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Abstract

A notion of dimensional dual polar spaces of polar type is given with a

family of new examples. Nonexistence is shown for those of dimension 3, while

there are just two isomorphism classes for those of dimension 2.

1 Introduction

A family S of d-(projective) dimensional subspaces of a Desarguesian projective
space PG(n, q) over a finite filed GF (q) is called a d-dimensional dual hyperoval
(resp. dimensional dual arc) if the following conditions (i)–(iv) (resp. (i)–(iii)) are
satisfied:

(i) any two distinct members of S intersect at a projective point.

(ii) any three mutually distinct members of S intersect trivially.

(iii) the members of S generate PG(n, q).

(iv) S consists of (qd+1 − 1)/(q − 1) + 1 members.

In this paper, PG(n, q) (or sometimes the underlying vector space V of rank n + 1
over GF (q)) is called the ambient space of S. We also use the word ‘rank’ to refer
to ‘vector space dimension’.

Let f be one of the following forms on the vector space V underlying PG(n, q):
a nondegenerate alternating form, a nondegenerate Hermitian form (in this case we
assume that q is a square), a nonsingular quadratic form. The form f is also referred
to as a symplectic, unitary or orthogonal form, respectively. A d-dimensional dual
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arc S with ambient space V is said to be of polar type with respect to f if each
member of S is a maximal totally isotropic subspace of V with respect to f . We
also say that S is of symplectic, unitary or orthogonal polar type, according as f is
a symplectic, unitary or orthogonal form.

The dimension d + 1 of a maximal totally isotropic space is related to the rank
n +1 of the ambient space V as follows. If f is a symplectic form, n + 1 is even and
n + 1 = 2(d + 1). If f is unitary, d + 1 is the largest integer with d + 1 ≤ (n + 1)/2,
namely n + 1 = 2(d + 1) or n = 2(d + 1) according as n is odd or even. If f is
orthogonal and n is even, then n = 2(d + 1). If f is orthogonal and n is odd, there
are two cases: n + 1 = 2(d + 1) or n + 1 = 2(d + 2). In the former (resp. latter)
case, S is said to be of plus (resp. minus) orthogonal polar type.

In this paper, we consider the case when n = 2d + 1, that is, either f is a
symplectic form, a unitary form with n odd, or an orthogonal form of plus type.
Notice that if q is even, the bilinear form associated with an orthogonal form is
symplectic, whence a dual hyperoval of plus orthogonal polar type is automatically
of symplectic polar type.

As far as the author knows, there are only two examples known for dimensional
dual hyperovals of polar type. One is the remarkable 2-dimensional dual hyperoval
M in PG(5, 22) of unitary polar type admitting the Mathieu group M22 inside
Aut(M). The other example is a 2-dimensional dual hyperoval D in PG(5, 2) which
satisfies Condition (T ) of Del Fra [1], namely dim(〈X, Y 〉 ∩ Z) = 1 for all mutually
distinct members X, Y, Z of D. This is of orthogonal polar type, though it seems to
be less known.

The main aim of this paper is to provide a new family of examples of dimensional
dual hyperovals of polar type, which includes D. They are found in a family Sd+1

m,h

constructed by Yoshiara [7]. It turns out that Sd+1
−2h,h is always of plus orthogonal type

for each even d (Proposition 7), while the existence of a d-dimensional dual arc of plus
orthogonal type implies that d is even (Proposition 3). A similar method is applied
to a class of dimensional dual hyperovals constructed by Taniguchi [5], but we found
no example there (Proposition 8). The subsidiary aim is to provide preliminary
remarks to dimensional dual hyperovals of polar type, from which nonexistence of
those of dimension 3 is obtained (Proposition 5). Classification of those of dimension
2 is also given (Proposition 4).

2 Some general results

In this section, we assume that S is a d-dimensional dual arc in PG(2d+1, q) which
is of polar type with respect to a form f on the underlying space V of PG(2d+1, q).
For a subspace U of V , we denote by U⊥ the subspace of V consisting of vectors
x ∈ V with bf(x, y) = 0 for all y ∈ U , where bf = f unless f is of an orthogonal
form and bf denotes the associated bilinear form with f if f is an orthogonal form.
Note that bf is nondegenerate, in the sense that V ⊥ = {0}. We frequently use
the following properties for subspaces A, B of V without further references, where
dim(U) denotes the projective dimension of PG(U).

dim(A⊥) = 2d − dim(A), (A⊥)⊥ = A,

〈A, B〉⊥ = A⊥ ∩ B⊥, (A ∩ B)⊥ =
〈

A⊥, B⊥

〉

,
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A ⊆ B if and only if A⊥ ⊇ B⊥. In particular,
A⊥ = A if A is a maximal totally isotropic subspace of V .

The first property we note on dimensional dual arc of polar type is as follows.

Lemma 1. For any mutually distinct members X, Y, Z of S, we have

dim(〈X, Y 〉 ∩ Z) = d − 1.

In particular, a 2-dimensional dual hyperoval in PG(5, q) satisfies Property (T) in
[1].

Proof. As X = X⊥ and Y = Y ⊥ by the definition of dual arcs of polar type,
we have (X ∩ Y )⊥ =

〈

X⊥, Y ⊥

〉

= 〈X, Y 〉. As X ∩ Y is a projective point of

PG(2d + 1, q), 〈X, Y 〉 is a hyperplane of PG(2d + 1, q), whence Z ⊆ 〈X, Y 〉 or the
equality in the lemma holds. In the former case, Z is perpendicular to X ∩ Y , and
hence the maximality of Z as a totally isotropic subspace implies that Z contains
X∩Y . However, this contradicts that three distinct members of S intersect trivially.

�

The next lemma is also easy to verify, but it turns out to be very helpful.

Lemma 2. Fix a member X of S and let π be a (d− i)-dimensional subspace of X
with 1 ≤ i ≤ d − 1. For a member A ∈ S \ {X}, we have X ∩ A ∈ π (resp. 6∈ π) if

and only if dim(A ∩ π⊥) = i (resp. i − 1). Furthermore,
〈

A ∩ π⊥, π
〉

is a maximal

totally isotropic subspace of PG(2d + 1, q).

Proof. The (projective) dimension of π⊥ is 2d− (d− i) = d+ i. As A is maximal

totally isotropic, we have
〈

A, π⊥

〉⊥

= A⊥ ∩ π = A ∩ π, whence dim(
〈

A, π⊥

〉

) =

2d − dim(A ∩ π). Thus

dim(A ∩ π⊥) = dim(A) + dim(π⊥) − dim(
〈

A, π⊥
〉

)

= d + (d + i) − (2d − dim(A ∩ π))

= i + dim(A ∩ π).

As A ∩ π is a subspace of a projective point A ∩ X, we have dim(A ∩ π) = 0 or −1
according as A ∩ X ∈ π or not. Thus the former part of Lemma follows.

As π and A are totally isotropic, the subspace
〈

A ∩ π⊥, π
〉

is a totally isotropic

subspace and π ⊆ π⊥. Then A∩ π⊥ ∩ π = A∩ π, and the dimension of
〈

A ∩ π⊥, π
〉

is dim(A∩π⊥)+dim(π)−dim(A∩π) = i+dim(A∩π)+dim(π)−dim(A∩π) = d.
This shows the latter part of Lemma. �

We state an easy consequence of the existence of dimensional dual arcs of plus
orthogonal type.

Proposition 3. Assume that there is a d-dimensional dual arc of plus orthogonal
type in PG(2d + 1, q). Then d is even.
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Proof. Let V be the underlying vector space of PG(2d + 1, q) equipped with an
orthogonal form f with respect to which S is of polar type. Note that |S| ≥ 3, as
two distinct members of S span a hyperplane of PG(2d + 1, q). Recall that the set
of maximal totally isotropic subspaces of V with respect to f fall into two classes
with the property that two subspaces belong to the same class if and only if their
intersection has even codimension in each. Let C1 and C2 be these two classes. We
may assume that C1 contains a member X of S. Now suppose d is odd. Then every
member Y in S \{X} belongs to C2, as the codimension of a point X ∩Y in X is an
odd number d. However, then two distinct members Y, Z of S \ {X} lie in the same
class C2, whence the codimension d of Y ∩Z in Y would be even. This contradiction
shows that d should be even. �

Note that later we show the existence of d-dimensional dual hyperovals of plus
orthogonal type for every even integer d ≥ 2 (Proposition 6). Now we change to
examine d-dimensional dual hyperovals of polar type for small d.

Consider the case d = 2. Then it follows from Lemma 1 that S satisfies Property
(T) in [1, Subsection 1.1]. As is remarked in [1, Subsection 2.5], we can afford a
structure of a Steiner triple system on the members of S with block size q + 2, from
which we have q = 2 or 4. For each possibility of q, there is a unique 2-dimensional
dual hyperoval in PG(5, q) with Property (T) up to isomorphism [1, Theorem 2,
Theorem 4]. The resulting list of members of S are given in [1, Subsections 4.3,4.6].
It is not difficult to see that it is of polar type with respect to a plus orthogonal
(resp. unitary) form if q = 2 (resp. 4). Thus classification of 2-dimensional dual
hyperovals of polar type has already been done in [1]. We state the result here for
convenience.

Proposition 4. There are exactly two isomorphism classes of 2-dimensional dual
hyperovals of polar type in PG(5, q). One is of plus orthogonal type for q = 2, and
the other is of unitary type for q = 4.

It is worth mentioning that, instead of quoting the results by Del Fra, we can
provide more explicit and constructive proof (at least in the case of unitary polar
type), by exploiting (weak) o-polynomials which determine 1-dimensional dual hy-
perovals on the isotropic planes constructed via Lemma 2. Based on the resulting
presentation of S, we can also explicitly see the action of M22 on the members. See
[4] for details.

Now we consider the case d = 3. In contrast with the case d = 2, there is no
example.

Proposition 5. There is no 3-dimensional dual hyperoval of polar type in PG(7, q).

Proof. For a while, we proceed with general dimension d. Let S be a d-
dimensional dual hyperoval in PG(2d + 1, q), which is of polar type with respect
to a symplectic, unitary or orthogonal form f on the underlying vector space of
PG(2d + 1, q). Fix a member X of S and set S := S \ {X}. Choose a hyperplane
π of X and define

S(π) := {A ∈ S | A ∩ X ∈ π},
L(A) := A ∩ π⊥, and T (A) := 〈L(A), π〉 for A ∈ S(π).
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From Lemma 2, L(A) and T (A) are isotropic 1 and d-subspaces respectively for
every A ∈ S(π). In particular, L(A) 6⊆ X and hence T (A) = 〈L(A), π〉 is a totally
isotropic d-subspace distinct from X.

There are exactly (qd−1)/(q−1) members of S(π), as π consists of (qd−1)/(q−1)
points, each of which is uniquely realized as A∩X for A ∈ S(π). If A 6= B ∈ S(π),
then A∩X 6= B∩X. Then L(A) 6= L(B), as L(A)∩π = A∩X and L(B)∩π = B∩X.

Let X, Y1, . . . , Yq′ be all the totally isotropic subspaces of PG(2d + 1, q) con-
taining the (d − 1)-dimensional totally isotropic subspace π. Then q′ = q,

√
q or

1 according as f is symplectic, unitary or orthogonal (of plus type). Notice that
q′ ≤ q in any case. As we saw above, the subspace T (A) for each A ∈ S(π) coincides
with Yj for some j = 1, . . . , q′. Thus we can consider a map sending A ∈ S(π) to
T (A) ∈ {Y1, . . . , Yq′}.

Suppose that T (A) = T (B) but the line L(A) is skew to the line L(B). Then
〈L(A), L(B)〉 is a 3-subspace in a maximal totally isotropic d-subspace T := T (A) =
T (B). Now we assume d = 3. Then we have T = 〈L(A), L(B)〉. This implies that
T ⊆ 〈A, B〉 = (A ∩ B)⊥ by the maximality of A and B, whence A ∩ B ∈ T by the
maximality of T . As π is contained in the totally isotropic subspace T , this impies
that A ∩ B ∈ π⊥, namely A ∩ B = L(A) ∩ L(B). However, this contradicts our
assumption.

Hence if T (A) = T (B), then L(A) and L(B) intersect in T (A) = T (B). We
claim that each Yj (j = 1, . . . , q′) is realized as T (A) for at most q + 1 members A
of S(π). We may assume that Yj = T (A) for some A ∈ S(π). If B ∈ S(π) \ {A}
with T (A) = T (B) exists, then L(B) intersects L(A) at a point A ∩ B. Note that
A∩X 6= A∩B, as no three distinct members of S share a point in common. Hence
there are at most q possible B ∈ S(π) other than A with T (A) = T (B).

Therefore we have at most (q + 1)q′ members in S(π). Then we have

|S(π)| = (q3 − 1)/(q − 1) = 1 + q + q2 ≤ (q + 1)q′ ≤ (q + 1)q,

which is impossible. �

3 Yoshiara’s dimensional dual hyperovals

In the remaining sections of this note, to each d-dimensional dual hyperoval in
PG(2d + 1, q) belonging to known classes (constructed by Yoshiara and Taniguchi)
we examine whether or not it has a structure of polar type. We first examine the
family constructed by Yoshiara [7].

Let d be a positive integer with d ≥ 2, and let m and h be positive integers
coprime with d + 1 and 1 ≤ m, h ≤ d. We denote respectively by α and β the
Galois automorphisms in Gal(GF (2d+1)/GF (2)) given by xα = x2m

and xβ = x2h

(x ∈ GF (2d+1)). Observe that both α and β generate Gal(GF (2d+1)/GF (2)), as
(m, d+1) = (h, d+1) = 1. Then the map α−1 from GF (2d+1)× to itself defined by
xα−1 = xα/x (x ∈ GF (2d+1)) is bijective. We denote its inverse map by 1/(α − 1).
Similarly we define 1/(1−α), β−1, 1−β and 1/(β−1). The composite of 1/(α−1)
and β − 1 is denoted (β − 1)/(α− 1), etc. We regard U := GF (2d+1)×GF (2d+1) as
a vector space over GF (2) of rank 2(d + 1), underlying PG(U) ∼= PG(2d + 1, 2).
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With the above setting, Yoshiara constructed a d-dimensional dual hyperoval
Sd+1

m,h as follows: for t ∈ GF (2d+1), define a rank (d + 1)-subspace of U by

S(t) = {(x, xαt + xtβ) | x ∈ GF (2d+1)}. (1)

Let A be the subspace of U generated by all members of Sd+1
m,h (this is also referred

to as the ambient space of Sd+1
m,h ). We have either A = U or A is a hyperplane of U ,

according as m + h 6= d + 1 or m + h = d + 1 [7, Proposition 3].

Then the family Sd+1
m,h := {S(t) | t ∈ GF (2d+1)} is a d-dimensional dual

hyperoval in PG(A). For convenience, Sd+1
m,h is sometimes denoted Sd+1

α,β or Sd+1
m′,h

with an integer m′ congruent to m modulo d + 1.

We now examine when Sd+1
m,h is of polar type, that is, there exists a symplectic,

orthogonal or unitary form f on A with respect to which each member of Sd+1
m,h is

a maximal totally isotropic (or singular if f is orthogonal) subspace. As the scalar
field is GF (2), the form f is not unitary. Notice that A = U , for otherwise A is
of rank 2d + 1 and any member of Sd+1

m,h , which is a totally isotropic subspace of A,
would have rank at most d. Thus A = U and then m + h 6= d + 1. Furthermore, as
we work in characteristic 2, the associated bilinear form with an orthogonal form is
symplectic. Thus we may assume that f is symplectic (and then examine whether
it is associated with an orthogonal form).

Proposition 6. The following conditions are equivalent for the d-dimensional dual
hyperoval Sd+1

m,h with m + h 6= d + 1, 1 ≤ m, h ≤ d and (m, d + 1) = (h, d + 1) = 1.

(i) Sd+1
m,h is of polar type with respect to a symplectic form f on U .

(ii) The dimension d is even, m ≡ −2h (mod d + 1) and each member of Sd+1
−2h,h

is totally isotropic with respect to the symplectic form f on U given by

f((x, y), (u, v)) = Tr(xv2h

+ uy2h

) (2)

for any (x, y), (u, v) ∈ U , where Tr denotes the trace function of the extension
GF (2d+1)/GF (2).

Proof. We first check that Condition (ii) implies Condition (i). Note that m ≡
−2h (mod d+1) is coprime with d+1, as d is even and (h, d+1) = 1. Then Sd+1

−2h,h =

Sd+1
β−2,β is well-defined. It is immediate to see that the form defined by Equation (2)

is GF (2)-bilinear. As f((x, y), (x, y)) = Tr(xy2h
+ y2h

x) = Tr(0) = 0 for every
(x, y) ∈ U , the form f is alternating. If f((x, y), (u, v)) = 0 for all (u, v) ∈ U , then
Tr(bx) = 0 = Tr(cy2h

) for all b, c ∈ GF (2d+1). From the separability of extension
GF (2d+1)/GF (2) this implies that x = y2h

= 0 (see for example, [3, Theorem 2.24]),
whence (x, y) = (0, 0). Thus the form f is nondegenerate.

It remains to check that every member of Sd+1
β−2,β is isotropic. Each member

S(t) (t ∈ GF (2d+1)) of Sd+1
−2h,h = Sd+1

β−2,β consists of vectors (x, xβ−2
t + xtβ) for x ∈
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GF (2d+1). Then for every x, y ∈ GF (2d+1) we have

f((x, xβ−2

t + xtβ), (y, yβ−2

t + ytβ))

= Tr(x · (yβ−2

t + ytβ)β) + y · (xβ−2

t + xtβ)β)

= Tr(xyβ−1

tβ + xyβtβ
2

+ xβ−1

ytβ + xβytβ
2

)

= Tr((xyβ−1

tβ + xβ−1

ytβ) + (xyβ−1

tβ + xβ−1

ytβ)β)

= 0.

This shows that each member of Sd+1
β−2,β is in fact isotropic.

Now we will show that Condition (i) implies Condition (ii). We consider the
following subspace of GF (2d+1) for each t ∈ GF (2d+1)×.

Y (t) := {xαt + xtβ | x ∈ GF (2d+1)}

Then Y (t) is the image of a GF (2)-linear map GF (2d+1) to itself given by x 7→
xαt + tβx. As β − 1 and 1/(α − 1) are well-defined, it is easy to see that the kernel
of this map coincides with {0, t(β−1)/(α−1)}. Thus Y (t) is a hyperplane of GF (2d+1).
On the other hand, for t ∈ GF (2d+1)× and x ∈ GF (2d+1) we have

Tr((t−(αβ−1)/(α−1))(xαt + xtβ))

= Tr(xαt1−(αβ−1)/(α−1) + xtβ−(αβ−1)/(α−1))

= Tr((xt−(β−1)/(α−1))α + (xt−(β−1)/(α−1)))

= 0,

where Tr denotes the trace function of extension GF (2d+1)/GF (2). Hence Y (t) is
contained in the kernel of the function Tt−(αβ−1)/(α−1) , where Tb for b ∈ GF (q) is
defined by

Tb(x) := Tr(bx)

As Tb (b ∈ GF (2d+1)×) is a GF (2)-linear form onto GF (2), the kernel of Tb is
a hyperplane of GF (2d+1). Hence we conclude that the following holds for every
t ∈ GF (2d+1)×.

Y (t) = Ker(Tt−(αβ−1)/(α−1)) (3)

We assume that there is a symplectic form f on U = GF (2d+1)×GF (2d+1) with
respect to which every member of Sd+1

α,β is totally isotropic. As S(0) = {(x, 0) | x ∈
GF (2d+1)} is totally isotropic, we have

f((x, 0), (y, 0)) = 0 (4)

for all x, y ∈ GF (2d+1). For every t ∈ GF (2d+1)×, the member S(t) is a totally
isotropic space containing S(t) ∩ S(0) = {(0, 0), (t(β−1)/(α−1), 0)}. Thus for every
x ∈ GF (2d+1) we have

0 = f((t(β−1)/(α−1), 0), (x, xαt + xtβ))

= f((t(β−1)/(α−1), 0), (x, 0)) + f((t(β−1)/(α−1), 0), (0, xαt + xtβ))

= f((t(β−1)/(α−1), 0), (0, xαt + xtβ)), (5)
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using Equation (4).
The above calculation motivates the definition of the following form g on U :

g(x, y) := f((x, 0), (0, y)) = f((0, y), (x, 0)) (6)

for x, y ∈ GF (2d+1). As f is GF (2)-bilinear, it is easy to see that g is GF (2)-bilinear
as well. For fixed a ∈ GF (2d+1)×, we define a GF (2)-linear form on GF (2d+1) by

ga(y) := g(a, y). (7)

With this notation, the above result (5) shows

gt(β−1)/(α−1)(xαt + xtβ) = 0

for all t ∈ GF (2d+1)× and x ∈ GF (2d+1). Hence Y (t) is contained in the kernel
of a GF (2)-linear form gt(β−1)/(α−1) . Notice that Ker(gb) is a hyperplane for every
b ∈ GF (2d+1)×, for otherwise 0 = gb(y) = g(b, y) = f((b, 0), (0, y)) for every y ∈
GF (2d+1) and then f((b, 0), (x, y)) = 0 for all (x, y) ∈ U by Equation (4), which
contradicts the nondegeneracy of f . Thus for all t ∈ GF (2d+1)× we have

Y (t) = Ker(gt(β−1)/(α−1)). (8)

For each t ∈ GF (2d+1)× we have two linear forms gt(β−1)/(α−1) and Tt−(αβ−1)/(α−1)

on GF (2d+1) which have the same kernels, in view of (3) and (8). As these forms
are maps into the two element field, we conclude that gt(β−1)/(α−1) = Tt−(αβ−1)/(α−1) for
every t ∈ GF (2d+1)×, or equivalently,

gt = Ttγ (9)

where tγ := t−(αβ−1)/(β−1) for every t ∈ GF (2d+1)×. Notice that γ is multiplicative
on GF (2d+1)×, that is,

(ts)γ = tγsγ (10)

for all s, t ∈ GF (2d+1)×

Then it follows from GF (2)-linearity of g in the first variable and Equation (9)
that for every s, t ∈ GF (2d+1)× with s 6= t and y ∈ GF (2d+1) we have

Tr((s + t)γy) = T(s+t)γ (y)

= g(s + t, y) = g(s, y) + g(t, y)

= Tr(sγy) + Tr(tγy) = Tr((sγ + tγ)y).

In particular, we have

(s + t)γ = sγ + tγ (11)

for all s, t ∈ GF (2d+1)× with s 6= t. We extend γ to GF (2d+1) by setting 0γ = 0.
Then γ is a GF (2)-linear map on GF (2d+1), which is not identically 0. Furthermore,
γ is multiplicative on GF (2d+1) by Equation (10). Hence γ is an automorphism of
extension GF (2d+1)/GF (2), and there exists an integer ℓ with γ = βℓ and 0 ≤ ℓ ≤ d,
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as the automorphism β is a generator of Gal(GF (2d+1)/GF (2)). We also set α = βn

for some integer n with 1 ≤ n ≤ d.
From the definition of γ (just after claim (9)) that yγy(αβ−1)/(β−1) = 1 for every

y ∈ GF (2d+1)×. Take any x ∈ GF (2d+1)× and apply this definition to y = xβ−1. As
γ = βℓ and α = βn, we have (xβ/x)βℓ

(xαβ−1) = (xβℓ+1
/xβℓ

)(xβn+1
/x) = 1. Hence

xβℓ+1+βn+1

= xβℓ+1

for every x ∈ GF (2d+1)×. As yβ = y2h
(y ∈ GF (2d+1)), this implies that

2h(ℓ+1) + 2h(n+1) ≡ 2hℓ + 1 (mod 2d+1 − 1). (12)

Applying [2, p.273, 4.4(c)], we conclude that {h(ℓ+1), h(n+1)} ≡ {0, hℓ} (mod d+
1), and therefore

{ℓ + 1, n + 1} ≡ {0, l} (mod d + 1),

as (h, d + 1) = 1. If n + 1 = d + 1, then αβ = βd+1 = 1 and then tγ = 1 for all
t ∈ GF (2d+1)× from definition of γ, which is impossible. Thus n+1 6= 0 (mod d+1),
and therefore ℓ + 1 = d + 1 and n + 1 = l = d. Then we have α = βd−1 = β−2,
which is equivalent to m ≡ −2h (mod d + 1). Then d is even, as m and h are
coprime with d + 1. Furthermore, xγ = x−(αβ−1)/(β−1) = x−(β−1−1)/(β−1) = xβ−1

for
all x ∈ GF (2d+1)×. Summarizing, we have

α = β−2, m ≡ −2h (mod d + 1), d is even, γ = β−1, so that
gt = Ttβ−1 and Y (t(α−1)/(β−1)) = Ker(gt) = Ker(Ttβ−1 )

It remains to find the explicit shape of f . First we will show that the sub-
space {(0, y) | y ∈ GF (2d+1)} of U = GF (2d+1) × GF (2d+1) is isotropic. Since
Y (t(α−1)/(β−1)) = Ker(Ttβ−1 ), we have Y (t(α−1)/(β−1)) = Y (s(α−1)/(β−1)) if and only
if the map Ttβ−1 coincides with the map Tsβ−1 , as these maps take values in GF (2).

Furthermore, we have Ttβ−1 = Tsβ−1 if and only if tβ
−1

= sβ−1
(see [3, Theorem 2.24]),

which is equivalent to to the condition t = s. Thus {Y (t) | t ∈ GF (2d+1)×} ex-
hausts 2d+1−1 hyperplanes of GF (2d+1). Now choose any two vectors (0, a) and (0, b)
of U . From the above remark, there is a hyperplane Y (t) for some t ∈ GF (2d+1)×

which contains a subspace of GF (2d+1) spanned by a and b. (Note that d ≥ 2.)
We will show that f((0, u), (0, v)) = 0 for every u, v ∈ Y (t). This implies that

f((0, a), (0, b)) = 0 and shows that the subspace {(0, y) | y ∈ GF (2d+1)} is isotropic,
as we claimed. Recall that S(t) = {(x, xβ−2

t + xtβ) | x ∈ GF (2d+1)} is isotropic.
Then for every x, y ∈ GF (2d+1)× we have

0 = f((x, xβ−2

t + xtβ), (y, yβ−2

t + ytβ))

= g(x, yβ−2

t + ytβ) + g(y, xβ−2

t + xtβ) + f((0, xβ−2

t + xtβ), (0, yβ−2

t + ytβ))

= Tr(xβ−1

yβ−2

t + xβ−1

ytβ + yβ−1

xβ−2

t + yβ−1

xtβ)

+f((0, xβ−2

t + xtβ), (0, yβ−2

t + ytβ))

= Tr((xβ−1

yβ−2

+ yβ−1

xβ−2

)t + {(xβ−1

yβ−2

+ yβ−1

xβ−2

)t}β)

+f((0, xβ−2

t + xtβ), (0, yβ−2

t + ytβ))

= f((0, xβ−2

t + xtβ), (0, yβ−2

t + ytβ)),
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using Equation (4) and Equation (9) with γ = β−1. Thus we have f((0, u), (0, v)) = 0
for all u, v ∈ Y (t), and therefore the subspace {(0, y) | y ∈ GF (2d+1)} is totally
isotropic.

Finally, we derive the explicit shape of f . For any (x, y), (u, v) ∈ GF (2d+1), we
have

f((x, y), (u, v)) = f((x, 0), (u, 0)) + f((x, 0), (0, v))

+f((0, y), (u, 0)) + f((0, y), (0, v))

= g(x, v) + g(u, y),

as S(0) = {(x, 0) | x ∈ GF (2d+1)} and {(0, y) | y ∈ GF (2d+1)} are totally isotropic
and f((0, y), (u, 0)) = f((u, 0), (0, y)) = g(u, y). As g(x, v) = gx(v) = Tr(xβ−1

v), it
follows from the above equation that

f((x, y), (u, v)) = Tr(xβ−1

v + uβ−1

y)

= Tr(xvβ + uyβ)

for all (x, y), (u, v) ∈ U = GF (2d+1) × GF (2d+1). This completes the proof that
condition (i) implies condition (ii). �

In fact, the dual hyperovals Sd+1
−2h,h with d even and h coprime with d +1 are not

only of symplectic type, but also of plus orthogonal type.

Proposition 7. Let d be an even integer with d ≥ 2 and let h be an integer with
1 ≤ h ≤ d coprime with d + 1. Then there exists a unique orthogonal form f of plus
type on the ambient space of PG(2d + 1, 2) with respect to which Sd+1

−2h,h is of polar
type.

Proof. Define a form Q on U by

Q((x, y)) := Tr(xy2h

).

It is straightfroward to verify that the associated form with Q coincides with a
symplectic form f given in Proposition 6. As

Q((x, x2−2h

t + xt2
h

)) = Tr(x1+2−h

t2
h

) + Tr(x1+2h

t2
2h

)

= Tr(x1+2−h

t2
h

) + Tr(x1+2−h

t2
h

) = 0,

we conclude that each member S(t) of Sd+1
−2h,h is totally singular with respect to Q.

In particular, Q is a nonsingular orthogonal form of plus type. If both Q and Q′ are
associated with the form f , the form Q−Q′ satisfies that Q(x+y)−Q(x)−Q(y) =
f(x, y) = Q′(x + y) − Q′(x) − Q′(y) for every x, y ∈ U , whence Q′ − Q is a GF (2)-
linear form on U , which vanishes on all members S(t) of S. As S generates U , we
conclude Q′ = Q. �
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4 Taniguchi’s dimensional dual hyperovals

Let q = 2e and let n be any positive integer. Regard GF (qn) and U := GF (qn) ×
GF (qn) as vector spaces over GF (q) of rank n and 2n respectively, and choose a
subspace V of GF (qn) of rank d+1 over GF (q). For X = V , GF (qn) or U , we denote
by PG(X) the projective space associated with the vector space X over GF (q). Then
PG(V ) ∼= PG(d, q), PG(GF (qn)) ∼= PG(n−1, q) and PG(U) ∼= PG(2n−1, q). Take
a generator σ of Galois group Gal(GF (qn)/GF (q)).

With these settings, a d-dimensional dual hyperoval T (n, q; V, σ) with ambient
space inside PG(U) is constructed by Taniguchi as follows: for a projective point
[α] of PG(V ), define

T [α] := {(αx, xσα + xασ) | x ∈ V }.

Observe that T [α] is a subspace of U of rank d + 1, which does not depend on
the choice of a representative α ∈ V − {0} for a projective point [α]. Then the
family T (n, q; V, σ) consisting of these d-dimensional subspaces T [α] of PG(U) for
[α] ∈ PG(V ) together with the special subspace T [∞] of PG(U) defined below is a
d-dimensional dual hyperoval [5]:

T [∞] := {(x2, 0) | x ∈ V }.

We examine when T (n, q; V, σ) is of polar type; that is, there exists a symplectic,
orthogonal or unitary form f on the ambient space A (with q = r2 if f is hermitian)
such that each member of T (n, q; V, σ) is a maximal totally isotropic (singular if f
is orthogonal) subspace of A with respect to the form f . As the associated bilinear
form of an orthogonal form is symplectic, we may assume that f is symplectic or
unitary. The maximality of members of T (n, q; V, σ) as totally isotropic subspaces
of A implies that the rank of A is 2(d+1). If n = d+1 and V = GF (qd+1), we have
U = A and the above requirement is satisfied. In the sequel, we restrict ourselves
to examine T (d + 1, q; GF (qd+1), σ). Note that in this case T [∞] = {(x, 0) | x ∈
GF (qd+1)}.

Proposition 8. For every q = 2e, positive integer d with d ≥ 2 and a generator σ
of Gal(GF (qd+1)/GF (q)), the d-dimensional hyperoval T (d + 1, q; GF (qd+1), σ) is
not of polar type.

Proof. We rewrite the original description of T [α] ([α] ∈ PG(V ) = PG(qd+1))
as follows:

T [α] = {(y, α1−σyσ + ασ−1y) | y ∈ GF (qd+1)},
where α1−σ := α/ασ for α ∈ GF (qd+1)×. We consider the following subspace of
GF (qd+1) for each [α] ∈ PG(V ):

Y [α] := {α1−σxσ + ασ−1x | x ∈ GF (qd+1)}.

This does not depend on the choice of a representative for a point [α], as (kα)1−σ =
α1−σ for k ∈ GF (q)×. For x ∈ GF (qd+1)×, we have α1−σxσ + ασ−1x = 0 if and
only if xσ−1 = (α2)σ−1, which is equivalent to the condition that x/α2 is fixed by
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〈σ〉 = Gal(GF (qd+1)/GF (q)), whence x ∈ GF (q)α2 = [α2]. Thus the kernel of the
linear map GF (qd+1) ∋ x 7→ α1−σxσ +ασ−1x ∈ GF (qd+1) is of rank 1, and the image
Y [α] of this map is a hyperplane of GF (qd+1) over GF (q).

Notice that Tr(α−(1+σ)(α1−σxσ + ασ−1x)) = Tr((α−2x)σ) + Tr(α−2x) = 0 for
every x ∈ GF (qd+1), where Tr denotes the trace function for the Galois extension
GF (qd+1)/GF (q). Thus the hyperplane Y [α] is contained in Ker(Tα−(1+σ)), where
Tb for b ∈ GF (qd+1) denotes as in [3, Section 2] the linear form from GF (qd+1) to
GF (q) defined by

Tb(x) := Tr(bx).

As α 6= 0, the form Tα−(1+σ) is surjective on GF (q), and hence we have

Y [α] = Ker(Tα−(1+σ)) (13)

by comparing the ranks of these subspaces of GF (qd+1) over GF (q).
Assume now that f is a symplectic or unitary form on U for which every member

of T (d+1, q; GF (qd+1), σ) is totally isotropic. If f is unitary, we assume that q = r2

is a square. Define a map g from GF (qd+1) × GF (qd+1) to GF (q) by

g(x, y) := f((x, 0), (0, y)),

If f is symplectic, it is immediate to see that g is GF (q)-bilinear. If f is unitary, then
f is GF (q)-linear in the first variable but GF (q)-semilinear in the second variable
(that is, f(x, cy + dz) = crf(x, y) + drf(x, z) for x, y, z ∈ GF (qd+1), c, d ∈ GF (q))

For each b ∈ GF (qd+1)×, we denote by gb the map from GF (qd+1) to GF (q)
defined by

gb(y) := g(b, y).

If f is symplectic, gb is GF (q)-linear, while if f is hermitian, gb is GF (q)-semilinear.
However, note that, in either case, the kernel Ker(gb) is a subspace of GF (qd+1)
over GF (q) of rank at least d.

As T [∞] = {(x, 0)| x ∈ GF (qd+1)} is totally isotropic, we have f((x, 0), (y, 0)) =
0 for all x, y ∈ GF (qd+1). As T [α] is totally isotropic and (α2, 0) ∈ T [α]∩ T [∞], we
have

f((α2, 0), (x, α1−σxσ + ασ−1x)) = 0

for all x ∈ GF (qd+1). The left hand side of this equation is

f((α2, 0), (x, 0)) + f((α2, 0), (0, α1−σxσ + ασ−1x)) = g(α2, α1−σxσ + ασ−1x),

using the additivity of f for the second variable, the definition of g and the above
remark that f((α2, 0), (x, 0)) = 0. Hence we showed that g(α2, y) = 0 for all
y ∈ Y [α], namely the kernel of gα2 contains a hyperplane Y [α] of GF (qd+1). No-
tice that Ker(gα2) is a hyperplane of GF (qd+1), for otherwise 0 = g(α2, y) =
f((α2, 0), (0, y)) for all y ∈ GF (qd+1) and then f((α2, 0), (x, y)) = f((α2, 0), (x, 0))+
f((α2, 0), (0, y)) = 0 for all x, y ∈ GF (qd+1), which contradicts the nondegeneracy
of f . Hence we proved

Y [α] = Ker(gα2) (14)

for all α ∈ GF (qd+1)×.
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We now divide into cases. Assume first that f is symplectic. Then gα2 is a GF (q)-
linear map from GF (qd+1) onto GF (q). Recall that every nonzero linear form from
GF (qd+1) to GF (q) is uniquely expressed as Tb for b ∈ GF (qd+1)× [3, Theorem 2.24].
It is easily seen that we have Ker(Tb) = Ker(Tc) for b, c ∈ GF (qd+1)× if and only if
c = bk for some k ∈ GF (q)×. With these remarks and Equations (13) and (14), we
conclude the following.

Assume that f is a symplectic form. For each α ∈ GF (qd+1)× there
exists a unique scalar κ(α) of GF (q)× such that

gα2 = κ(α)Tα−(1+σ). (15)

From GF (q)-linearity of g for the first variable, we have

κ(cα + dβ)Tr((cα + dβ)−(1+σ)y) = g((cα + dβ)2, y) = g(c2α2 + d2β2, y)

= c2g(α2, y) + d2g(β2, y)

= c2κ(α)Tr(α−(1+σ)y) + d2κ(β)Tr(β−(1+σ)y)

= Tr((c2κ(α)α−(1+σ) + d2κ(β)β−(1+σ))y)

for every c, d ∈ GF (q), α, β ∈ GF (qd+1)× and y ∈ GF (qd+1). Thus for c, d ∈ GF (q)
and α, β ∈ GF (qd+1)× we have

κ(cα + dβ)(cα + dβ)−(1+σ) = c2κ(α)α−(1+σ) + d2κ(β)β−(1+σ) (16)

Next we show that the map ρ on GF (qd+1)× defined by

ρ(α) := α−(1+σ) (17)

induces an automorphism of the projective space PG(GF (qd+1)) over GF (q). To
this end, it suffices to show that every projective line of PG(GF (qd+1)) is mapped by
ρ to a projective line of PG(GF (qd+1)). Take independent vectors α, β in GF (qd+1)
over GF (q), and let cα+dβ (c, d ∈ GF (q)) be any nonzero vector in the line spanned
by α and β. Then it follows from Equation (16) that

ρ(cα + dβ) =
c2κ(α)

κ(cα + dβ)
ρ(α) +

d2κ(β)

κ(cα + dβ)
ρ(β),

whence ρ(cα + dβ) lies in the projective line spanned by ρ(α) and ρ(β). This shows
that ρ maps a line to a line, and hence it induces an automorphism of PG(GF (qd+1)).

Then it follows from the fundamental theorem of projective geometry that ρ is
a composite of a field automorphism θ and a GF (q)-linear bijection µ on GF (qd+1).
Notice that ρ is multiplicative on GF (qd+1)× by definition (17). As θ is also multi-
plicative, θ−1ρ = µ is multiplicative as well. Hence µ lies in Gal(GF (qd+1)/GF (q)).
Thus ρ = θµ lies in the group Gal(GF (qd+1)/GF (2)) of field automorphisms. As
q = 2e, we have

ρ(α) = α2ℓ

for all α ∈ GF (qd+1), where ℓ is an integer with 1 ≤ ℓ ≤ e(d+1)−1. From definition
of ρ in (17), we have α1+σρ(α) = 1 for all α ∈ GF (qd+1)×. Thus

1 + qm + 2ℓ ≡ 0 (mod qd+1 − 1),
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where ασ = αqm
for all α ∈ GF (qd+1) and m is an integer with 1 ≤ m ≤ d coprime

with d + 1. In particular, we have qd+1 − 1 ≤ 1 + 2ℓ + qm ≤ 1 + (qd+1/2) + qd,
and then (q/2 − 1)qd ≤ 2. This happens only when q = 2. In this case, at least
one of m and l is less than or equal to d − 1, for otherwise 2d+1 − 1 would divide
1 + 2ℓ + qm = 1 + 2d + 2d = 1 + 2d+1. Then 2d+1 − 1 ≤ 1 + 2ℓ + qm ≤ 1 + 2d−1 + 2d,
whence 2d−1 ≤ 2. This is possible only when d = 2.

Thus (q, d) = (2, 2) is the only remaining case. In this case, the ambient space
of T (3, 2; GF (23), σ) is PG(4, 2) or PG(5, 2). In the first case, every 2-dimensional
subspace is not totally isotropic. Thus the latter case should happen. There are
exactly two isomorphism classes of 2-dimensional dual hyperovals in PG(5, 2) [1,
Theorem 2,3]. Every dimensional dual hyperoval in one class satisfies Condition (T );
namely, dim(X ∩ 〈Y, Z〉) = 1 for all mutually distinct triple of members X, Y, Z,
while the other class does not. By Lemma 1, any d-dimensional dual hyperoval
in PG(2d + 1, q) of polar type satisfies dim(X ∩ 〈Y, Z〉) = d − 1 for all triples
X, Y, Z of mutually distinct members. Now Yoshiara’s dual hyperoval S3

1,1 is a 2-
dimensional dual hyperoval in PG(5, 2) of symplectic polar type, by Proposition
6. As T (3, 2; GF (23), σ) is of polar type by assumption, we conclude that both
S3

1,1 and T (3, 2; GF (23), σ) satisfy Property (T ), and hence they are isomorphic.
However, the automorphism group of S3

1,1 is (doubly) transitive on the members
[7, Proposition 7], while the special member T [∞] is fixed by all automorphisms
of T (3, 2; GF (23), σ) [6]. This contradiction shows that T (3, 2; GF (23), σ) is not of
polar type.

Hence there is no Taniguchi’s dual hyperoval T (d + 1, q; GF (qd+1), σ) of sym-
plectic polar type.

Assume that f is unitary and q = r2. Then gα2 is a GF (q)-semilinear map from
GF (qd+1) onto GF (q). It is easy to verify that every nonzero GF (q)-semilinear from
from GF (qd+1) to GF (q) is uniquely expressed as T̃b for b ∈ GF (qd+1)×, where

T̃b(y) := Tr(byr), y ∈ GF (qd+1)

with Tr = TrGF (qd+1)/GF (q). One can also easily verify that Ker(T̃b) = Ker(T̃c)
for b, c ∈ GF (qd+1)× if and only if c = kb for some k ∈ GF (q)×. Notice also that
instead Equation (13) we have

Y [α] = Ker(T̃α−r(1+σ)).

With these remarks and Equation (14), we have the following.

Assume that f is a unitary form. For each α ∈ GF (qd+1)×, there exists
a unique scalar κ(α) of GF (q)× such that

gα2 = κ(α)T̃α−r(1+σ).

The remaining arguments are parallel to the symplectic case with α replaced by αr,
but one can obtain a final contradiction much earlier from the condition

1 + r2m + r2l ≡ 0 (mod r2(d+1) − 1).

�
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