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Abstract

For A > 0 and 0 < g < n, let U, (A, p) denote the class of all normalized
analytic functions f in the unit disc A of the form f(z) = z + 322,41 axz®

such that "
16 (55) -

where n € N is fixed. In addition to the discussion of the basic properties of
the class Uy (A, 1), we find conditions so that U, (A, i) is included in S, the
class of all strongly starlike functions of order v (0 < v < 1). We also find
necessary conditions so that f € U, (A, u) implies that

z2f'(z) 1] 1
02) % <2ﬁ’ for all z € A,

<A, z €A,

or
Z 1 1
2C) < —, for|z] <r <1,

fle) 28126
where r = r(\, u,n) will be specified.
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1 Introduction

Let A denote the class of all analytic functions defined on the unit disc A = {z :
|z| < 1} with the normalization condition f(0) =0= f'(0) — 1. Let S={f € A:
f is univalent in A}. A function f € A is said to belong to S* iff f(A) is a starlike
domain with respect to the origin. A function f € A is said to be Bazilevi¢ of type
p=a+if (a«>0and g €R), if f satisfies the differential equation

7(2) (ﬁ) - (@)ah@),

g being a function in §* and Ree™”h(z) > 0 in A for some ¢ € R [1]. Tt is a well-
known result that Bazilevi¢ functions are in & and the above differential equation
necessarily has a solution analytic in A for any choice of g and h. We are interested
in the case of g(z) = 2z, # = 0 and formulate the following class for 0 < A < 1:

Bi(\ ) = {f: Re (f’(z) (ﬁ)MH) > A}.

Here p1 < 0 and for convenience, we have avoided the rotation factor and assumed
that h(z) = (14 (1 —2X)z)/(1 — 2z). The Bazilevi¢ functions are also discussed in
[15] and it is clear that B (A, u) € S. We are interested to know whether By (\, ) is
extendable to cover certain values of p with ¢ > 0. To carry out our investigation,
we consider a class U, (1) as follows: For a univalent function ~ in A and p > 0, we

define

pt1
Un (1) = {f cA: f(2) <f(zz)> < h(z), z € A}

where < denotes the subordination. For the basic results on subordination we refer
to the book by P. L. Duren [3]. The choice of h(z) = 1 4+ Az leads to the class

U, 1),

f(2)

Since By (0, ) C S for u < 0, it follows that U(A, u) C S for p < 0 and 0 < A < 1.
We note that the Koebe function belongs to (1, 1). On the other hand, Nunokawa
and Ozaki [8] have shown that (), 1) is included in § for 0 < A < 1 whereas,
among several other interesting results, Ponnusamy [9] has found conditions on A
and p < 0 so that U(\, p) is included in §* or other well known subclasses. In view
of these inclusion results, it is natural to seek condition on A (depending on u) so
that U(\, ) C 8* for 0 < p < 1. Obradovié [5] used the idea of Ponnusamy [9] and
Ponnusamy and Singh [10] to fill this gap and proved, for example, the following
result.

pt1
U(A,u):{f:f'(z)<i> —<1+)\Z,ZGA}.

L—p
(1= p)? + p?

Theorem 1.1. If f e U\, p) with0 < p <1 and 0 < XA < , then

fes .
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Our aim in this paper is not only to extend Theorem 1.1 but also to obtain a
number of new results extending several other interesting results in this direction,
eg. [7]. Let A, denote the class of all functions f € A such that f has the form

fz)=z+ i arz®, (1.2)

k=n+1

where n € N is fixed. Clearly, A := A;. For A > 0 and p > 0, we define

2\

For the case p = 1, this class has been discussed in detail by Ponnusamy and
Vasundhara [12]. More recently, the special situations, namely, the classes

Z@QMQ:{fEAM

<A, ZGA} = A, NU\ p).

U(A p) :==UN ), Ui(1,1):=U, and U;(\, 1) :=U(N)

under the restriction A € (0,1} and p € (0,1), have been studied extensively in
[5, 6, 7, 11, 13]. In the present paper, we enforce “missing coefficients” and extend
the range of p beyond the unit interval.

A function f € A is said to be strongly starlike of order v, 0 < v < 1, if and
only if f satisfies the analytic condition

z2f'(2) - (1 +z
f(2) 11—z
We denote the class of strongly starlike functions of order v by §,. Clearly, $* = §;.

If 0 < v < 1, then §, is completely contained in the class of bounded starlike
functions [2]. Set

2!
) , 2z €A

S*(a):{fGA:zf,<z) < 1+(1—2a)z’ ZEA},

f(2) 1—=z

so that §*(0) = S§*. For our investigation we need a number of preliminary results.

2 Discussion of U, (A, 1)

Let A > 0 and p € (0,n), where n € N is fixed. Then, each f € U,(\, ) can be
written as

f(2)

for some w € B,,, where

pt1
<Z> F(2) =1+ 0(z) =1+ (n — @)api2" +- -, (2.1)

B,={weH:w0)=uw0)=---=w"10)=0, and |w(z)| < 1 for z € A},
Here H denotes the class of all analytic functions in A. If we set

p(z):<%> =1+p2"+---,
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then (2.1) is seen to be equivalent to
1
p(z) = e/ (2) = 1+ ).
An algebraic computation implies that

—1- A/ 1) d (2.2)

As w(z) € B, Schwarz’ lemma gives that |w(z)| < |z|" for z € A and therefore

A
p(z) — 1| < 222 e A,
n—
which is
z \" | AL
-1 < zI" 2.3
(i) = 23)
so that
Al < z )“ Al
1-— Z"<Re|l—] <14+ ——]z2|". 2.4
el e el (24)

Equality holds in each of the last two inequalities (2.3) and (2.4) for functions of

the form
z

&) = T o=y o

By (2.3), it follows that
2\ <n_ﬂ>1/"
ce{w: |lw—-1] <1} for |z]<|—F :
8 A ——
Thus, for f € U, (A, i), we have

5 w n— 1/n
Re (%) >0 for |z] < (A—M> .

In particular, for 0 < A < (n — u)/u, we have

> I
Re<%> >0 for z € A.

Also, with the inequality 0 < A < (n — p)/p, (2.3) is equivalent to

‘(f(@)“_ 1 < D/ = )l
z L= A/ (= m)* [227] 1= /(= ))* |22
which implies that

f))\" 1 n—p
Re( z ) _1+()\M/(“—M))\Z|"Zn—/~t+)\/~t'

If (n—p)/p < A, then for f € U, (A, u) we have

)\ 1 n—p n—p\""
Re <7> > 1+()\M/(n_ﬂ))‘2|n > n—,u+)\,u for |Z‘ < <—> < 1.
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3 Starlikeness and Convexity of f € U, (\, i)

Although the Koebe function belongs to (1, 1), the class (1, 1) is not included in
S*. On the other hand, f € Us(A, 1) is seen to be in S* whenever 0 < A < 1/1/2.
We are now in a position to state our first result.

Theorem 3.1. Let v € (0,1], n > 1, p € (0,n) and

)\*<7’ L, n) — \/ (77, — ,LL) Sln(ﬁ/ﬂ-/2> )

(n = p)? + p2 + 2p(n — p) cos(ym/2)

If feU,(\ p), then f eS8, for 0 <X < A(7, 1, n).
Note that A.(7, 4, n) is an increasing function of n and
A (Y, ptym) — sin(ym/2) as n — oc.

Theorem 3.1 for 4 = 1 (under the restriction n > 2) is due to Ponnusamy and
Vasundhara [12]. In the case v = 1, Theorem 3.1 yields criteria for starlike functions
for missing coefficients.

—

Corollary 3.2. If f e U,(A\, 1) and 0 < X\ <
(0= p+ 4

, then f € S§*.

For n = 1, this result gives Theorem 1.1 which is due to Obradovié¢ [5]. Also for
n=2 (ie. f¢€ Awith f”(0) =0) and u = 1, Theorem 3.1 gives a recent result of
Obradovi¢ et al [7].

Theorem 3.3. Let o € [0,1), n > 1 and p € (0,n). If f(2) € U(\ 1), then
feS(a) for 0 < A< X (a,p,n), where

— 1-2
(n—p)v1-2a for 0<a<
A (a, psn) = \/(n_“)2+“2(1_20‘) s
— )1 —
(=l =a) for <a<l.
n— i+ po n+ p

The case a = 0 of Theorem 3.3 also gives Corollary 3.2 and the case u = 1 has
been obtained by Ponnusamy and Vasundhara [12] whereas the case p =1, n = 2
and a = 0 of Theorem 3.3 has been obtained by Obradovi¢ et al [7].

The same reasoning indicated in the proof of Theorem 3.1 helps to obtain the
following results.

Theorem 3.4. Let f € U,(\, p) and A\(7y, u,n) be as in Theorem 3.1. Then, for
(7, i, n) < A, f is strongly starlike in |z| < r = r(\, v, u,n), where

1/n
(n — p)sin(yr/2)
r=r(\vy,un)= |
O pn) {/\\/(H—M)Q+M2+2M(”—N)COS(W/2)}
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—

Corollary 3.5. If f € U,(\, p) and (i, n) =
(0= 2+ 4

, then, for A\(p,n) <

A, feS in|z| <r=r(\un), where

1/n
_ n—p
T()\,,u,n)—{)\ (n_,u)2+,u2} '

In the following theorem, we consider similar results for a subset of the set of all
starlike functions. To do this, we define

2f'(z) 1

flz) 28
where 0 < 3 < 1. Clearly, S;(8) € S*.

S:(9) = {feA:

1
<%,Z€A},

Theorem 3.6. Letn € N, € (0,n), A € (0,1] and 13, ,,(8) = (A%/)\)l/n, where

5 (n— 1) 5 if0<f<1/2
Ny=————"— and ("= : - :
B Bn—p)+p and 1—p 4if 1/2<p5<1
Then
(i) for 0 < A < A5, we have Un (A, 1) C S5 (B).
(i) for Ay <A <1, f € Un(X, 1), we have f € S;(B) for |z| <13 ,.,.(8)-
Taking n = 2 and p = 1 in Theorem 3.6, we obtain the following

Corollary 3.7. Let A € (0,1] and r},(3) = ()\g/)\)lﬁ, where

L P . | B if 0<B<1/2
Y=g P _{1—5 if1/2<p<1 "

Then
(i) for 0 < A < A5, we have Us(N\) C S5 ().
(ii) for Xy <A <1, f € Us(N), we have f € S(B) for |z| < r3(B).
This corollary is a special case of Theorem 1.9 of [7].

Theorem 3.8. Let n € N, pp € (0,n) and A € (0,1]. If f € U,(\, 1), then for
0 < B <1 we have

zf"(z) 1 1
1 - —l< = W),
T m| g )
where =1 ,,,(5) is the smallest positive root of the equation
2BAZur® 20 [B (s + Vn+ (1 = A2 — 28Mn — Mg — )= (3.9)

2A[B(p+ Dn+ (1= B)p)lr" — [(1 28 — 1[)r* + 28X + (28 — 1| = 1}(n — p) = 0.
In particular, f(rz) € K.
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Here K denotes the class of all convex functions g, i.e. zg’' € S*.
If we choose = 1/2, we obtain

Corollary 3.10. Let f € U, (A, i). Then
21(2)
f'(2)

where 1) ,,(1/2) is the smallest positive root of the equation

<1 for |z] <ry,(1/2),

)\Q,LLTQn—H + )\[(ILL_'_ 1)n—|—ﬂ]7’"+2
A= A= )™ = N[ (A Dn A plr™ = (72 4 A = 1) (n — @) =0,

The case u = 1 and n = 2 of Theorem 3.8 is due to [7]. The proof of these
theorems will be given in Section 4.

4 Proofs of the Main Theorems

4.1. Proof of Theorem 3.1. Suppose that f € U, (A, p) for some X € (0,1] and p €
(0,n). Then, by the definition of U, (A, 1), we have

P pt1
fl(z)—1 <A
|<f<z>> ”
and, by (2.3), we get
g A A
|<z>—1< ’u|z|"<—/“b.
f(2) n—p n—p
Therefore, it follows that
arg < ) < arcsin(\) (4.2)
and
arg ( - ) < arcsin ( Au ) . (4.3)
f(2) n—p
Using the formulae (4.2) and (4.3) and the addition formula for the inverse of sine

function, namely,

arcsin (x) 4 arcsin (y) = arcsin[zy/1 — y? + yv1 — 2],
we find that

2f'(2)
f(2)

WEN S

A
< arcsin(A) + arcsin (n—u>

— aresin A 1— [} 4 AT
() |

arg
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Thus, f € S, whenever A € (0, \.(7, p,n)]. Here \.(7, i, n) is the solution of the
equation

<Z5()\):)\J1—< A >2+n)\_uﬂ\/1—7)\2—sin(7r—7):0

n—p

which proves the theorem. [ ]

4.4. Proof of Theorem 3.3. Suppose that f(z) € U, (A, 1). Then, by the
representation (2.1) and (2.2), it follows that

zf'(z) 1+)\w( )
f(z) 1—)\/ t=Yr2)d

and therefore,

: <Zf’(z) _Oé> = o iui(oz) la—Aa /Oow(t UH,Z) dt
l—a\ f(z) 1_)\/ 102) d '

We want f to be in S*(«). To do this, according to a well known result [14] and the
last equation, it suffices to show that
Aw(z a
G,

/ w(t™Y1z) dt
l—a 1-«a

1—)\/ 1/“2

1+

# —iT, TeR,

which is equivalent to

w(z) + (a —i(1 — a)T) /100 w(E V) dt
A (1—a)(1+4:7T) 71l Tek

If we let

w(z) + (@ — i(1 = )T) /°° w(t™V1z) dt
M = 1
zeA,u?éllg)n,Te]R (1 —a)(1+44T)

then, in view of the rotation invariance property of the space B,,, we obtain that

zf'(z) .
Re< ) ) >a if MMN<I.

This observation shows that it suffices to find M. First we notice that

(n = p) + pyfa? + (1 — )1
MS?%E{ -1 —aVitT? }
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Define ¢ : [0,00) — R by

(n—p) + py/a? + (1 - a)%a
(n—m1-a)VI+z

Then, by differentiating ¢ with respect to x, we get

¢(r) =

/

u(l —2a) — (n—p \/oz2 (1 —)?
2(n —p)(1 —a)(1 +x) 3/2\/(12 1—04)%.
Case(i) : Let 0 < a < pu/(n+ u). Then we see that ¢ has its only critical point

in the positive real line at
2
1-2
<m Q» _M}
n—p

Further, we easily observe that ¢'(x) > 0 for 0 < 2 < xy and ¢'(z) < 0 for x > .

Therefore, ¢(x) attains maximum value at xy and hence,

V(= 0?4 21— 20)
V1—=2a(n—p)

Case(ii) : Let a > pu/(n+ p). We can easily observe that

1
(1—a)?

o =

o(z) < P(x) = for z > 0. (4.5)

¢ () <0< p(l—-2a)<(n—pu \/a2 (1—a)?x, for x>0.

This implies that ¢/(x) <0 for all > 0 whenever p(1—2a) < (n—p)a. Therefore,
if > p/(n+p), ¢ is decreasing on [0, 00) and hence,

n—u+ po
o(x) < o(0) = for all x > 0. 4.6
(1) < 0(0) = Th (1.6
The required conclusion follows from (4.5) and (4.6). n

4.7. Proof of Theorem 3.4.  Let f € U, (A, u) for some p € (0,n). Following
the proof of Theorem 3.1, we obtain that

WEN S

arg <ﬁ> < arcsin <n)f,u'r"> .

Combining the last two inequalities we get

2f'(2)
f(2)

By a calculation, we see that the right hand side of the last inequality is less than
or equal to 7y/2 provided

"< (n — p) sin(ym/2)
T A (0= )2 + 2 + 2p(n — pr) cos(y7/2)

which completes the proof. [ ]

< arcsin(Ar™)

and

arg

e\ A
< arcsin {)\r’w 1— (—M> r2n 4 a r'"v1 — )\27“2] )
L

n— n—pu

r
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4.8. Proof of Theorem 3.6.  Let f € U, (A, ). Then, by the representations
(2.1) and (2.2), it follows that

2f'(z) _ 1+ Aw(z)
f(2) 1-— )\/ _1/“2

(4.9)

where w € B,,. Then, |w(z)| < |z|*. We proceed with the method of the proof of
Theorem 1.9 in [7]. According to this

2f'(2) 1] i‘25—1+25)\w z —i—)\/ w tl/“z)dt‘
f(2) 20 20 ’1 _)\/ l/uz dt’
A
|28 = 1]+ 28]+ L
B o M
n—
_ 1281 = ) + 26Mn — p)lz]" + Al
203 1 — Aplz| '

It is a simple exercise to see that the square bracketed term in the last step is less
than 1 provided

* 1/n
2| < Fin—p) 1" _ s
P—p)+ | e
where 26* =1 — |26 — 1|. We remark that Tf%n > 1 if and only if
A U D
Bln—p) +p
The desired result follows. |

4.10. Proof of Theorem 3.8. Let f € U,(\, p). Then taking logarithmic
derivative of the representation given by (2.1), we have

2f"(2) _ 2f'(z) _ Azw'(2)
M I E I T vE)
In view of this equation and (4.9) we see that
zf"(z) 1 _ 1+ Aw(z) B Azw'(z) 1
th f(2) 20 (M+1)1_)\ Oow(tfl/uz) dt oot 1+ A\w(z) 26

Since w € B, by the definition of B, we have |w(z)| < |z|". By the well-known
Schwarz-Pick lemma, we find that

1— |w(z)?
1|z

jw'(2)] <
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It follows that (as A < 1)

| 2w’ (2)
1+ dw(z)

2] <1 - Iw(2)|2> < A+

ST 1o ]2P TP
With the help of this inequality and the fact that |w(z)| < |z]", after computation,

we obtain ,
‘1 N 2f"(z) i 1
fi(z) 28|~ 28
where R, (), 3, |z|) := R, with

(126 = 1]+ 26+ V)]2|") (0 — p) + (260 + DAple]" | 26A(l] + 2"
n—p— Aplz|" 1—[z?

Ry (X, B, |2]),

R, =
It can be easily seen that the equality R,(X, (3, |z]) < 1 is equivalent to (3.9). The

desired conclusion follows. ]

5 Integral Transforms

In this section we consider the following integral transform I(f) of f € A defined
by

petl—p

. 1/p
I1(P)](z) = F(2) = » lc“ “/( )tc—udt] L c+l-p>0. (5.1)

This transform is similar to the Alexander transform when ¢ = = 1 and is similar
to Bernardi transformation when ¢ =1 and ¢ > 0.

Theorem 5.2. Let f € U,(A\, p) for some A > 0, n > 2 and p € (0,n). For
c+1—p>0and a <1, let F(z) be defined by (5.1). Then F € S’ whenever ¢, \
are related by
0oy < L= =plet 1= ptn)
1= mn+ (0 —a)p)

Proof. Assume that f(z) = 2z + 332, ax2® € Uy (A, ). By (5.1), we see that

(c+1—p) (@>u+zd% (@)HZ (c+1—p) (ﬁ)u

It is a simple exercise to show that

(5.3)

e e moe 0 (P2 e-m (- (P2

)G

P(z) =2 (MY (5.4)

z

If we set
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then, from the last equation and the assumption f € U, (\, ), it follows that P(z)
satisfies the second order differential equation

et PE)  c=2u 0 Lo — 1t (s
ple+1l—p) = u(c+1—M)P<> u(c+1—M)P(> L+ w(z) (5.5)

where w € B,,. If we take P(z) = 2z 4+ 332, 2" and w(z) = 332, wyz* in (5.5),
then by equating the coefficients of 2" we get the representations

PE) g Nexdom [~y ]
o/ I S Y 7 =V (1 — ¢ (et D By gt 56
- [ ) (5.6)
and

Pl(z)=1- % /100 wtVE2) (4 14 (e — p)t= D) gt (5.7)

In view of the equality

() 0= (rs) -3 ) } o0

where w € B, it follows that (see Section 2)

<fi> _I—A/ =1m2)d

From (5.4) we have

/ /
) gL (ZP ) _ 1) . (5.8)
o T\ Pl
Using (5.6), (5.7) and (5.8), we compute that
zF'(2) ]
F(z)
1 — 00
. 1— )‘(C+—1“>/ w(tVnz) (M F14(c— u)t—(cﬂ)/u) dt
T CJ;(chl—l ) [
p etz p) / w(t=Vmz) (1 _t*(chl)/u) di
c+1 1
)‘(C+1_N)/°° ~1/ -
S S e 1k 1 — )=t D/m) gt
e o 2) (p+(c+1-p) )
= T —
B )\<C+ /~L) / w(t—l/uz) (1 . t—(c-{—l)/u) dt
c+1 1
so that
Aet+1- N) pa— —(c+1)/p
F(z) - C+ e / ol (1 — (eI gy
e+1
AMe+1—p) [ neo c+1—p
< ctl Inop erlinzpl g by (5.3)

AMle+1—p)| 1 1
c+1 n—pu c+l4+n—p
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This completes the proof. [ ]

The case i = 1 of Theorem 5.2 has been obtained in [11] (see also [12] for further
discussion on this operator for = 1). Taking a = 0 in Theorem 5.2 we have

Corollary 5.9. Letn > 1, p € (0,n), c+1—p > 0 and f € U,(\, ), for some

_ 1—
A such that 0 < A < (n—p)letlop+ n) Then F defined in (5.1) satisfies the
(c+1—p)(n+p)

2F'(2)
F(z)

and, in particular, F' is starlike in A.

condition
—1

<1, z€eA,

In particular, if f(z) = z 4+ ap412"™ + -+ € U(N) for some 0 < A < n —1 and
n > 1, then
z
—dt
b 7@
is starlike in A.

We end the paper with the following remark: It would be interesting to know
whether the bounds/estimates in Theorems 3.1, 3.3, 3.4 and 5.2 are all sharp.
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