \frac{1}{x+1}\right)^{x+1}$ for $x \ge 1$. Let $\xi \in B_j$. Let k_N be a maximal possible natural number such that $\frac{k_N^2 C^2}{4N} \leq \frac{1}{2}$. If $z \in K_{\rho}\left(\xi, \frac{1}{4\sqrt{N}}\right)$ then we may estimate:

$$|p_{Km+j}(z)| \geq |\langle z, \xi \rangle|^{Km+j} - \sum_{\eta \in B_j \setminus \{\xi\}} |\langle z, \eta \rangle|^{Km+j}$$

$$\geq \left(1 - \frac{1}{16N}\right)^{Km+j} - \sum_{k=1}^{k_N} \left(1 - \frac{k^2 C^2}{4N}\right)^N 2^n (k+2)^{2n} - 2^{-N} N^n$$

$$\geq \left(1 - \frac{1}{16N}\right)^{2N} - \sum_{k=1}^{\infty} \exp\left(-\left(\frac{kC}{2}\right)^2\right) k^{2n} 2^{3n} - 2^{-N} N^n$$

$$\geq \exp\left(\frac{-2N}{16N-1}\right) - 2^{-N} N^n - \sum_{k=1}^{\infty} 2^{-k-3} \geq \frac{1}{2}$$

for $m_0 \le N \le m \le 2N$ and m_0 high enough. Since $B = \bigcup_{l=0}^{K-1} B_l$ is a maximal $1/(4\sqrt{N})$ -separated subset of T we conclude that

$$\bigcup_{j=0}^{K-1} \bigcup_{\xi \in B_j} K_{\rho}\left(\xi; \frac{1}{4\sqrt{N}}\right) = \bigcup_{\xi \in B} K_{\rho}\left(\xi; \frac{1}{4\sqrt{N}}\right) \supset T$$

and from this follows that

$$\sum_{j=Km}^{K(m+1)-1} j^{\alpha} |p_j(z)|^2 \ge \frac{(Km)^{\alpha}}{4} \text{ for all } z \in T, m > m_0.$$

Now we are ready to prove our first, main result.

Theorem 3.6. Let $0 < \alpha \leq 2n-2$. Let T be a compact, circular subset of $\partial \mathbb{B}^n$ such that $\nu_{\rho\sigma}^{\alpha}(T) = 0$. There exists $f \in \mathbb{O}(\mathbb{B}^n) \cap L^2(\mathbb{B}^n)$ such that $T = E^{\beta}(f)$ and $E^{\beta+\varepsilon}(f) = \emptyset$ for $\beta = n - \frac{2+\alpha}{2}$, $\varepsilon > 0$

Proof. Let D_j be a sequence of compact, circular subsets of $\partial \mathbb{B}^n$ such that $D_j \cap T = \emptyset$, $D_j \subset D_{j+1}$ and $T = \bigcup_{j \in \mathbb{N}} D_j$. Due to Theorem 3.5 there exist numbers C, M > 0, a sequence of natural number $\{m_j\}_{j \in \mathbb{N}}$ and s sequence of polynomials $\{p_m\}_{m \in \mathbb{N}}$ such that

- 1. $m_i \ge 2^j$ and $K(m_i + 1) \le Km_{i+1}$
- 2. p_m is a homogeneous polynomial of degree m.
- 3. $\sum_{k \in I(i)} |p_k(z)|^2 \ge \frac{1}{4}$ for $z \in T$ and

$$I(i) := \{ m \in \mathbb{N} : Km_i \le m \le K(m_i + 1) - 1 \}.$$

- 4. $|p_m(z)| \leq 2$ for $z \in \partial \mathbb{B}^n$ and $m \in \mathbb{N}$.
- 5. $\int_{\partial \mathbb{R}^n} |p_m|^2 d\sigma \leq MC^{2n} 2^{-j} m^{-\beta}$ for $m \in I(j)$.
- 6. $|p_m(z)| \le 2^{-j}$ for all $z \in D_j$, $m \in I(j)$

Let

$$f := \sum_{j=1}^{\infty} \sum_{k \in I(j)} \sqrt{k^{1+\beta}} p_k.$$

There exists a constant c_1 such that

$$c_{1} \int_{\mathbb{B}^{n}} |f|^{2} d\mathfrak{L}^{2n} \leq \sum_{j=1}^{\infty} \sum_{k \in I(j)} k^{1+\beta} \int_{\partial \mathbb{B}^{n}} \frac{1}{k+1} \int_{0}^{1} |p_{k}(tw)|^{2} dt d\sigma(w)$$

$$\leq \sum_{j=1}^{\infty} \sum_{k \in I(j)} \frac{k^{1+\beta}}{2k+1} \int_{\partial \mathbb{B}^{n}} |p_{k}|^{2} d\sigma$$

$$\leq \sum_{j=1}^{\infty} \sum_{k \in I(j)} \frac{k^{\beta} M C^{2n} 2^{-j}}{2k^{\beta}} = \sum_{j=1}^{\infty} K M C^{2n} 2^{-j-1} < \infty.$$

There exist constants $c_2, c_3 > 0$ such that

$$\frac{c_2}{(k+1)^{\beta+1}} \le \int_0^1 t^{2k+1} (1-t^2)^{\beta} = 2 \frac{(k+1)!(k+1)^{\beta}}{(k+1)(k+1)^{\beta} \prod_{j=1}^{k+1} (\beta+j)} \le \frac{c_3}{(k+1)^{\beta+1}}.$$

Therefore we can estimate

$$\int_{\mathbb{D}z} |f|^2 \chi_{\beta} d\mathfrak{L}^2 \geq \pi \sum_{j=1}^{\infty} \sum_{k \in I(j)} k^{1+\beta} \int_0^1 |p_k(tz)|^2 t (1-t^2)^{\beta} dt$$

$$\geq \pi c_2 \sum_{j=1}^{\infty} \sum_{k \in I(j)} \frac{k^{1+\beta}}{(k+1)^{\beta+1}} |p_k(z)|^2 = \infty$$

for $z \in T$. Moreover if $z \in \partial \mathbb{B}^n \setminus T$ then there exists a constant $c_4 = c_4(z) < \infty$ and j_0 such that $z \in D_j$ for $j \geq j_0$ and:

$$\int_{\mathbb{D}z} |f|^2 \chi_{\beta} d\mathfrak{L}^2 \leq \pi c_2 \sum_{j=1}^{\infty} \sum_{k \in I(j)} \frac{k^{1+\beta}}{(k+1)^{\beta+1}} |p_k(z)|^2$$

$$\leq c_4(z) + \pi c_2 \sum_{j=j_0}^{\infty} \sum_{k=\in I(j)} 2^{-j} < \infty.$$

We have proved that $T = E^{\beta}(f)$. Now let $\varepsilon > 0$. Then

$$\int_{\mathbb{D}z} |f|^2 \chi_{\beta+\varepsilon} d\mathfrak{L}^2 \leq \pi c_2 \sum_{j=1}^{\infty} \sum_{k \in I(j)} \frac{k^{1+\beta}}{(k+1)^{\beta+\varepsilon+1}} |p_k(z)|^2$$

$$\leq \pi c_2 \sum_{j=1}^{\infty} \sum_{k=\varepsilon I(j)} \frac{4}{(K2^j)^{\varepsilon}} < \infty.$$

for all $z \in \partial \mathbb{B}^n$. From this follows that $E^{\beta+\varepsilon}(f) = \emptyset$ for $\varepsilon > 0$.

Lemma 3.7. Let U be an open, circular set and K be a compact, circular set such that $\nu_{\rho\sigma}^{\alpha}(K) < \infty$, $U, K \subset \partial \mathbb{B}^n$. Then there exists a sequence $\{T_i\}_{i \in \mathbb{N}}$ of compact, circular sets such that

- 1. $U \cap K = \bigcup_{i \in \mathbb{N}} T_i$.
- 2. If $T_i \cap T_j \neq \emptyset$ then |i-j| < 2.
- 3. $\sum_{i=1}^{\infty} \nu_{\rho\sigma}^{s}(T_i) = 0 \text{ for } s > \alpha.$

Proof. Let

$$T_{-1} := \left\{ z \in K \cap U : \inf_{w \in \partial U} \rho(z, w) \ge 1 \right\}$$

$$T_{i} := \left\{ z \in K \cap U : 2^{-i-1} \le \inf_{w \in \partial U} \rho(z, w) \le 2^{-i} \right\}.$$

Observe that $U \cap K = \bigcup_{i \in \mathbb{N}} T_i$ and $T_i \cap T_j = \emptyset$ when $|i - j| \ge 2$. Moreover $\nu_{\rho\sigma}^{\alpha}(T_i) \le \nu_{\rho\sigma}^{\alpha}(K)$ and therefore $\nu^{s}(T_i) = 0$ for $s > \alpha$.

Theorem 3.8. Let $0 < \alpha < 2n-2$ and $\beta = n - \frac{2+\alpha}{2}$. Let E be a circular set of type G_{δ} such that $E \subset \partial \mathbb{B}^n$ and $\Theta^s_{\rho\sigma}(E) = 0$ for $s > \alpha$. There exists $f \in \mathbb{O}(\mathbb{B}^n) \cap L^2(\mathbb{B}^n)$ such that $E^{\beta}(f) = \emptyset$ and $E = E^s(f)$ for $0 \le s < \beta$.

Proof. Let $\alpha_i = \alpha + \frac{1}{i+2}(2n-2-\alpha)$ and $\beta_i = n - \frac{2+\alpha_i}{2}$. There exists a sequence $\{U_i\}_{i\in\mathbb{N}}$ of open, circular subsets of $\partial\mathbb{B}^n$ such that $E = \bigcap_{i=1}^\infty U_i$ and $U_{i+1} \subset U_i$. There exists a sequence $\{S_i\}_{i\in\mathbb{N}}$ of compact, circular subsets of $\partial\mathbb{B}^n$ such that $E \subset \bigcup_{j\in\mathbb{N}} S_{\lfloor i,j \rfloor}$ and $\sum_{j\in\mathbb{N}} \nu_{\rho\sigma}^{\alpha_{\lfloor i,j \rfloor}-1}(S_{\lfloor i,j \rfloor}) \leq 2^{-i}$. We denote $\lfloor i,j,k \rfloor := \lfloor \lfloor i,j \rfloor,k \rfloor$. Due to Lemma 3.7 there exists a sequence $\{T_i\}_{i\in\mathbb{N}}$ of compact, circular subsets of $\partial\mathbb{B}^n$ such that

1.
$$T_{\lfloor i,j,k \rfloor} \subset U_{\lfloor i,j \rfloor}$$
.

2.
$$S_{\lfloor i,j \rfloor} \cap U_{\lfloor i,j \rfloor} = \bigcup_{k \in \mathbb{N}} T_{\lfloor i,j,k \rfloor}$$
.

3.
$$T_{|i,j,k|} \cap T_{|i,j,l|} = \emptyset$$
 when $|l - k| \ge 2$.

4.
$$\nu_{\rho\sigma}^{\alpha_{\lfloor i,j,k\rfloor}}(T_{\lfloor i,j,k\rfloor})=0.$$

Let $T_{-1} = \emptyset$ and

$$D_{\lfloor i,j,k\rfloor} = \overline{\partial \mathbb{B}^n \setminus \left(T_{\lfloor i,j,k-1\rfloor} \cup T_{\lfloor i,j,k\rfloor} \cup T_{\lfloor i,j,k+1\rfloor} \right)}$$

for $i, j, k \in \mathbb{N}$. Observe that $D_{\lfloor i, j, k \rfloor} \cap T_{\lfloor i, j, k \rfloor} = \emptyset$. Therefore due to Theorem 3.5 there exists a number C > 0, a sequence of natural number $\{m_j\}_{j \in \mathbb{N}}$ and a sequence of polynomials $\{p_m\}_{m \in \mathbb{N}}$ such that

1.
$$m_j^{\beta-\beta_j} \ge 2^j$$
 and $K(m_j + 1) \le K m_{j+1}$

2. p_m is a homogeneous polynomial of degree m.

3.
$$\sum_{m \in I(i,j,k)} |p_m(z)|^2 \ge \frac{1}{4}$$
 for $z \in T_{\lfloor i,j,k \rfloor}$ and

$$I(i,j,k) := \left\{ l \in \mathbb{N} : Km_{\lfloor i,j,k \rfloor} \le l \le K(m_{\lfloor i,j,k \rfloor} + 1) - 1 \right\}.$$

4.
$$|p_m(z)| \leq 2$$
 for $z \in \partial \mathbb{B}^n$ and $m \in \mathbb{N}$.

5.
$$\int_{\partial \mathbb{R}^n} |p_m|^2 d\sigma \le 6C^{2n} 2^{-\lfloor i,j,k\rfloor} m^{-\beta_{\lfloor i,j,k\rfloor}}$$
 for $m \in I(i,j,k)$.

6.
$$|p_m(z)| \leq 2^{-\sqrt{m}}$$
 for all $z \in D_{\lfloor i,j,k \rfloor}$, $m \in I(i,j,k)$

Let

$$f := \sum_{i,j \in \mathbb{N}} \sum_{m \in I(i,j,k)} \sqrt{m^{1+\beta_{\lfloor i,j,k \rfloor}}} p_m.$$

We denote

$$\phi(f,z,s) := \int_{\mathbb{D}z} |f|^2 \, \chi_s d\mathfrak{L}^2.$$

There exists a constant $c_1 > 0$ such that

$$c_{1} \int_{\mathbb{B}^{n}} |f|^{2} d\mathfrak{L}^{2n} \leq \sum_{i,j,k \in \mathbb{N}} \sum_{m \in I(i,j,k)} m^{1+\beta_{\lfloor i,j,k \rfloor}} \int_{\partial \mathbb{B}^{n}} \frac{1}{m+1} \int_{0}^{1} |p_{m}(tw)|^{2} dt d\sigma(w)$$

$$\leq \sum_{i,j,k \in \mathbb{N}} \sum_{m \in I(i,j,k)} \frac{m^{1+\beta_{\lfloor i,j,k \rfloor}}}{2m+1} \int_{\partial \mathbb{B}^{n}} |p_{m}|^{2} d\sigma$$

$$\leq \sum_{i,j,k \in \mathbb{N}} \sum_{m \in I(i,j,k)} \frac{m^{\beta_{\lfloor i,j,k \rfloor}} 6C^{2n} 2^{-\lfloor i,j,k \rfloor}}{2m^{\beta_{\lfloor i,j,k \rfloor}}} \leq 3C^{2n} \sum_{i \in \mathbb{N}} 2^{-i} < \infty.$$

Let $0 \le s < \beta$. We can use the similar arguments as in [3, Lemma 2.1,2.3] to conclude that there exist constants $c_2, c_3 > 0$ such that

$$\frac{c_2}{\pi(k+1)^{r+1}} \le \int_0^1 t^{2k+1} (1-t^2)^r = 2 \frac{(k+1)!(k+1)^r}{(k+1)(k+1)^r \prod_{j=1}^{k+1} (r+j)} \le \frac{c_3}{\pi(k+1)^{r+1}}$$

for $0 \le r < \beta$. Moreover

$$\begin{split} \sum_{i,\,j,\,k\,\in\,\mathbb{N}} \quad 1 \geq \quad & \sum_{i,\,j\,\in\,\mathbb{N}} \quad 1 = \infty. \\ z \in T_{\lfloor i,j,k \rfloor} \qquad & \beta_{\lfloor i,j,k \rfloor} > s \\ z \in S_{\lfloor i,j \rfloor} \cap U_{\lfloor i,j \rfloor} \end{split}$$

We may estimate

$$\phi(f, z, s) \geq \pi \sum_{i,j,k \in \mathbb{N}} \sum_{m \in I(i,j,k)} m^{1+\beta_{\lfloor i,j,k \rfloor}} \int_{0}^{1} |p_{m}(tz)|^{2} t (1-t^{2})^{s} dt$$

$$\geq c_{2} \sum_{\substack{i,j,k \in \mathbb{N} \\ \beta_{\lfloor i,j,k \rfloor} > s \\ z \in T_{\lfloor i,j,k \rfloor}}} \sum_{m \in I(i,j,k)} \frac{m^{1+\beta_{\lfloor i,j,k \rfloor}}}{(m+1)^{1+s}} |p_{m}(z)|^{2} = \infty$$

for $z \in E$. Let now $z \in \partial \mathbb{B}^n \setminus E$. There exists a minimal $\eta(z) \in \mathbb{N}$ such that $z \in \partial \mathbb{B}^n \setminus U_{\lfloor i,j \rfloor}$ for $\lfloor i,j \rfloor \geq \eta(z)$. Observe that $z \in U_{\lfloor i,j \rfloor}$ for $\lfloor i,j \rfloor < \eta$. In particular there exists $k_{i,j}$ such that $z \in T_{\lfloor i,j,k_{i,j} \rfloor}$ for $\lfloor i,j \rfloor < \eta(z)$. Let

$$J(\eta(z)) := \{(i, j, l) : \lfloor i, j \rfloor < \eta(z), |l - k_{i,j}| \le 1\}.$$

Observe that $\#J(\eta(z)) \leq 3\eta(z)$. If $(i,j,k) \notin J(\eta(z))$ then $z \in D_{\lfloor i,j,k \rfloor}$. Therefore we may estimate:

$$c_{3}^{-1}\phi(f,z,s) \leq \sum_{i,j,k\in\mathbb{N}} \sum_{m\in I(i,j,k)} \frac{m^{\beta\lfloor i,j,k\rfloor+1}}{(m+1)^{s+1}} |p_{m}(z)|^{2}$$

$$\leq \sum_{(i,j,k)\in J(\eta(z))} m^{\beta} |p_{m}(z)|^{2} + \sum_{(i,j,k)\notin J(\eta(z))} m^{\beta} |p_{m}(z)|^{2}$$

$$m \in I(i,j,k) \qquad m \in I(i,j,k)$$

$$\leq \sum_{(i,j,k)\in J(\eta(z))} 4m^{\beta} + \sum_{(i,j,k)\notin J(\eta(z))} Km^{\beta} 2^{-2\sqrt{m}} < \infty.$$

$$(i,j,k)\in J(\eta(z)) \qquad (i,j,k)\notin J(\eta(z))$$

$$m \in I(i,j,k) \qquad m \in I(i,j,k)$$

We have proved that $E = E^s(f)$. Moreover

$$\phi(f, z, \beta) \leq c_3 \sum_{\substack{i, j, k \in \mathbb{N} \\ m \in I(i, j, k)}} m^{\beta \lfloor i, j, k \rfloor - \beta} |p_m(z)|^2$$

$$\leq 4c_3 \sum_{\substack{i, j, k \in \mathbb{N} \\ m \in I(i, j, k)}} \frac{1}{\left(Km_{\lfloor i, j, k \rfloor}\right)^{\beta - \beta \lfloor i, j, k \rfloor}} \leq 4Kc_3 \sum_{\substack{i, j, k \in \mathbb{N} \\ i, j, k \in \mathbb{N}}} 2^{-\lfloor i, j, k \rfloor} < \infty.$$

for all $z \in \partial \mathbb{B}^n$. We conclude that $E^{\beta}(f) = \emptyset$.

Lemma 3.9. Let U be an open, circular subset of $\partial \mathbb{B}^n$. Let M be a compact, circular subset of $\partial \mathbb{B}^n$ and η a probability measure on M, such that M is (α, ρ, η) -regular. There exists a constant c > 0 such that if K is a compact, circular set such that $\nu_{\rho\sigma}^{\alpha}(K) < \infty$, $K \subset M$ then there exists a sequence $\{T_i\}_{i\in\mathbb{N}}$ of compact, circular sets such that

- 1. $U \cap K = \bigcup_{i \in \mathbb{N}} T_i$.
- 2. If $T_i \cap T_j \neq \emptyset$ then |i-j| < 2.
- 3. $\sum_{i=1}^{\infty} \nu_{o\sigma}^{\alpha}(T_i) \leq c \nu_{o\sigma}^{\alpha}(K).$

Proof. Observe that $\partial \mathbb{B}^n$ is $(2n-2, \rho, \sigma)$ -regular. Due to Lemma 2.2 there exist constants $c_1, c_2 > 0$ such that $c_1^{-1}\nu_{\rho\sigma}^{\alpha}(K) \leq \nu_{\rho\eta}^{\alpha}(K) \leq c_2\nu_{\rho\sigma}^{\alpha}(K)$ for a closed, circular K subset of M. We denote

$$T_0 := \left\{ z \in K \cap U : \inf_{w \in \partial U} \rho(z, w) \ge 1 \right\}$$

$$T_{i+1} := \left\{ z \in K \cap U : 2^{-i-1} \le \inf_{w \in \partial U} \rho(z, w) \le 2^{-i} \right\}.$$

Observe that $U \cap K = \bigcup_{i \in \mathbb{N}} T_i$ and $\rho(T_i, T_j) > 0$ when $|i - j| \ge 2$. We may estimate

$$\sum_{i=0}^{\infty} \nu_{\rho\eta}^{\alpha}(T_{2i}) + \sum_{i=0}^{\infty} \nu_{\rho\eta}^{\alpha}(T_{2i+1}) = \nu_{\rho\eta}^{\alpha} \left(\bigcup_{i=0}^{\infty} T_{2i}\right) + \nu_{\rho\eta}^{\alpha} \left(\bigcup_{i=0}^{\infty} T_{2i+1}\right) \le 2\nu_{\rho\eta}^{\alpha} \left(\bigcup_{i=0}^{\infty} T_{i}\right).$$

In particular

$$\begin{split} \sum_{i=1}^{\infty} \nu_{\rho\sigma}^{\alpha}(T_{i}) & \leq c_{1} \sum_{i=1}^{\infty} \nu_{\rho\eta}^{\alpha}(T_{i}) \leq 2c_{1} \nu_{\rho\eta}^{\alpha} \left(\bigcup_{i=0}^{\infty} T_{i} \right) \\ & \leq 2c_{1} \nu_{\rho\eta}^{\alpha} \left(\overline{\bigcup_{i=0}^{\infty} T_{i}} \right) \leq 2c_{1} c_{2} \nu_{\rho\sigma}^{\alpha} \left(\overline{\bigcup_{i=0}^{\infty} T_{i}} \right) \leq 2c_{1} c_{2} \nu_{\rho\sigma}^{\alpha} \left(K \right). \end{split}$$

Theorem 3.10. Let $0 < \alpha \le 2n - 2$ and $\beta = n - \frac{2+\alpha}{2}$. Let E be a circular set of type G_{δ} such that $E \subset \partial \mathbb{B}^n$ and $\Theta^{\alpha}_{\rho\sigma}(E) = 0$. Assume that there exists M - a compact, circular subset of $\partial \mathbb{B}^n$ and η a probability measure on M, such that M is (α, ρ, η) -regular and $E \subset M$. There exists $f \in \mathbb{O}(\mathbb{B}^n) \cap L^2(\mathbb{B}^n)$ such that $E^{\beta}(f) = E$ and $E^s(f) = \emptyset$ for $s > \beta$.

Proof. Let c>0 be a constant from Lemma 3.9. There exists a sequence $\{U_i\}_{i\in\mathbb{N}}$ of open, circular subsets of $\partial\mathbb{B}^n$ such that $E=\bigcap_{i=1}^\infty U_i$ and $U_{i+1}\subset U_i$. There exists a sequence $\{S_i\}_{i\in\mathbb{N}}$ of compact, circular subsets of $\partial\mathbb{B}^n$ such that $E\subset\bigcup_{j\in\mathbb{N}}S_{\lfloor i,j\rfloor}$ and $\sum_{j\in\mathbb{N}}\nu_{\rho\sigma}^{\alpha}(S_{\lfloor i,j\rfloor})\leq 2^{-i}$. We denote $\lfloor i,j,k\rfloor:=\lfloor\lfloor i,j\rfloor,k\rfloor$. Due to Lemma 3.9 there exists a sequence $\{T_i\}_{i\in\mathbb{N}}$ of compact, circular subsets of $\partial\mathbb{B}^n$ such that

- 1. $T_{\lfloor i,j,k\rfloor} \subset U_{\lfloor i,j\rfloor}$.
- 2. $S_{\lfloor i,j \rfloor} \cap U_{\lfloor i,j \rfloor} = \bigcup_{k \in \mathbb{N}} T_{\lfloor i,j,k \rfloor}$.

3.
$$T_{[i,j,k]} \cap T_{[i,j,l]} = \emptyset$$
 when $|l-k| \ge 2$.

4.
$$\sum_{k \in \mathbb{N}} \nu_{\rho\sigma}^{\alpha}(T_{\lfloor i,j,k \rfloor}) \leq c \nu_{\rho\sigma}^{\alpha}(S_{\lfloor i,j \rfloor}).$$

Let $T_{-1} = \emptyset$ and

$$D_{\lfloor i,j,k\rfloor} = \overline{\partial \mathbb{B}^n \setminus \left(T_{\lfloor i,j,k-1\rfloor} \cup T_{\lfloor i,j,k\rfloor} \cup T_{\lfloor i,j,k+1\rfloor} \right)}$$

for $i, j, k \in \mathbb{N}$. Observe that $D_{\lfloor i, j, k \rfloor} \cap T_{\lfloor i, j, k \rfloor} = \emptyset$. Therefore due to Theorem 3.5 there exists a number C > 0, a sequence of natural number $\{m_j\}_{j \in \mathbb{N}}$ and a sequence of polynomials $\{p_m\}_{m \in \mathbb{N}}$ such that

- 1. $m_j \ge 2^j$ and $K(m_j + 1) \le K m_{j+1}$
- 2. p_m is a homogeneous polynomial of degree m.
- 3. $\sum_{m \in I(i,j,k)} |p_m(z)|^2 \ge \frac{1}{4}$ for $z \in T_{[i,j,k]}$ and

$$I(i,j,k) := \left\{ l \in \mathbb{N} : Km_{\lfloor i,j,k \rfloor} \le l \le K(m_{\lfloor i,j,k \rfloor} + 1) - 1 \right\}.$$

- 4. $|p_m(z)| \leq 2$ for $z \in \partial \mathbb{B}^n$ and $m \in \mathbb{N}$.
- 5. $\int_{\partial \mathbb{B}^n} |p_m|^2 d\sigma \le 6C^{2n} \left(\nu_{\rho\sigma}^{\alpha}(T_{[i,j,k]}) + 2^{-\lfloor i,j,k \rfloor} \right) m^{-\beta} \text{ for } m \in I(i,j,k).$
- 6. $|p_m(z)| \leq 2^{-\sqrt{m}}$ for all $z \in D_{[i,j,k]}$, $m \in I(i,j,k)$

Let

$$f := \sum_{i,j \in \mathbb{N}} \sum_{m \in I(i,j,k)} \sqrt{m^{1+\beta}} p_m.$$

We denote

$$\phi(f,z,s) := \int_{\mathbb{D}^z} |f|^2 \chi_s d\mathfrak{L}^2.$$

There exists a constant $c_1 > 0$ such that

$$c_{1} \int_{\mathbb{B}^{n}} |f|^{2} d\mathfrak{L}^{2n} \leq \sum_{i,j,k \in \mathbb{N}} \sum_{m \in I(i,j,k)} m^{1+\beta} \int_{\partial \mathbb{B}^{n}} \frac{1}{m+1} \int_{0}^{1} |p_{m}(tw)|^{2} dt d\sigma(w)$$

$$\leq \sum_{i,j,k \in \mathbb{N}} \sum_{m \in I(i,j,k)} \frac{m^{1+\beta}}{2m+1} \int_{\partial \mathbb{B}^{n}} |p_{m}|^{2} d\sigma$$

$$\leq \sum_{i,j,k \in \mathbb{N}} \sum_{m \in I(i,j,k)} \frac{m^{\beta} 6C^{2n} \left(\nu_{\rho\sigma}^{\alpha}(T_{\lfloor i,j,k \rfloor}) + 2^{-\lfloor i,j,k \rfloor}\right)}{2m^{\beta}}$$

$$\leq 3C^{2n}(1+c) \sum_{i \in \mathbb{N}} 2^{-i} < \infty.$$

Due to [3, Lemma 2.1,2.3] there exist constants $c_2, c_3 > 0$ such that

$$\frac{c_2}{\pi(k+1)^{r+1}} \le \int_0^1 t^{2k+1} (1-t^2)^{\beta} = 2 \frac{(k+1)!(k+1)^{\beta}}{(k+1)(k+1)^r \prod_{j=1}^{k+1} (\beta+j)} \le \frac{c_3}{\pi(k+1)^{\beta+1}}.$$

Moreover

$$\begin{split} \sum_{i,\,j,\,k\,\in\,\mathbb{N}} & 1 \geq & \sum_{i,\,j\,\in\,\mathbb{N}} & 1 = \infty. \\ z \in T_{\lfloor i,j,k \rfloor} & z \in S_{\lfloor i,j \rfloor} \cap U_{\lfloor i,j \rfloor} \end{split}$$

We may estimate

$$\phi(f, z, \beta) \geq \pi \sum_{i,j,k \in \mathbb{N}} \sum_{m \in I(i,j,k)} m^{1+\beta} \int_0^1 |p_m(tz)|^2 t (1 - t^2)^s dt$$

$$\geq c_2 \sum_{\substack{i,j,k \in \mathbb{N} \\ z \in T_{|i,j,k|}}} \sum_{m \in I(i,j,k)} \frac{m^{1+\beta}}{(m+1)^{1+\beta}} |p_m(z)|^2 = \infty$$

for $z \in E$. Let now $z \in \partial \mathbb{B}^n \setminus E$ and $0 \le s$. There exists a minimal $\eta(z) \in \mathbb{N}$ such that $z \in \partial \mathbb{B}^n \setminus U_{\lfloor i,j \rfloor}$ for $\lfloor i,j \rfloor \ge \eta(z)$. Observe that $z \in U_{\lfloor i,j \rfloor}$ for $\lfloor i,j \rfloor < \eta$. In particular there exists $k_{i,j}$ such that $z \in T_{\lfloor i,j,k_{i,j} \rfloor}$ for $\lfloor i,j \rfloor < \eta(z)$. Let

$$J(\eta(z)) := \{(i, j, l) : |i, j| < \eta(z), |l - k_{i,j}| \le 1\}.$$

Observe that $\#J(\eta(z)) \leq 3\eta(z)$. If $(i,j,k) \notin J(\eta(z))$ then $z \in D_{\lfloor i,j,k \rfloor}$. Therefore we may estimate:

$$c_{3}^{-1}\phi(f,z,s) \leq \sum_{i,j,k\in\mathbb{N}} \sum_{m\in I(i,j,k)} \frac{m^{\beta+1}}{(m+1)^{s+1}} |p_{m}(z)|^{2}$$

$$\leq \sum_{(i,j,k)\in J(\eta(z))} m^{\beta} |p_{m}(z)|^{2} + \sum_{(i,j,k)\notin J(\eta(z))} m^{\beta} |p_{m}(z)|^{2}$$

$$m \in I(i,j,k) \qquad m \in I(i,j,k)$$

$$\leq \sum_{(i,j,k)\in J(\eta(z))} 4m^{\beta} + \sum_{(i,j,k)\notin J(\eta(z))} Km^{\beta} 2^{-2\sqrt{m}} < \infty.$$

$$(i,j,k)\in J(\eta(z)) \qquad (i,j,k)\notin J(\eta(z))$$

$$m \in I(i,j,k) \qquad m \in I(i,j,k)$$

We have proved that $E = E^s(f)$ for $0 \le s \le \beta$. Moreover

$$\phi(f, z, \beta + \varepsilon) \leq c_3 \sum_{\substack{i, j, k \in \mathbb{N} \\ m \in I(i, j, k)}} m^{-\varepsilon} |p_m(z)|^2$$

$$\leq 4c_3 \sum_{\substack{i, j, k \in \mathbb{N} \\ m \in I(i, j, k)}} \frac{1}{\left(Km_{\lfloor i, j, k \rfloor}\right)^{\varepsilon}} \leq 4Kc_3 \sum_{\substack{i, j, k \in \mathbb{N} \\ m \in I(i, j, k)}} 2^{-\varepsilon \lfloor i, j, k \rfloor} < \infty.$$

for all $z \in \partial \mathbb{B}^n$. We conclude that $E^{\beta+\varepsilon}(f) = \emptyset$ for $\varepsilon > 0$.

4 Examples

We consider a pseudometric $\rho(z,w) = \sqrt{1 - |\langle z,w \rangle|}$ and a natural measure σ on $\partial \mathbb{B}^n$. Let us define $\phi: \mathbb{C}^{n-1} \times \mathbb{R} \ni (z,\theta) \to \phi(z,\theta) \in \Omega = \partial \mathbb{B}^n \setminus \mathbb{C}^{n-1} \times \{0\} \subset \mathbb{C}^n$:

$$\phi(z,\theta) = \exp(2\pi i\theta) \left(\frac{z_1}{\sqrt{1 + \|z\|^2}}, ..., \frac{z_{n-1}}{\sqrt{1 + \|z\|^2}}, \frac{1}{\sqrt{1 + \|z\|^2}} \right).$$

Let $M \subset \mathbb{C}^{n-1}$ be such that $\Im\langle z, w \rangle = 0$ for $z, w \in M$. Let $z, w \in M$ be such that $\|\phi(z) - \phi(w)\| < 2$. Observe that $\|\phi(z) - \phi(w)\|^2 = 2 - 2\Re\langle\phi(z), \phi(w)\rangle < 2$. In particular

$$2\rho(\phi(z), \phi(w))^{2} = 2 - 2|\langle \phi(z), \phi(w) \rangle| = ||\phi(z) - \phi(w)||^{2}$$
(4.1)

for $z, w \in M$ such that $\|\phi(z) - \phi(w)\| < 2$.

We prove the following fact:

Lemma 4.1. Let us consider the maximum norm $\|\circ\|$ on \mathbb{R}^m . We have the property: $\nu_{\mathfrak{L}^m}^{\alpha}(T) = \nu_{\mathfrak{L}^{m+1}}^{\alpha}(T \times [0,1])$.

Proof. Let $\varepsilon > 0$. Observe that $K(T, \varepsilon) \times [0, 1] \subset K(T \times [0, 1], \varepsilon) \subset K(T, \varepsilon) \times [-\varepsilon, 1 + \varepsilon]$. We may estimate

$$\frac{\mathfrak{L}^{m}(K(T,\varepsilon))}{\varepsilon^{m-\alpha}} = \frac{\mathfrak{L}^{m+1}(K(T,\varepsilon)\times[0,1])}{\varepsilon^{m-\alpha}} \leq \frac{\mathfrak{L}^{m+1}(K(T\times[0,1],\varepsilon))}{\varepsilon^{m+1-(\alpha+1)}} \\
\leq \frac{\mathfrak{L}^{m+1}(K(T,\varepsilon)\times[-\varepsilon,1-\varepsilon])}{\varepsilon^{m+1-(\alpha+1)}} = \frac{\mathfrak{L}^{m}(K(T,\varepsilon))}{\varepsilon^{m-\alpha}}(1+2\varepsilon).$$

This proves the required property.

Example 4.2. Let $0 < \alpha < 2n - 2$ and $\beta = n - 1 - \frac{\alpha}{2}$. Let E be a set of type G_{δ} such that $E \subset M$ and $Q^{s}(E) = 0$ for $s > \alpha$. There exists $f \in \mathbb{O}(\mathbb{B}^{n}) \cap L^{2}(\mathbb{B}^{n})$ such that $E^{\beta}(f) = \emptyset$ and $\phi(E \times [0, 1]) = E^{s}(f)$ for $0 \le s < \beta$.

Proof. Due to Lemma 4.1 and Lemma 2.2 we conclude that $Q^s(E \times [0,1]) = 0$ for $s > \alpha + 1$.

Let K be a compact subset of M. There exist constants $r_1 = r_1(K), r_2 = r_2(K) > 0$ such that

$$r_1 \|\xi_1 - \xi_2\| \le \|\phi(\xi_1) - \phi(\xi_2)\| \le r_2 \|\xi_1 - \xi_2\|.$$

In particular due to Lemma 2.6 we have $Q^s(\phi(E \times [0,1])) = 0$ for $s > \alpha + 1$. Due to (4.1) we conclude that $Q^s_{\rho}(\phi(E \times [0,1])) = 0$ for $s > \alpha + 1$. In particular due to Lemma 2.2 we have $\Theta^s_{\rho\sigma}(\phi(E \times [0,1])) = 0$ for $s > \alpha + 1$. Now due to Theorem 3.8 there exists a function f with the required properties.

Example 4.3. There exists E - a compact, uncountable, circular set of type G_{δ} in $\partial \mathbb{B}^n$, a function $f \in \mathbb{O}(\mathbb{B}^n) \cap L^2(\mathbb{B}^n)$ such that $E^{n-1}(f) = \emptyset$ and $E = E^s(f)$ for $0 \le s < n-1$.

Proof. Due to Lemma 2.5 there exists a compact, uncountable set K such that $K \subset [0,1]$ and $Q^s(K) = 0$ for s > 0. Now it is enough to use the Example 4.2 for $\alpha = 0$.

Example 4.4. There exists E - a set of type G_{δ} and a holomorphic function $f \in \mathbb{O}(\mathbb{B}^n) \cap L^2(\mathbb{B}^n)$ such that $E^{n-1}(f) = \emptyset$ and $E = E^s(f)$ for $0 \le s < n-1$. Moreover $\Theta_{\rho\sigma}^{\alpha}(E) = \infty$ for $0 \le \alpha < 2n-2$.

Proof. We denote $\chi_s(z) = (1 - ||z||^2)^s$. Let $e_1 = (1, 0, ..., 0)$ and

$$g(z_1, ..., z_n) = \sum_{m=2}^{\infty} \frac{2^{mn}}{m} z_1^{2^{2m}}.$$

First we show that $g \in \mathbb{O}(\mathbb{B}^n) \cap L^2(\mathbb{B}^n)$ and $e_1 \in E^s(g)$ for $0 \le s < n - 1$. Using [3, Theorem 2.2] we may estimate

$$\int_{\mathbb{B}^n} |g|^2 d\mathcal{L}^{2n} = \sum_{m=2}^{\infty} \frac{2^{2mn} \pi^n (2^{2m})!}{m^2 (2^{2m} + n)!} \le \sum_{m=2}^{\infty} \frac{1}{m^2} < \infty.$$

Let $0 < \varepsilon < n-1$ and $s = n-1-\varepsilon$. Due to [3, Theorem 2.2, Lemma 2.3] there exists c > 0 such that

$$\int_{\mathbb{D}e_{1}} |g|^{2} \chi_{s} d\mathfrak{L}^{2} = \sum_{m=2}^{\infty} \frac{2^{2mn} \pi(2^{2m})!}{m^{2} (s + 2^{2m} + 1) \prod_{i=1}^{2^{2m}} (s + i)!}$$

$$\geq c \sum_{m=2}^{\infty} \frac{2^{2mn} (2^{2m})!}{m^{2} (n + 2^{2m}) 2^{2ms} (2^{2m})!}$$

$$\geq c \sum_{m=2}^{\infty} \frac{2^{2mn}}{m^{2} n 2^{2m(s+1)}} = c n^{-1} \sum_{m=2}^{\infty} 2^{2m\varepsilon} m^{-2} = \infty.$$

There exists a sequence $T=\{\xi_i\}_{i\in\mathbb{N}}$ dense in $\partial\mathbb{B}^n$ and such that $\xi_{\lfloor i,j\rfloor}=\xi_{\lfloor i,1\rfloor}$ for $i,j\in\mathbb{N}$. Let now

$$f_k(z) := \sum_{m=k+1}^{\infty} \frac{2^{mn}}{m} \langle z, \xi_k \rangle^{2^{2m} + 2^{2k}}$$

and $A_k := \left\{2^{2m} + 2^{2k}\right\}_{m=k+1}^{\infty}$. Observe that $\int_{\mathbb{B}^n} |f_k|^2 d\mathfrak{L}^{2n} \leq \int_{\mathbb{B}^n} |g|^2 d\mathfrak{L}^{2n}$ and $\xi_k \in E^s(f_k)$ for $0 \leq s < n-1$. Moreover $A_i \cap A_j = \emptyset$ for $i \neq j$. Let

$$f = \sum_{k \in \mathbb{N}} 2^{-k} f_k.$$

We can estimate

$$\int_{\mathbb{B}^n} |f|^2 d\mathfrak{L}^{2n} = \sum_{k \in \mathbb{N}} 2^{-2k} \int_{\mathbb{B}^n} |f_k|^2 d\mathfrak{L}^{2n} \le \int_{\mathbb{B}^n} |g|^2 d\mathfrak{L}^{2n}.$$

In particular due to [3, Theorem 2.7] we conclude that $E^{n-1}(f) = \emptyset$.

We may estimate $\int_{\mathbb{D}\xi_k} |f|^2 \chi_s d\mathfrak{L}^2 = \sum_{m \in \mathbb{N}} \int_{\mathbb{D}\xi_k} |f_m|^2 \chi_s d\mathfrak{L}^2 \ge \int_{\mathbb{D}\xi_k} |f_k|^2 \chi_s d\mathfrak{L}^2 = \infty$ for $0 \le s < n - 1$. In particular $T \subset E^s(f)$ for $0 \le s < n - 1$.

Let $0 < \alpha < 2n-2$. It is known that $E^s(f)$ is a circular set of type G_δ in $\partial \mathbb{B}^n$. Let $\delta > 0$ and $\{K_i\}_{i \in \mathbb{N}}$ be a sequence of compact, circular sets such that $T \subset E^s(f) \subset \bigcup_{i \in \mathbb{N}} K_i \subset \partial \mathbb{B}^n$ and $d_\rho(K_i) \leq 2\delta$. Due to Bair's Theorem we conclude that there exists K_{i_0} with a non empty interior in $\partial \mathbb{B}^n$. In particular due to $0 < H_\rho^{2n-2}(\partial \mathbb{B}^n) < \infty$ we have $H_\rho^\alpha(K_{i_0}) = \infty$ and $\sum_{i \in \mathbb{N}} \tau_\rho^\alpha(K_i) \geq \tau_\rho^\alpha(K_{i_0}) \geq H_\rho^\alpha(K_{i_0}) = \infty$. Therefore $Q_\rho^\alpha(E^s(f)) = \infty$ and $\Theta_{\rho\sigma}^\alpha(E^s(f)) = \infty$ for $0 \leq \alpha < 2n-2$.

References

- [1] P. Kot, Description of simple exceptional sets in the unit ball, Czechoslovak Mathematical Journal 54 (129), (2004), 55-63.
- [2] P. Kot, Maximum sets of semicontinuous functions, Potential Analysis (2005) 23, 323-356.
- [3] P. Kot, Exceptional sets with a weight in a unit ball, Bull. Belg. Math. Soc. Simon Stevin, 13, no. 1 (2006) 43–53.
- [4] C. A. Rogers, Hausdorff Measures, Cambridge University Press 1970.
- [5] W. Rudin, Function Theory in the Unit Ball of \mathbb{C}^n , Springer, New York, 1980.
- [6] P. Wojtaszczyk, On highly nonintegrable functions and homogeneous polynomials, Annales Polonici Mathematici no. 65, (1997), 245-251.

Politechnika Krakowska, Instytut Matematyki ul. Warszawska 24, 31-155 Kraków, Poland email: pkot@usk.pk.edu.pl