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Abstract

A generalized quadrangle is classical if it has a grid of axes of symmetry.

In a finite generalized quadrangle Q of order (s, t) with s, t > 1, a line L is called
an axis of symmetry if the group T (L) of all automorphisms (“symmetries”) that fix
every line meeting L has the maximal possible order s. Moreover, Q is called span–

symmetric if there are two disjoint axes of symmetry; we will call Q grid–symmetric

if there are two further disjoint axes of symmetry, each of which meets L and M .
Span–symmetric generalized quadrangles were first studied in [Pa] (cf. [PT1]), in

view of the known examples Q(4, q) and Q(5, q), arising respectively from quadrics
in 4– and 5–dimensional projective spaces. More than 20 years ago it was shown
that the generalized quadrangles Q(4, q) are the only span–symmetric ones with
t 6= s2 (cf. [Ka, Th1]). While nonclassical examples exist if t = s2, this is not so in
the grid–symmetric case:

Theorem. Any grid–symmetric generalized quadrangle of order (s, t) is isomorphic

to Q(4, s) or Q(5, s).

Proof. By the result just noted, we may assume that t = s2. There are sets Λ and
Λ⊥, each consisting of s + 1 lines of symmetry, where each line in Λ meets each
line in Λ⊥. Let A and B be the groups generated by the symmetries corresponding
to Λ and Λ⊥, respectively. By [Th2, 12.5.5], A ∼= B ∼= SL(2, s). If L ∈ Λ and
M ∈ Λ⊥ then T (L) fixes M and hence normalizes T (M). Also T (M) normalizes
T (L), so that these two groups commute since T (L) ∩ T (M) = 1. Thus, A and B
are commuting groups each of which is isomorphic to SL(2, s).
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Let Ω denote the set of points on all lines of Λ, and hence of Λ⊥. If x is any
point not in Ω then Ω∪ xA is the set of points of a Q(4, s)–subquadrangle Qx [Th2,
12.5.5]. If M ∈ Λ⊥ then T (M) fixes each line of Qx meeting M and hence acts on
the union Qx of these lines. Thus, AB acts on Qx, and hence acts in the natural
manner as Ω+(4, s) on the space Px = PG(4, s) underlying Qx, fixing the point m
of Px\Qx perpendicular to 〈Ω〉. Note that AB ∼= Ω+(4, s): if s is odd and zA and
zB are the involutions in A and B, respectively, then zAzB = 1 on Qx for each point
x /∈ Ω, and hence is 1 on Q.

Note that, if x /∈ Ω as above, then (AB)x
∼= PSL(2, s). For, x lies on the line

of Px joining m and some point n of 〈Ω〉\Ω, so that the stabilizer (AB)x fixes n.
However, (AB)n

∼= Ω(3, s) ∼= PSL(2, s) has no proper subgroup of index (2, s − 1).
Since (AB)n permutes the (2, s − 1) points of Qx on the line 〈m, n〉, it follows that
(AB)x = (AB)n

∼= PSL(2, s).
Now consider any point y of Q not in Ω ∪ xA and the resulting point-orbit yA

and subquadrangle. As in the preceding paragraph, G := (AB)y
∼= PSL(2, s). Here

G acts on O := y⊥∩Qx, which is an ovoid of Qx [PT2, p. 26]: each of the s2+1 lines
through y meets Qx, and no two of the resulting s2 + 1 points are perpendicular.

Under the Klein correspondence for a suitable quadric of P = PG(5, q) con-
taining Qx, the ovoid O produces a spread of lines in PG(3, s) and hence also a
translation plane π of order s2, with kernel containing GF(s). Moreover, under this
correspondence, the group AB ∼= Ω+(4, s) produces a subgroup of GL(4, s), iso-
morphic to A × B, that has a subgroup Ĝ ∼= PSL(2, s) or SL(2, s) produced by G;
moreover Ĝ preserves the spread. If q is odd then Ĝ 6∼= PSL(2, s) since all involutions
in A × B lie in its center. For all q it follows that G produces a collineation group
Ĝ ∼= SL(2, s) of π.

All translation planes having the preceding properties are known [Sch, Wa]: the
nondesarguesian ones are Hall, Hering, Walker and Ott-Schaeffer planes. It is easy
to check that, for each of these nondesarguesian planes, the corresponding ovoid
spans P, whereas our ovoid O lies in Qx and hence in the hyperplane Px of P.
Hence π is desarguesian and O is an elliptic quadric.

Thus, y⊥∩Qx is an elliptic quadric of Qx for each point y of Q\Qx. Consequently,
our original generalized quadrangle is classical [TP, Br]. �
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