Integrability of homogeneous polynomials on
the unit ball

Piotr Kot

Abstract

We construct some measure O% such that if 0 < o <2n—2, 6 =n—
and F is a circular set of type Gy such that F C dB" and ©%(E) = 0 then
there exists f € O(B") N L*(B") such that

24«
2

E=EP(f) = {ZGGB": /Dz\flzxgdSQZOO}

where y, : B” 3 z — x4(2) = (1 — ||z||*)® and D denotes the unit disc in C.

1 Introduction

In the paper [6] a natural number K and a sequence {p,} -, of homogeneous poly-

nomials in C? was constructed so that |p,(2)| < 2 and Zﬁ?;l)_l |pn(2)| > 0.5 for
all z belonging to the boundary of the unit ball 9B¢. In the paper [1] we introduced
some additional arguments in such a way that for any circular set £ C OB? of type
Gs and F, we could construct a holomorphic function f on the unit ball B¢ such
that E2,(f) = E.

Let xs : B" 3 2 — x,(2) = (1 — ||z||)*. In the paper [3, Lemma 2.6, Theorem
2.7] we showed that there exists a constant C' > 0 such that

[ 1P xdg? <0 [ |prag
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for a holomorphic, square integrable function f. In particular E"~!(f) = (). Due
to the above inequality the following question can be posed: what additional con-
ditions have to be fulfilled for the set E of type G5 from OB™ so that there exists
a holomorphic function f square integrable such that, for some 0 < s < n — 1,
E = E5(f) = {z € dB™ : [ |f|” xsd€? = oo} . In this paper we investigate this
question.

1.1 Geometric notions.

Let X be a metric space with a pseudometric p. Assume that topology of X is given
by countable base of open sets.

The set £ C X is p complete iff p(z,w) > 0 for 2 € F and w € X \ E. If
D.T C X then we denote p(D,T) :=inf,cp wer p(2, w).

We say that 7 is a premeasure on X iff 0 < 7(D) < oo for D C X. Moreover p
is a measure defined from premeasure 7 on (X, p) iff

4)(B) = sup plzw),

z,weE

ps(E) = inf {Z T(E;): EC | Ei, dy(E;) <26, E;=F; C X} ,
ieN ieN
u(E) = suppus(E)
5>0

for £ C X.

If p is a norm on R™ or C" then we write symbol Y in place of Y,.

Observe that if H* is a measure from h%(o) = (d(o))" on R™, then H® is a
Hausdorff measure. We also denote £" -n-dimensional Lebesgue measure on R".

We denote K,(D,¢) := {z € X :infyepp(z,w) < e} and K,(z,¢) = K,({z},¢)
for z € X. Now we define s,. index of D as

Spe(D) 1= inf{s Az}, CcDC zs:Kp(xi,s) C X}.

i=1

We say that X is (n, p,n)-regular if there exist constants k1, k2,£9 > 0, measure n
constructed from some premeasure so that k€™ < n(K,(z,¢€)) < koe” for v € X
and 0 < € < gg.

Now we can consider the following premeasure

(D) = limsup2°®s,. (D).

e—0

If additionally X is (n, p,n)-regular then we consider the premeasure

ve (D) := limsup 2%¢*"n (K,(D,¢)).

PH b0

We also define measure ()5 from 7 and ©F, from vy,

We use the pseudometric p(z,w) := /1 — |(z,w)| and ¢ -(2n — 1)-dimensional,
natural measure on JB".
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Definition 1.1. Let T C dB™ and C > 0. If A = {&,....,&} C T and p(&,&5) > 0
for ¢ # j then we say that A is #-separated subset of T. Let us define homogeneous
polynomials for the pair (C,T) as:

Pm(2) = pm.a(z) = 3 (z.6)™

£eA

where AC T, A is \/%—separated subset of T and N < m < 2N.

2 @, and ©) measure

In this section we describe some basic properties of measures @7, ©F,. Let us define
relation y € [z] iff p(z,y) = 0 and the metric space X := {[z] : v € X}.

Lemma 2.1. We have the following properties:
1. If D is a closed subset of X then Hg(D) < liminf._o2%%s,.(D) < 75(D).
2. If E is a Borel subset of X. then H}(E) < Q5(E).
3. If £ is a Borel subset of X then E is Hy, Q7 and ©, measurable.

Proof. Observe that HJ (D) < 2%%s,.(D) for ¢ > 0. Therefore property (1) is
clear.

Let E be a Borel subset of X such that Q5 (E) < oo. Let 6,& > 0. There exists
a sequence {K,-}ZEN of closed subsets of X such that £ C U,y K, d,(K;) < 20 and
Yien Ty (i) < Qos(E) + . We may estimate

HY(E) < HY (U KZ-) <Y HS(K) <Y oK) < Qo(E) +e.
1€N €N €N

We conclude that H(E) < Q5 (E).
Property (3) follows from [4, Theorem 19]. ]

Lemma 2.2. Let X be (n, p, u)-reqular. There exists ki, ko,e9 > 0 such that:

1. If D is a closed subset of X then k15,.(D) < e "u(K,(D,¢)) < kas,e(D) for
0 < 3¢ < gy.

2. If {Ki},cy is a sequence of closed subsets of X such that p(K;, K;) > 0 for
Z. # ] then V;LM (U’iEN KZ) - Z’iEN V;LM (K’L)
8. If D is a closed subset of X then rk175(D) < vg (D) < ko7 (D) for o> 0.

4. If E is a Borel subset of X then k1Q5(E) < 05 (E) < r2Q5(E) for a > 0.

5. If E is a Borel subset of X.. then O} (E) < koH}(E).
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Proof. Due to X is (n, p, pu)-regular, there exists ki, ka,e9 > 0 such that 2"k, <
e (K y(x,e)) < 3 "hg for v € X and 0 < € < gg. We denote s = s,.(D). Let
r be a maximal natural number such that there exist points xy,...,x, in D such
that p(z;,x;) > ¢ for i # j. Observe that D C U_, K,(z;,e). Therefore s < r.
Moreover Ui_; K (2, 5) C K,(D,g). If s = oo then r = oo and u(K,(D,¢)) >
i1 (K (x4, 5)) = oo. Therefore we can assume that s, < co.

There exist points yi, ..., ys such that {y;}._, € D C Ui_; K,(yi,€). We define
the sequence i(1),...,4(t) such that i(1) = 1 and i(k + 1) is a minimal index such

that p(yik+1), i) > € for j = 1,..., k. Observe that ¢ < s. We prove that

t

D C U Kp(yi(k),QE).

k=1

Let z € D. There exists m € {1,...,s} such that 2 € K,(yy,c). There exists
maximal k£ < ¢ such that i(k) < m. If i(k) = m then y € K,(yix,2¢). If i(k) <
m, then there exists an index k; < k such that p(ym,¥ik,)) < €. In particular
P2, Yiky)) < P2, Ym) + P(Ym, Yikr)) < 26. We conclude that z € K,(yix,), 2¢). Now

we have
t

" €
U K, <xk 5) C Ky(D.e) € U K, (i, 3¢)-
k=1

k=1

Due to p(z;, ;) > € for i # j we can estimate

T t
kyse” <Y p (Kp (xk %)) < u(Ky(D,e)) <> (Kp (yi(k), 35)) < Kgse™.
k=1 k=1

Now we prove (2). Observe that

T) = lim p(K (T, 2)) = (D).

e—0

Voul

Moreover

> MMM%@)SM(&(U%%)SZM@M%@%

j<i=p(T;,T;)>2e ieN

In particular

Vo (U Ti) - ZV;LM (7) -
ieN ieN
The properties (3)-(4) are consequences of (1).

We prove (5). Let £ be a Borel subset of X such that H}(E) < oo. Let 4, > 0,
There exists a sequence {K;}, . of closed subsets of X such that £ C U;ey K,
ri = dy(K;) < 26 and eyl < Hps(E) + e. There exists a sequence of points
{xi},en such that K; C K,(x;,2r;). In particular for 6 small enough we may esti-
mate O}, 55 (E) < Y vy, (Kp(@i, 2ri)) < Cew p(Kp(@i, 2ri)) < Fien 37"R22"r] <
ko HJ5(E) + kze. Now we conclude that O} (F) < ko HJ/(E). (]
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Lemma 2.3. Let 0 < ¢ < £, m € N and ap = %1052. If EO = [0,1]" C R™,
Eiy1 = ([0,q]U[1 —¢q,1]) E; and E = Njen Ej then HY(E) = Q% (E) = 0 where
ap < a. Moreover H*(E) = QY(E) = oo for 0 < a < ag and 272" < H™(E) <

QY (E) < v/meog=*. Additionally E is (o, ||o|| , @) reqular.

Proof. Let ¢ be such that \/mq* < 2e < /mg*~! for some k. Since Ej, can be covered
by 2™ cubes with the edge equal to ¢* therefore we may estimate: 2%c%s.(D) <
20c09mk < \/mag e (q*2m) .

If 9 < a < m then 2™¢* < 1 and 7%(E) = liminf._(2%%s.(D) = 0. In
particular Q*(E) = 0 for ap < a < m.

Observe that 2mg® = 1. Moreover E}, is the sum of 2 disjoint cubes I, ..., Iomx
with the edges equal to ¢*. Due to 27 (E N [,) = 7% (E N E) = 7(E) <
Vmeog=* we conclude that Q®(FE) < /m®q 0.

Let U be an open subset of R™. Let f,(U) be a number of cubes from FE,
which intersects U. Let g,(U) = 27" f,(U). Observe that f,.1(U) < 2™ f,(U) and
In1(U) = 2_(n+1)mfn+1(U) <27 fo(U) = go(U). Let g(U) = limy, o0 gu(U). If
[0,1]™ C U then g(U) = 1. Moreover g(UUV) < g(U) + g(V).

Let I be an open cube with the edges equal to r < ¢. There exists n € N such
that ¢"™! <r < ¢". Observe that f,,(I) < 2™. In particular

g(]> S 2_nmfn(l) S 2—nm2m S qa0n2m S q_a02m7"a0.

Let Iy, ..., I, be a covering of E so that I, is an open cube with the edges equal to
r, with r, < g. We can estimate

Yorit > g2y g(ly) > ¢*2 g (U I) > g2 =27
k=1 k=1 k=1
Therefore 272™ < H*(F) < Q*(FE) and co = H*(E) < Q*(E) for 0 < a < ap.
Let x € E and € > 0 be such that 0 < 2¢ < ¢. There exist n,r € N such that
¢" <e<q!and ¢" < 2e < ¢". The set Ek is the sum of 2™* disjoint, identical
cubes I}, ..., It with the edges equal to ¢*. In particular Q”man([;gk) NnE) =
20 QQO(I"QE) Q*(E) for k =1,..,2". Due to f,(K(z,¢)) < 2™ we conclude
that there exist I}, ..., [ji,) cubes such that K(z,e) N E C Uiy Ligy and s < 2.
Moreover there exists ko such that Ij N E C K(z,e) N E. We may estimate

QOCO (K([L’, 5) N E) < gm—nm _ qao(n—l) < q—2a2a0€ao'
We conclude that E' is (ay, [[o]|, Q*°) regular. [

qaogao S qaor — 2—mr

Lemma 2.4. Assume that HY(U) = oo for 0 < a < m and all the open U non

empty subsets of X. There exists a set G C X of type G such that 0 = Hg‘(G) <

Q5 (G) =0 for 0 < a < m.

Proof. Let A = {x;},.y be a countable and dense subset of X such that z|; jj = z;1

foralli,j € N. Let Uy := U2, K, (2,279") and G = ;e Uy Let a > 0 and 6, > 0.

Let jo be such that a(j2 —1) > j, 279° < §, 277+1 < ¢ for j > jo. We may estimate
Q) < Z 9—aj’+a < Z 97 — 9 iotl < o

J=Jjo J=Jjo
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We now conclude that H7'(G) = 0 for a > 0.

Observe that A C G. Therefore G = X. Suppose that 750(G) < oo for some
0 < ap < m. There exists a sequence {F;}, .y of closed subsets of X such that
G C Ujen Fi and 3;cn 75 (Fi) < 0o. Moreover because G is of type G5 there exists
a sequence of closed sets {H;},.y with empty interiors such that X \ G = U;en H;.
Observe that:

XcX\GuGc |JH U FE.
ieN ieN

Due to Bair’s Theorem we conclude that there exists k such that interior of F}, is non
empty. In particular due to Lemma 2.1 we conclude a contradiction oo = Hg(Fy) <
T[?O(Fk).

Therefore Q5 (G) = oo for 0 < a < m. (]

Lemma 2.5. There exists a compact E subset of R™ which is uncountable and
Q*(E)=1“(E) =0 for a > 0.

Proof. Let Ey := [0,1]™ € R™, E;1y == ([0, 477Ul =471 1)) E; and F =
Njen Ej. Let a > 0 and /m27*¢D < 22 < \/m2-(k=Dk Since Ej has 2™ cubes
with the edges equal to Hle 479 = 27kk+1) therefore we may estimate: 2°¢%s.(E) <
2065 (E),) < 2022mk < \/magmk—ak(k=1) " Duye to limy_o mk — ak(k — 1) = —oc0
we have 7%(E) = 0. In particular Q*(E) = 0.

We prove that the set F is uncountable. Let U be an open set such that UNE # ().
Observe that there exists & € N such that U N Ej # (). Therefore there exists a
sequence {xy}, .y C UN E such that z; # x; for i # j. We may conclude that if
x € E then {x} is a not open subset of E. Suppose that E is countable and there
exists a sequence {wy, }, .y = E. Due to Bair’s Theorem the interior of {wy,} in E is
not empty for some ny. Therefore {w,,} is an open subset of E which is impossible.

(]

Lemma 2.6. Let X' be a metric space with pseudometric p and X - metric space with
the pseudometric p. Let f : X — X be a continuous function such that cip(z,y) <
p(f(x), f(y)) < caplx,y) for z,y € X and some constants c1,c2 > 0. Then

1. &7(D) < 78(f(D)) < §78(D) for >0 and D C X.

2. cfQ5(D) <Q3(f(D)) < c3Q5(D) fora>0and D C X.
Proof. Let {z;};_; C D be such that D C U;_,; K,(z;,¢). Observe that f(D) C
Uizy f(K(4,€)) C Uiz K5(f(xi), coe). In particular Tg‘(f(D)) < cS‘Tpa(D).

Let {y;};_, € D be such that f(D) C Ui_; K;(f(v:),c1e). Observe that D C
Uisy 71 (G f (i), ea8)) € Uiy Kp(yi,€). In particular cf7(D) < 72(f(D)).

The property (2) follows directly from (1). [

Lemma 2.7. Let M be k-dimensional, C' class submanifold of R™. Then Q“(M) =
0 for k < a and Q*(M) = oo for 0 < a < k.
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Proof. Observe that M is a local graph of class C*' function. Let € M. There
exists an open, convex set U and C! function f € C*(U) such that ¢ : R* D U >
x— (z,f(x)) € M C R™ and z € ¢(U) C M. We can assume that f’ is bounded
on U. Observe that

[z =yl < o) =@l < 1+ ]z =yl

Due to H*(U) = oo for 0 < a < k and Lemma 2.1 we may conclude that Q*(U) =
for 0 < a < k. Now due to Lemma 2.6 we have co = Q*((U)) < Q*(M) fo

0 < a < k. Moreover due to Lemma 2.2 Q*(U) < co and therefore Q*(1)(U)) < oo
and Q*(M) =0 for k < a. ]

o

3 Homogeneous polynomials

In this section we consider p(z, w) := /1 — [(z, w)| and a natural (2n—1)-dimensional

measure o on B". Observe that OB" is (2n—2, p, o)-regular. In fact there exist con-
stants k1, ko such that k16?2 < 0(K,(z,¢)) < koe? 2 for z € 9B" and 0 < £ < 1.
In particular v5, (OB") = 0 for a > 2n — 2.

Definition. Let us denote x, : B" 3 2z — xs(2) = (1 — ||ZH2)8 and
E°(f) := {z € 0B": / |f|? xsd L2 = oo}.
Dz

Definition 3.1. Let @ > 0. A subset A C OB" is called a-separated iff p(z1, z2) > «
for different elements z;, 2o € A.

Definition. Let a sequence of the pairs (i, j) be ordered according to the formula

. ivj<k+l gdy i+j#k+1
L”qu’”@{ i<k gdy i+j=k+1"

Lemma 3.2. Let C > 2. Assume that a set A is \/—Cﬁ-sepamted. For z € OB™ we
define
(m + 1)0}
A, A < —— 5.
@ =feea: T <o < T

Therefore for m = 1,2, ... a set A, (2) has up to 2"~ (m + 2)**=2 elements. A set
Ao(2) has up to one element. Additionally s < N™~1.

Proof. First part of the Lemma it is in fact the [6, Lemma 1]. To prove that s < N"~*
we can estimate

C2n 2 s
gy < Lo ) <

7j=1

since the balls B(¢;; C/(2v/N)) are disjoint. Therefore we get s < N"7L. ]
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Lemma 3.3. [6, Lemma 2] If A C OB" is a/\/N-separated then for each B3 > a
there exists an integer K = K(«, ) such that A can be partitioned into K disjoint

ﬁ/\/ﬁ-sepamted sets.

L] . 1 T 1 Z‘+1
Proposition 3.4. We can estimate (1 + ;) <e< (1 + 5) forx > 1.

. . . 2
Proof. For 0 < y < 1 we have the following inequality y — % < In(1 +y) < .

Let f(xz) = xln (1 + %) and g(z) = (z+1)In (1 + %) We may estimate f'(z) =

ln(l—l-i)—x%lZi—ﬁ—#lzﬁ>Of0r:c>1. Moreover ¢'(z) =
In (1 + %) — 1 < 0for z > 1. In particular f(z) < f(o0) =1 = g(o0) < g(z) for
xz > 1. [}

Theorem 3.5. There exists a constant Cy such that Cy > 2 and for all C > Cy,
0 €(0,1), 0 < a < 2n — 2 there exists a natural number K = K(C) such that if
T, D are compact, circular, disjoint subsets of OB"™, such that v*(T) < oo then there
exists mg € N such that homogeneous polynomials for (C,T) fulfills properties:

1. |pm(2)| <2 for z € OB™ and m € N.

602" (v (T) + 6
/ |pm|2d0- S ( :_E+a) )
OB m 2

for m > my.
3. |pm(2)| < 27VE™ for all z € D, m > my.

4. Fora >0, Km >mg and z € T we have Z]K:(;?;l)_lja Ip;(2)|° > @.

Proof. Let § = n — 252 There exist M,go > 0 such that M — ¢ < v%(T) and
o(K,(T,e)) < Me?f for € € (0,2¢9). Denote S := IB" \ K(T,2). We may assume
that g is so small that D C S.

Let A ={&,...,&} be —-separated subset of T'. Let

Aj(z):{geA: %gp(z,gk%}.

There exists Cy > 0 such that

for C' > Cy and 5 > 1.
Let N be so large that \/% < ¢gp and p(z,w) >
Due to Lemma 3.2 we can estimate

Ipm(2)| < Z |<Z,§] Z <1 — W) < (QN)"_l (1 . N0.2)

§eA EcA

foré € A, weSs.

N()l

N0A2N0.8

e 0
< 2_N08 2 < s
- - 2mP
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for z € S, N high enough and N < m < 2N. We have proved the property (3).
Moreover we may estimate

2n
[loaaP < [ 205 < 220 < HOT
s s2mP — 2mpP mP

Let us denote

C
By = K,|T,——
0 p<’2\/ﬁ>

Bk+1 = Kp (T,%) \Bk

If z € Bgyy then p(z,w) > (k;:lﬁ for w € T. In particular A;(z) = 0 for j < k.

There exists N; € N such that K(7T,&y) C Upt, Br C K(T,2¢0). We may estimate

e < YlEar<y Y

¢eA J=0£€A,(2)
~2cv2 202
szz(lﬂ )_ZZexp( )
J=0¢€A; AN J=0¢eA; 4

S hamn(-£9)

‘202 00 )
S 1+Z2n_1(j+2)2n_2exp <_] 4 ) S 1"’22_]_1 S 2

j=1 7j=1

for z € OB™ and now we have the property (1). Moreover

|p (Z)| <i2n_l(j+2)2n_2e){p _j2C2 < - ]_|_2 2n2 =1 « ;
IS 1) = S ey 2o

for z € By, and k > 1. Observe that

(k+DC\" _ k1o (k4 )e
oWN ) = 2BNB = 251

for k>0, N <m < 2N. We can estimate

o(By) < M (

Kp(T,a()) —~

4MC2" > MC*  5MC*

+ kz_:l mpP 22k =

In particular we may prove the property (2):

<

mP mP

6MC*"
[opalde < [ pafo [Ipafo<
oB™ K, (T,e0) m
6C>" (v (T )+9)

mp
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Now we prove the property (4).

Let K = K(a, 3) be from Lemma 3.3 for a = 0.25 and § = C. For N = Km fix
a maximal 1/(4v/N)-separated subset B C T. Using Lemma 3.3 we can divide B
into at least K disjoint C’/\/N—separated subsets By, By, ..., Bxk_1. We define

Prems(2) = D (%"

§EB;

for j =0,1,..., K — 1. There exists Cy > 0 such that

kC ’ 2no63n 1

for C' > Cy and k > 1.

Let
Aiy(z) = {f e B 1<) < %}

Due to Lemma 2.2 #4;0 =0 and #A4;; < 2"71(j 4+ 2)*" 2

T z+1
Due to Proposition 3.4 we have (1 — ?) > e ! (1 — x—+1) i for x > 1.
2 2
Let £ € B;. Let ky be a maximal possible natural number such that k’zjg < % If
ze K, (f, ﬁ) then we may estimate:
Prmes(2)] > (1" = 30 [z
neB;\{¢}
1 \Emti  ky 2o\ Y
11— —— — 1— 2"(k +2)* — 27NN
- < 16N> kz::l ( AN ) (k+2)
1 2N (e} kC 2
> 11— — _ N e k2n23n 2—NNn
= ( 16N> ,;eXp ( < )
—2N > 1
> — ) -2 VN Nk > o
= eXp(lGN—1> 222y

for mg < N <m < 2N and mg high enough.
Since B = UKy By is a maximal 1/(4v/N)-separated subset of T we conclude

that 1
Y4 mleus) -y lon) o

and from this follows that

K(m+1)—1 Km)e
>, ‘pj(Z)FZ % for all z € T, m > my.
j=Km

Now we are ready to prove our first, main result.
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Theorem 3.6. Let 0 < o < 2n — 2. Let T be a compact, circular subset of OB™
such that v5, (T) = 0. There exists f € O(B") N L*(B") such that T = E°(f) and
EPTe(f) = @forﬁ—n—”—o‘ e>0

Proof. Let D; be asequence of compact, circular subsets of 9B" such that D;NT" = 0,
D; C Djiy and T' = Ujey D;. Due to Theorem 3.5 there exist numbers C, M > 0, a
sequence of natural number {m;},  and s sequence of polynomials {pm},,y such
that

1. m; > 27 and K(m; +1) < Kmj
2. pm is a homogeneous polynomial of degree m.
3. Ykerq) IPe(2 )P > 1 for z € T and

I(i):={meN:Km; <m<K(m;+1)—1}.

4. |pm(2)| <2 for z € OB™ and m € N.
5. Jogn [pm| do < MC2"2-im~P for m € I(j).
6. |pm(2)] <277 for all z € D;, m € I(j)

Let
:Z Z ‘/]fl—l—'@pk-

J=1kel(j)

There exists a constant ¢; such that

o [ 1ffder < 33 1+ﬁ/83nk+1/ Ipr () 2 dtdor(w)

Jj=1kel(j)
< Z > |Pk\2d0'
i1 keI) 2k +1
s kﬁMCQ"Q i X ,
<Y Y g =L KMOT <
J=1kel(j) j=1
There exist constants co, c3 > 0 such that
C2 /1 2%+1 2\ (k+D!(k+1)° C3
— < t 1-—1t =2 <
(k+ 1)+ = Jo ( ) (k+1)(k+1)°11 k+1(ﬂ+j) ~ (k4 1)s+L

Therefore we can estimate

fIPxpd€?* > = l{:”ﬁ pk (tz)|* t(1 — t*)%at
Dz A

Jj=1kel(j)
k,l-i—ﬁ

> 7TC2Z > mmk( 2)F = o0

J=1kel(j)
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for z € T. Moreover if z € OB" \ T then there exists a constant ¢4 = ¢4(2) < oo and
Jo such that z € D, for j > j, and:

L1t

NIRRT > el
Dz J=1kel(j k+1 'B+1
< —|—7r02z d 27 <o
J=jo k=€I(j)

We have proved that T'= E°(f). Now let £ > 0. Then

kl—i—ﬁ
1 Xp4edL® < Ty o IPk(z )|
/]D)z ]Zl kezj(: (k+ 1)ﬁ+ +1
< me Z Z < 0.
J=lk=€l(j K2j
for all z € OB". From this follows that E°*¢(f) = () for ¢ > 0. ]

Lemma 3.7. Let U be an open, circular set and K be a compact, circular set such
that vi, (K) < oo, U, K C OB" . Then there exists a sequence {T;}, .y of compact,
circular sets such that

€N

2. If ;NT; # 0 then |i — j| < 2.
8. Y2 v, (1) =0 for s > a.

Proof. Let
= >
T, {z eKnNU: wlenanp(z w) 1}
T, = {z ceKNU: 27" < inf p(z,w) < 2_’}.
wedlU

Observe that UNK = Uen T; and T; N Ty = () when |i — j| > 2. Moreover v5 (T5)
v (K) and therefore v*(T;) = 0 for s > a.

po

m N

Theorem 3.8. Let0 < o <2n—2 and f =n— 2+a Let E be a circular set of type
Gs such that E C OB" and ©3,(E) =0 for s > a. *There exists f €O0OB")NL*(B")
such that E°(f) =0 and E = E*(f) for 0 < s < f3.

Proof. Let o = a + 75 (2n —2 — ) and 3; = n — Z£2 - There exists a sequence
{Ui},en of open, circular subsets of OB" such that £ = NZ, U; and Uy C U,
There exists a sequence {S;},.y of compact, circular subsets of OB" such that E C
Ujen Sig) and Xjen vpd 7 (S|5,5)) < 27°. We denote |4, 7, k] == [[4,7],k]. Due to
Lemma 3.7 there exists a sequence {7},  of compact, circular subsets of JB" such
that

1. TLZ}J'JCJ C ULLJ’J'
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2. 51531 N Uiy = Uken Tlik)-
3. TUJJ“J N TLi,j,lJ = (Z) when |l — ]{7‘ Z 2.
4. V?g—"i'j’w (TLZ,]JCJ) = 0

Let T_; = () and

Dy = OB\ (Tiijn—1) U Ty U Tl k)

for 4,7,k € N. Observe that Dy;;x N T}k = 0. Therefore due to Theorem 3.5
there exists a number C' > 0, a sequence of natural number {m }j oy and a sequence
of polynomials {py, },,cy such that

1. mf_ﬁj > 27 and K(m; + 1) < Kmjq

2. pm is a homogeneous polynomial of degree m.

w

eIk |pm(z)\2 > i for z € T}; ;x) and

I(i,j,k) == {1 € N: Kmyijp <1< K(mpgu +1) —1}.

W

. |pm(2)| <2 for z € OB™ and m € N.

ot

Jogn |[pm|? do < 60272 lbiklm=Bliskl for m € I(i, j, k).

D

Npm(2)] <27V™ for all 2z € Dy jx), m € 1(i, 4, k)

Z Z Vm!Plakip, .

1,5EN mel(i,j,k)

Let

We denote
of.25) == [ 177 e

There exists a constant ¢; > 0 such that

2 2n < 1+6|_zgk:j/ /
af e < Y Y m [ [ e P dedo(w)

1,5,k€eNmel(i,j,k)
mitBLisk]

< > Y — |pulfdo
i,j k€N mel(i,j,k) 2m+1 Jopn

Bli,jk) 602712—Li,j7k] )
m 2n —1
< E E ST <3C E 27" < o0.

i,j.-k€N mel(4,5,k) ieN

Let 0 < s < 8. We can use the similar arguments as in [3, Lemma 2.1,2.3] to
conclude that there exist constants ¢y, c3 > 0 such that

& Uokdiq 2 (k+DI(k+1)" c3
m(k+1)+1. S/o A _2(k:+1)(k+1)rn’f“(r+j) = m(k+ 1)+
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for 0 < r < 3. Moreover

o1 > 1 = oo.
1,5,k €N 1,7 €N
2 € Tiijin) Blijw) > 8
z € 8 N Uy

We may estimate

1
Ofzs) = 1 3 S mt o [ ()P el - £
i,j,kEN meI(i,jk) 0
14B14,5,k)
m 2

€2 > > E;ﬁf;jijf;;|l%n(z)| =0

i,j, kL eN mel(i,j,k)

Blijk) > s

z € Tlivj,kJ

v

for z € E. Let now z € 9B" \ E. There exists a minimal 7(z) € N such that
z € OB" \ Uy, for |i,j| > n(z). Observe that z € Uy, j for |i,j| <n. In particular
there exists k; ; such that z € T}; j, ;) for [i,7] < n(z). Let

J(2)) =L 5.0) - [, 5] <n(2), [l = kil <1}

Observe that #J(n(z)) < 3n(2). If (4,7, k) ¢ J(1(2)) then z € D|; k|. Therefore we
may estimate:

mPliakl+1

Cg1¢(f7 2, S) S Z Z W |pm(z)|2

i,5,kEN mel(i,jk)
) 2
GOSN SR O]
¢

IA
0 M

IN
g

4m” + Z KmP27 2™ < .
(,5,k) € J(n(2)) (i, 5,k) & J(n(=

m € 1(i,j, k) m € 1(i, j, k)
We have proved that F = E*(f). Moreover

¢(f,20) < ¢ > mat1 = |p (2) |7

i,J,k €N
m € 1(i, j, k)
1 —lisgik
1,7,k €N (Kmu,j,kj) i,j,kEN
m € I(i,j, k)

for all z € OB". We conclude that E°(f) = 0. "
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Lemma 3.9. Let U be an open, circular subset of OB™. Let M be a compact, circular
subset of OB™ and n a probability measure on M, such that M is («, p,n)-regular.
There exists a constant ¢ > 0 such that if K is a compact, circular set such that

voo(K) < oo, K C M then there exists a sequence {T;},.y of compact, circular sets

such that
1. UNK =Usen T
2. If T, NT; # 0 then |1 — j| < 2.
8. Y2 v, (Th) < evg, (K).

Proof. Observe that OB" is (2n — 2, p, 0)-regular. Due to Lemma 2.2 there exist
constants ¢y, ca > 0 such that et v, (K) <wvp, (K) < covp, (K) for a closed, circular
K subset of M. We denote

T, {zEKﬂU : wléaanp(z,w)_l}
. = N —i—1 < 1 < _i} .
[y {z e KNnU: 2 < wléaanp(z,w) <2

Observe that UN K = U;en 15 and p(T;,T;) > 0 when |i — j| > 2. We may estimate

fju;:? (Ty) +Z o (Toip1) = (U Tm) + 5 (U T2Z+1> <2 (U T)

i= =0

In particular
ZVS‘J(E) < clzupn <2011/ (U T)

i=1
< 2av, <U TZ> < 2¢1090, <U TZ> < 2c1090, (K).
i=0

1=0

Theorem 3.10. Let 0 < o < 2n—2 and f = n — “Ta Let E be a circular set
of type Gs such that E C OB" and ©5,(E) = 0. Assume that there exists M - a
compact, circular subset of OB™ and n a probability measure on M, such that M is
(o, p,m)-reqular and E C M. There exists f € O(B™)N L*(B") such that E°(f) = E
and E*(f) =0 for s > 3.

Proof. Let ¢ > 0 be a constant from Lemma 3.9. There exists a sequence {U;},.y of
open, circular subsets of 0B" such that £ = N2, U; and U;;; C U;. There exists a
sequence {S;},.y of compact, circular subsets of OB" such that £ C ey S5, and
> jen Vo (Sliy)) < 27°. We denote [i,7, k] := [[4,7],k]. Due to Lemma 3.9 there
exists a sequence {7;},.y of compact, circular subsets of 9B" such that

1. TUJJCJ C UUJJ'

2. 50i,5) NUig) = Uken Tigik)-
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3. TLivjka N T\_i,j,lj = @ When |l — k’| 2 2.

4 Yken Voo (Tijk)) < e (S)i))-

Let T_; = () and

Disjng = OB\ (Tija—1) U Ty U Tl )

for 4,7,k € N. Observe that D;;x NT}; kr = 0. Therefore due to Theorem 3.5
there exists a number C' > 0, a sequence of natural number {m; }j oy and a sequence
of polynomials {py, },,cy such that

1. m; > 2 and K(m; +1) < Kmj

2. pm is a homogeneous polynomial of degree m.

3. Yomel(ijik) |pm(2)|2 > i for z € T{; j ) and
I(i,j,k) == {1 € N: Kmyijuy <1< K(mpijuy+1) = 1},
4. |pm(2)| < 2 for z € OB™ and m € N.
5. fogn [Dm|” do < 602" (I/F?U(ij,kj) + 2‘“’]"“) m=P for m € I(i, j, k).
6. [pm(2)| <27V forall z € Dyijr;, m € 1(i, 5, k)
Let
— Z Z w/mlJrﬁpm_
i,jEN mel(i,jk)
We denote

o(f.25) = [ 177 o

There exists a constant ¢; > 0 such that

MU D S S |

i,5,k€N mel (4,5,k) B m + 1

> >

1,5,k€ENmel(i,j,k)

/ (o (£10) 2 ditdor(w)

mlits
2m + 1 Jom
o o — i,k
< > X M6 (v, (T 1)) + 27174
i,j.kEN mel(i,j,k) 2m?
< 30T+ Y2 <

1€N

IA

bl do

Due to [3, Lemma 2.1,2.3] there exist constants ¢, c3 > 0 such that

L B Y okirq 28 (k+ D!k +1)° cs
w(k+1)r+1.§/ot = = e+ U T B+ ) = a(k + P
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Moreover

o1 > > 1 = 0.
1,7,k € N 1,7 €N
z € Tlijk z € 85 N U

We may estimate

e 2w XS w0 [P e - 2y

1,5,k€ENmel(i,j,k)
mits 9
RN s el
i i ke N melliik) m
z e T\_i,j,kj

v

for z € E. Let now z € 9B™ \ E and 0 < s. There exists a minimal 7(z) € N such
that z € OB™ \ U}, for [i,7] > n(z). Observe that z € U}; ;| for [i,7] < n. In
particular there exists k;; such that z € T{; jx, | for |4,7] <n(z). Let

J(n(2)) == {3, 0) : [4,5] <n(z), [l = kil <1}

Observe that #.J(n(z)) < 3n(z). If (4,5,k) ¢ J(n(2)) then z € D|; |. Therefore we
may estimate:

mBtl )
¢(f7 2, S) S Zj;eNmeIZ W |pm(2)‘
< > m? |pm(2)]* + > m’ |p(2)[?
(1,7, k) € J(n(z)) (t, 7, k) & J(n(z))
mEI(Z,j,]{?) mEI(Z,j,k)
< Z 4mP + Z KmP2=2Vm <« .
(4,,k) € J(n(z)) (4,7,k) ¢ J(n(2))
m € 1(1,7,k) m € 1(1,7,k)

We have proved that £ = E*(f) for 0 < s < (3. Moreover

&(f,z,8+e) < c > m=F |pm(2)]”

1,5,k €N
m € 1(i, j, k)
1 .
< 4es Z = < 4Kecy Z o—elidkl « g,
ijkeN (Kmti,jka) i,j,kEN
m € I(i,j, k)

for all z € 9B". We conclude that E°*¢(f) = () for ¢ > 0. ]
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4 Examples

We consider a pseudometric p(z,w) = /1 —|(z,w)| and a natural measure ¢ on
OB™. Let us define ¢ : C"' x R 3 (2,0) — ¢(z2,0) € Q=0B"\ C"! x {0} Cc C™
B(z,0) = exp(2mif) ( ol )
z,0) = exp(2mi
VIHIEE Vil s Hzll

Let M C C™ ! be such that S(z,w) = 0 for z,w € M. Let z,w € M be such
that [|¢(z) — ¢(w)|| < 2. Observe that ||¢(z) — op(w)|* = 2 — 2R(p(2), d(w)) < 2.
In particular

20(¢(2), $(w))* = 2 = 2[(9(2), p(w))| = [|6(2) — p(w)]|* (4.1)

for z,w € M such that ||¢(z) — o(w)]| < 2.
We prove the following fact:

Lemma 4.1. Let us consider the maximum norm ||o|| on R™. We have the property:
ng (T) — ng+1 (T X [0, 1])

Proof. Let ¢ > 0. Observe that K(T,¢) x [0,1] € K(T x [0,1],e) C K(T,¢) x
[—e,1+¢]. We may estimate

LMK(T,e) L™ (K(T,e) % [0,1]) < LY K(T x [0,1],€))

em—a em—a - em+1—(a+1)
£m+1 (K(T7 6) X [_87 11— 8]) Q’m(K(Tv 8))
< em+1—(a+1) - em—a (1 + 28)
This proves the required property. [

Example 4.2. Let 0 <a <2n—2and 3 =n—1- 5. Let £ be a set of type G5
such that £ C M and Q*(E) = 0 for s > a. There exists f € O(B") N L?*(B") such
that E°(f) = 0 and ¢(E x [0,1]) = E*(f) for 0 < s < 3.

Proof. Due to Lemma 4.1 and Lemma 2.2 we conclude that Q*(F x [0,1]) = 0 for
s> a+ 1.

Let K be a compact subset of M. There exist constants r; = ri(K),re =
ro(K) > 0 such that

|6 = &all < [9(§1) — d(&)ll < 72 (161 — &l -

In particular due to Lemma 2.6 we have Q*(¢(E x [0,1])) = 0 for s > o+ 1. Due
to (4.1) we conclude that Q3 (¢(E x [0,1])) = 0 for s > a + 1. In particular due to
Lemma 2.2 we have 05 (¢(E x [0,1])) = 0 for s > a + 1. Now due to Theorem 3.8
there exists a function f with the required properties. [

Example 4.3. There exists E - a compact, uncountable, circular set of type G in
OB", a function f € O(B") N L*(B") such that E"7'(f) = 0 and £ = E*(f) for
0<s<n-—1

Proof. Due to Lemma 2.5 there exists a compact, uncountable set K such that
K c[0,1] and @Q*(K) = 0 for s > 0. Now it is enough to use the Example 4.2 for
a = 0. ]
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Example 4.4. There exists F - a set of type G5 and a holomorphic function f €
O(B") N L*(B") such that E"1(f) =0 and £ = E*(f) for 0 < s < n— 1. Moreover
05, (E) = oo for 0 <a <2n —2.

Proof. We denote x4(z) = (1 — Hz||2)s. Let e; = (1,0, ...,0) and

(e} 2mn

2
9(21, ey 2n) = Z sz "

m=2
First we show that g € O(B") N L*(B") and e¢; € E*(g) for 0 < s <n — 1.
Using [3, Theorem 2.2] we may estimate

oo 22mnﬂ_n(22m |

2 2n ) — 1
ag” = — = < — <
/Bn 91l > m2(22m + n)l = mz:z m2 =%

m=2

Let 0 <e<n—1and s =n—1—c¢. Due to [3, Theorem 2.2, Lemma 2.3| there
exists ¢ > 0 such that

/ |g|2 Xsd£2 = Z
Dey

m=

g (92m)|
m2 (s +22m + 1) 127 (s + )]
_ g2mn (92m)]
= 2 (1 4 22m) 22ms (2]

m=2

2
o]

0o 22mn

> — —l 227718 —
— = m2n22m (s+1) Z

There exists a sequence T' = {¢;}
1,7 € N. Let now

;en dense in OB™ and such that &}; ;) = ;1) for
o0 2mn

fk(Z) = Z

<Z’ §k> 22m +22k

m=k-+1
and Ay, = {22’” - 22k}oo_k+1. Observe that fg. | fil” d€2" < fg. [g]° d€2" and &, €
E5(fy) for 0 < s <mn—1. Moreover A; N A; = () for i # j. Let
f=>27%f.
keN

We can estimate

‘f|2 d£2n — Z 2—2k ‘/]Bn |fk|2 d£2n S ‘/]Bn ‘g|2 d£2n

B keN

In particular due to [3, Theorem 2.7] we conclude that E"~1(f) = 0.

We may estimate Jog, [ o022 = Snen Jog, [fol xad22 > i, |ful? vad? = oo
for 0 < s <n—1. In particular T C E*(f) for 0 < s <n— 1.

Let 0 < a < 2n — 2. It is known that E°(f) is a circular set of type Gs in
OB". Let 6 > 0 and {K;},.y be a sequence of compact, circular sets such that
T C E*(f) C Ujen Ki C 0B™ and d,(K;) < 26. Due to Bair’s Theorem we conclude
that there exists K;, with a non empty interior in JB". In particular due to 0 <
H2"2(0B") < oo we have H(K;,) = 0o and Yoy 70 (KG) > 75(Ky,) > HY (Ky,) =
oo. Therefore Q;‘)‘(Es(f)) = oo and @;‘)‘U(Es(f)) =oofor 0 <a<2n—2. [
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