Geometric properties of certain linear integral transforms

S. Ponnusamy*

P. Sahoo

Abstract

For $\lambda > 0$ and $0 < \mu < n$, let $\mathcal{U}_n(\lambda, \mu)$ denote the class of all normalized analytic functions f in the unit disc Δ of the form $f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k$ such that

$$\left|f'(z)\left(\frac{z}{f(z)}\right)^{\mu+1}-1\right|<\lambda,\ z\in\Delta,$$

where $n \in \mathbb{N}$ is fixed. In addition to the discussion of the basic properties of the class $\mathcal{U}_n(\lambda,\mu)$, we find conditions so that $\mathcal{U}_n(\lambda,\mu)$ is included in \mathcal{S}_{γ} , the class of all strongly starlike functions of order γ (0 < $\gamma \leq 1$). We also find necessary conditions so that $f \in \mathcal{U}_n(\lambda,\mu)$ implies that

$$\left| \frac{zf'(z)}{f(z)} - \frac{1}{2\beta} \right| < \frac{1}{2\beta}, \text{ for all } z \in \Delta,$$

or

$$\left| 1 + \frac{zf''(z)}{f'(z)} - \frac{1}{2\beta} \right| < \frac{1}{2\beta}, \text{ for } |z| < r < 1,$$

where $r = r(\lambda, \mu, n)$ will be specified.

Received by the editors September 2002.

Communicated by R. Delanghe.

1991 Mathematics Subject Classification: 30C45, 30C55.

^{*}The work of the first author was supported by a Sponsored Research project (Ref No. DST/MS/092/98) from the Department of Science and Technology (India) and the work of the second author was supported by National Board for Higher Mathematics (India) in the form of a Postdoctoral Fellowship.

 $Key\ words\ and\ phrases\ :$ Univalent, starlike and convex functions, subordination, and integral transform.

1 Introduction

Let \mathcal{A} denote the class of all analytic functions defined on the unit disc $\Delta = \{z : |z| < 1\}$ with the normalization condition f(0) = 0 = f'(0) - 1. Let $\mathcal{S} = \{f \in \mathcal{A} : f \text{ is univalent in } \Delta\}$. A function $f \in \mathcal{A}$ is said to belong to \mathcal{S}^* iff $f(\Delta)$ is a starlike domain with respect to the origin. A function $f \in \mathcal{A}$ is said to be Bazilevič of type $\mu = \alpha + i\beta$ ($\alpha \ge 0$ and $\beta \in \mathbb{R}$), if f satisfies the differential equation

$$f'(z)\left(\frac{z}{f(z)}\right)^{1-\mu} = \left(\frac{g(z)}{z}\right)^{\alpha}h(z),$$

g being a function in \mathcal{S}^* and $\operatorname{Re} e^{i\phi}h(z) > 0$ in Δ for some $\phi \in \mathbb{R}$ [1]. It is a well-known result that Bazilevič functions are in \mathcal{S} and the above differential equation necessarily has a solution analytic in Δ for any choice of g and g. We are interested in the case of g(z) = z, g = 0 and formulate the following class for $0 \le \lambda < 1$:

$$\mathcal{B}_1(\lambda,\mu) = \left\{ f : \operatorname{Re}\left(f'(z)\left(\frac{z}{f(z)}\right)^{\mu+1}\right) > \lambda \right\}.$$

Here $\mu < 0$ and for convenience, we have avoided the rotation factor and assumed that $h(z) = (1 + (1 - 2\lambda)z)/(1 - z)$. The Bazilevič functions are also discussed in [15] and it is clear that $\mathcal{B}_1(\lambda, \mu) \subseteq \mathcal{S}$. We are interested to know whether $\mathcal{B}_1(\lambda, \mu)$ is extendable to cover certain values of μ with $\mu > 0$. To carry out our investigation, we consider a class $\mathcal{U}_h(\mu)$ as follows: For a univalent function h in Δ and $\mu > 0$, we define

$$\mathcal{U}_h(\mu) = \left\{ f \in \mathcal{A} : f'(z) \left(\frac{z}{f(z)} \right)^{\mu+1} \prec h(z), \ z \in \Delta \right\}$$

where \prec denotes the subordination. For the basic results on subordination we refer to the book by P. L. Duren [3]. The choice of $h(z) = 1 + \lambda z$ leads to the class $\mathcal{U}(\lambda, \mu)$,

$$\mathcal{U}(\lambda,\mu) = \left\{ f : f'(z) \left(\frac{z}{f(z)} \right)^{\mu+1} \prec 1 + \lambda z, \ z \in \Delta \right\}.$$

Since $\mathcal{B}_1(0,\mu) \subset \mathcal{S}$ for $\mu < 0$, it follows that $\mathcal{U}(\lambda,\mu) \subset \mathcal{S}$ for $\mu < 0$ and $0 < \lambda \leq 1$. We note that the Koebe function belongs to $\mathcal{U}(1,1)$. On the other hand, Nunokawa and Ozaki [8] have shown that $\mathcal{U}(\lambda,1)$ is included in \mathcal{S} for $0 < \lambda \leq 1$ whereas, among several other interesting results, Ponnusamy [9] has found conditions on λ and $\mu < 0$ so that $\mathcal{U}(\lambda,\mu)$ is included in \mathcal{S}^* or other well known subclasses. In view of these inclusion results, it is natural to seek condition on λ (depending on μ) so that $\mathcal{U}(\lambda,\mu) \subset \mathcal{S}^*$ for $0 < \mu < 1$. Obradović [5] used the idea of Ponnusamy [9] and Ponnusamy and Singh [10] to fill this gap and proved, for example, the following result.

Theorem 1.1. If
$$f \in \mathcal{U}(\lambda, \mu)$$
 with $0 < \mu < 1$ and $0 < \lambda \le \frac{1 - \mu}{\sqrt{(1 - \mu)^2 + \mu^2}}$, then $f \in \mathcal{S}^*$.

Our aim in this paper is not only to extend Theorem 1.1 but also to obtain a number of new results extending several other interesting results in this direction, eg. [7]. Let \mathcal{A}_n denote the class of all functions $f \in \mathcal{A}$ such that f has the form

$$f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k,$$
 (1.2)

where $n \in \mathbb{N}$ is fixed. Clearly, $\mathcal{A} := \mathcal{A}_1$. For $\lambda > 0$ and $\mu \geq 0$, we define

$$\mathcal{U}_n(\lambda,\mu) = \left\{ f \in \mathcal{A}_n : \left| f'(z) \left(\frac{z}{f(z)} \right)^{\mu+1} - 1 \right| < \lambda, \quad z \in \Delta \right\} \equiv \mathcal{A}_n \cap \mathcal{U}(\lambda,\mu).$$

For the case $\mu = 1$, this class has been discussed in detail by Ponnusamy and Vasundhara [12]. More recently, the special situations, namely, the classes

$$\mathcal{U}_1(\lambda,\mu) := \mathcal{U}(\lambda,\mu), \ \mathcal{U}_1(1,1) := \mathcal{U}, \ \text{and} \ \mathcal{U}_1(\lambda,1) := \mathcal{U}(\lambda)$$

under the restriction $\lambda \in (0,1]$ and $\mu \in (0,1)$, have been studied extensively in [5, 6, 7, 11, 13]. In the present paper, we enforce "missing coefficients" and extend the range of μ beyond the unit interval.

A function $f \in \mathcal{A}$ is said to be strongly starlike of order γ , $0 < \gamma \leq 1$, if and only if f satisfies the analytic condition

$$\frac{zf'(z)}{f(z)} \prec \left(\frac{1+z}{1-z}\right)^{\gamma}, \quad z \in \Delta.$$

We denote the class of strongly starlike functions of order γ by \mathcal{S}_{γ} . Clearly, $\mathcal{S}^* \equiv \mathcal{S}_1$. If $0 < \gamma < 1$, then \mathcal{S}_{γ} is completely contained in the class of bounded starlike functions [2]. Set

$$\mathcal{S}^*(\alpha) = \left\{ f \in \mathcal{A} : \frac{zf'(z)}{f(z)} \prec \frac{1 + (1 - 2\alpha)z}{1 - z}, \ z \in \Delta \right\},\,$$

so that $S^*(0) \equiv S^*$. For our investigation we need a number of preliminary results.

2 Discussion of $U_n(\lambda, \mu)$

Let $\lambda > 0$ and $\mu \in (0, n)$, where $n \in \mathbb{N}$ is fixed. Then, each $f \in \mathcal{U}_n(\lambda, \mu)$ can be written as

$$\left(\frac{z}{f(z)}\right)^{\mu+1} f'(z) = 1 + \lambda w(z) = 1 + (n-\mu)a_{n+1}z^n + \cdots, \tag{2.1}$$

for some $w \in \mathcal{B}_n$, where

$$\mathcal{B}_n = \{ w \in \mathcal{H} : w(0) = w'(0) = \dots = w^{(n-1)}(0) = 0, \text{ and } |w(z)| < 1 \text{ for } z \in \Delta \}.$$

Here \mathcal{H} denotes the class of all analytic functions in Δ . If we set

$$p(z) = \left(\frac{z}{f(z)}\right)^{\mu} = 1 + p_n z^n + \cdots,$$

then (2.1) is seen to be equivalent to

$$p(z) - \frac{1}{\mu}zp'(z) = 1 + \lambda w(z).$$

An algebraic computation implies that

$$p(z) = 1 - \lambda \int_{1}^{\infty} w(t^{-1/\mu}z) dt.$$
 (2.2)

As $w(z) \in \mathcal{B}_n$, Schwarz' lemma gives that $|w(z)| \leq |z|^n$ for $z \in \Delta$ and therefore

$$|p(z) - 1| \le \frac{\lambda \mu}{n - \mu} |z|^n, \quad z \in \Delta,$$

which is

$$\left| \left(\frac{z}{f(z)} \right)^{\mu} - 1 \right| \le \frac{\lambda \mu}{n - \mu} |z|^n \tag{2.3}$$

so that

$$1 - \frac{\lambda \mu}{n - \mu} |z|^n \le \operatorname{Re} \left(\frac{z}{f(z)} \right)^{\mu} \le 1 + \frac{\lambda \mu}{n - \mu} |z|^n. \tag{2.4}$$

Equality holds in each of the last two inequalities (2.3) and (2.4) for functions of the form

$$f(z) = \frac{z}{(1 \pm (\lambda \mu / (n - \mu)) z^n)^{1/\mu}}$$

By (2.3), it follows that

$$\left(\frac{z}{f(z)}\right)^{\mu} \in \{w : |w-1| < 1\} \quad \text{for} \quad |z| < \left(\frac{n-\mu}{\lambda\mu}\right)^{1/n}.$$

Thus, for $f \in \mathcal{U}_n(\lambda, \mu)$, we have

$$\operatorname{Re}\left(\frac{z}{f(z)}\right)^{\mu} > 0 \text{ for } |z| < \left(\frac{n-\mu}{\lambda\mu}\right)^{1/n}.$$

In particular, for $0 < \lambda \le (n - \mu)/\mu$, we have

$$\operatorname{Re}\left(\frac{z}{f(z)}\right)^{\mu} > 0 \text{ for } z \in \Delta.$$

Also, with the inequality $0 < \lambda \le (n - \mu)/\mu$, (2.3) is equivalent to

$$\left| \left(\frac{f(z)}{z} \right)^{\mu} - \frac{1}{1 - (\lambda \mu / (n - \mu))^2 |z|^{2n}} \right| \le \frac{[\lambda \mu / (n - \mu)] |z|^n}{1 - (\lambda \mu / (n - \mu))^2 |z|^{2n}}$$

which implies that

$$\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\mu} \ge \frac{1}{1 + (\lambda \mu/(n-\mu))|z|^n} \ge \frac{n-\mu}{n-\mu + \lambda \mu}.$$

If $(n-\mu)/\mu < \lambda$, then for $f \in \mathcal{U}_n(\lambda,\mu)$ we have

$$\operatorname{Re}\left(\frac{f(z)}{z}\right)^{\mu} \ge \frac{1}{1 + (\lambda \mu/(n-\mu))|z|^n} > \frac{n-\mu}{n-\mu+\lambda\mu} \text{ for } |z| < \left(\frac{n-\mu}{\lambda\mu}\right)^{1/n} < 1.$$

3 Starlikeness and Convexity of $f \in \mathcal{U}_n(\lambda, \mu)$

Although the Koebe function belongs to $\mathcal{U}(1,1)$, the class $\mathcal{U}(1,1)$ is not included in \mathcal{S}^* . On the other hand, $f \in \mathcal{U}_2(\lambda,1)$ is seen to be in \mathcal{S}^* whenever $0 < \lambda \le 1/\sqrt{2}$. We are now in a position to state our first result.

Theorem 3.1. Let $\gamma \in (0,1], n \ge 1, \mu \in (0,n)$ and

$$\lambda_*(\gamma, \mu, n) = \frac{(n - \mu)\sin(\gamma \pi/2)}{\sqrt{(n - \mu)^2 + \mu^2 + 2\mu(n - \mu)\cos(\gamma \pi/2)}}.$$

If $f \in \mathcal{U}_n(\lambda, \mu)$, then $f \in \mathcal{S}_{\gamma}$ for $0 < \lambda \leq \lambda_*(\gamma, \mu, n)$.

Note that $\lambda_*(\gamma, \mu, n)$ is an increasing function of n and

$$\lambda_*(\gamma, \mu, n) \to \sin(\gamma \pi/2)$$
 as $n \to \infty$.

Theorem 3.1 for $\mu = 1$ (under the restriction $n \geq 2$) is due to Ponnusamy and Vasundhara [12]. In the case $\gamma = 1$, Theorem 3.1 yields criteria for starlike functions for missing coefficients.

Corollary 3.2. If
$$f \in \mathcal{U}_n(\lambda, \mu)$$
 and $0 < \lambda \leq \frac{n - \mu}{\sqrt{(n - \mu)^2 + \mu^2}}$, then $f \in \mathcal{S}^*$.

For n = 1, this result gives Theorem 1.1 which is due to Obradović [5]. Also for n = 2 (i.e. $f \in \mathcal{A}$ with f''(0) = 0) and $\mu = 1$, Theorem 3.1 gives a recent result of Obradović et al [7].

Theorem 3.3. Let $\alpha \in [0,1)$, $n \geq 1$ and $\mu \in (0,n)$. If $f(z) \in \mathcal{U}_n(\lambda,\mu)$, then $f \in \mathcal{S}^*(\alpha)$ for $0 < \lambda \leq \lambda^*(\alpha,\mu,n)$, where

$$\lambda^*(\alpha,\mu,n) = \begin{cases} \frac{(n-\mu)\sqrt{1-2\alpha}}{\sqrt{(n-\mu)^2 + \mu^2(1-2\alpha)}} & \text{for } 0 \le \alpha \le \frac{\mu}{n+\mu} \\ \frac{(n-\mu)(1-\alpha)}{n-\mu+\mu\alpha} & \text{for } \frac{\mu}{n+\mu} < \alpha < 1. \end{cases}$$

The case $\alpha=0$ of Theorem 3.3 also gives Corollary 3.2 and the case $\mu=1$ has been obtained by Ponnusamy and Vasundhara [12] whereas the case $\mu=1$, n=2 and $\alpha=0$ of Theorem 3.3 has been obtained by Obradović et al [7].

The same reasoning indicated in the proof of Theorem 3.1 helps to obtain the following results.

Theorem 3.4. Let $f \in \mathcal{U}_n(\lambda, \mu)$ and $\lambda_*(\gamma, \mu, n)$ be as in Theorem 3.1. Then, for $\lambda_*(\gamma, \mu, n) \leq \lambda$, f is strongly starlike in $|z| < r = r(\lambda, \gamma, \mu, n)$, where

$$r = r(\lambda, \gamma, \mu, n) = \left\{ \frac{(n-\mu)\sin(\gamma\pi/2)}{\lambda\sqrt{(n-\mu)^2 + \mu^2 + 2\mu(n-\mu)\cos(\gamma\pi/2)}} \right\}^{1/n}.$$

Corollary 3.5. If $f \in \mathcal{U}_n(\lambda, \mu)$ and $\lambda_*(\mu, n) = \frac{n - \mu}{\sqrt{(n - \mu)^2 + \mu^2}}$, then, for $\lambda_*(\mu, n) \leq \lambda$, $f \in \mathcal{S}^*$ in $|z| < r = r(\lambda, \mu, n)$, where

$$r(\lambda, \mu, n) = \left\{ \frac{n - \mu}{\lambda \sqrt{(n - \mu)^2 + \mu^2}} \right\}^{1/n}.$$

In the following theorem, we consider similar results for a subset of the set of all starlike functions. To do this, we define

$$\mathcal{S}_b^*(\beta) = \left\{ f \in \mathcal{A} : \left| \frac{zf'(z)}{f(z)} - \frac{1}{2\beta} \right| < \frac{1}{2\beta}, \ z \in \Delta \right\},\,$$

where $0 < \beta < 1$. Clearly, $\mathcal{S}_b^*(\beta) \subsetneq \mathcal{S}^*$.

Theorem 3.6. Let $n \in \mathbb{N}$, $\mu \in (0, n)$, $\lambda \in (0, 1]$ and $r_{\lambda, \mu, n}^*(\beta) = \left(\lambda_{\beta}^*/\lambda\right)^{1/n}$, where

$$\lambda_{\beta}^* = \frac{\beta^*(n-\mu)}{\beta(n-\mu) + \mu} \quad and \quad \beta^* = \begin{cases} \beta & \text{if } 0 < \beta \le 1/2 \\ 1 - \beta & \text{if } 1/2 \le \beta < 1 \end{cases}.$$

Then

- (i) for $0 < \lambda \leq \lambda_{\beta}^*$, we have $\mathcal{U}_n(\lambda, \mu) \subset \mathcal{S}_b^*(\beta)$.
- (ii) for $\lambda_{\beta}^* < \lambda \le 1$, $f \in \mathcal{U}_n(\lambda, \mu)$, we have $f \in \mathcal{S}_b^*(\beta)$ for $|z| < r_{\lambda, \mu, n}^*(\beta)$.

Taking n=2 and $\mu=1$ in Theorem 3.6, we obtain the following

Corollary 3.7. Let $\lambda \in (0,1]$ and $r_{\beta,\lambda}^*(\beta) = (\lambda_{\beta}^*/\lambda)^{1/2}$, where

$$\lambda_{\beta}^* = \frac{\beta^*}{\beta + 1} \quad and \quad \beta^* = \begin{cases} \beta & \text{if } 0 < \beta \le 1/2 \\ 1 - \beta & \text{if } 1/2 \le \beta < 1 \end{cases}.$$

Then

- (i) for $0 < \lambda \leq \lambda_{\beta}^*$, we have $\mathcal{U}_2(\lambda) \subset \mathcal{S}_b^*(\beta)$.
- (ii) for $\lambda_{\beta}^* < \lambda \le 1$, $f \in \mathcal{U}_2(\lambda)$, we have $f \in \mathcal{S}_b^*(\beta)$ for $|z| < r_{\lambda}^*(\beta)$.

This corollary is a special case of Theorem 1.9 of [7].

Theorem 3.8. Let $n \in \mathbb{N}$, $\mu \in (0,n)$ and $\lambda \in (0,1]$. If $f \in \mathcal{U}_n(\lambda,\mu)$, then for $0 < \beta \le 1$ we have

$$\left|1 + \frac{zf''(z)}{f'(z)} - \frac{1}{2\beta}\right| < \frac{1}{2\beta} \quad \text{for } |z| < r_{\lambda,\mu,n}(\beta),$$

where $r = r_{\lambda,\mu,n}(\beta)$ is the smallest positive root of the equation

$$2\beta\lambda^{2}\mu r^{2n+1} + 2\lambda[\beta(\mu+1)n + \mu(1-\beta)]r^{n+2} - 2\beta\lambda(n-\lambda\mu-\mu)r^{n+1} - (3.9)$$

$$2\lambda[\beta(\mu+1)n + (1-\beta)\mu]r^n - [(1-|2\beta-1|)r^2 + 2\beta\lambda r + |2\beta-1| - 1](n-\mu) = 0.$$

In particular, $f(rz) \in \mathcal{K}$.

Here K denotes the class of all convex functions g, i.e. $zg' \in S^*$. If we choose $\beta = 1/2$, we obtain

Corollary 3.10. Let $f \in \mathcal{U}_n(\lambda, \mu)$. Then

$$\left| \frac{zf''(z)}{f'(z)} \right| < 1 \text{ for } |z| < r_{\lambda,\mu}(1/2),$$

where $r_{\lambda,\mu,n}(1/2)$ is the smallest positive root of the equation

$$\lambda^{2} \mu r^{2n+1} + \lambda [(\mu+1)n + \mu] r^{n+2} - \lambda (n - \lambda \mu - \mu) r^{n+1} - \lambda [(\mu+1)n + \mu] r^{n} - (r^{2} + \lambda r - 1)(n - \mu) = 0.$$

The case $\mu = 1$ and n = 2 of Theorem 3.8 is due to [7]. The proof of these theorems will be given in Section 4.

4 Proofs of the Main Theorems

4.1. Proof of Theorem 3.1. Suppose that $f \in \mathcal{U}_n(\lambda, \mu)$ for some $\lambda \in (0, 1]$ and $\mu \in (0, n)$. Then, by the definition of $\mathcal{U}_n(\lambda, \mu)$, we have

$$\left| \left(\frac{z}{f(z)} \right)^{\mu+1} f'(z) - 1 \right| < \lambda$$

and, by (2.3), we get

$$\left| \left(\frac{z}{f(z)} \right)^{\mu} - 1 \right| < \frac{\lambda \mu}{n - \mu} |z|^{n} < \frac{\lambda \mu}{n - \mu}.$$

Therefore, it follows that

$$\left| \arg \left(\frac{z}{f(z)} \right)^{\mu+1} f'(z) \right| < \arcsin(\lambda) \tag{4.2}$$

and

$$\left| \arg \left(\frac{z}{f(z)} \right)^{\mu} \right| < \arcsin \left(\frac{\lambda \mu}{n - \mu} \right).$$
 (4.3)

Using the formulae (4.2) and (4.3) and the addition formula for the inverse of sine function, namely,

$$\arcsin(x) + \arcsin(y) = \arcsin[x\sqrt{1 - y^2} + y\sqrt{1 - x^2}],$$

we find that

$$\left| \arg \frac{zf'(z)}{f(z)} \right| \leq \left| \arg \left(\frac{z}{f(z)} \right)^{\mu+1} f'(z) \right| + \left| \arg \left(\frac{z}{f(z)} \right)^{\mu} \right|$$

$$< \arcsin(\lambda) + \arcsin\left(\frac{\lambda \mu}{n-\mu} \right)$$

$$= \arcsin\left[\lambda \sqrt{1 - \left(\frac{\lambda \mu}{n-\mu} \right)^2} + \frac{\lambda \mu}{n-\mu} \sqrt{1 - \lambda^2} \right].$$

Thus, $f \in \mathcal{S}_{\gamma}$ whenever $\lambda \in (0, \lambda_*(\gamma, \mu, n)]$. Here $\lambda_*(\gamma, \mu, n)$ is the solution of the equation

$$\phi(\lambda) = \lambda \sqrt{1 - \left(\frac{\lambda \mu}{n - \mu}\right)^2} + \frac{\lambda \mu}{n - \mu} \sqrt{1 - \lambda^2} - \sin\left(\frac{\pi \gamma}{2}\right) = 0$$

which proves the theorem.

4.4. Proof of Theorem 3.3. Suppose that $f(z) \in \mathcal{U}_n(\lambda, \mu)$. Then, by the representation (2.1) and (2.2), it follows that

$$\frac{zf'(z)}{f(z)} = \frac{1 + \lambda w(z)}{1 - \lambda \int_{1}^{\infty} w(t^{-1/\mu}z) dt}$$

and therefore,

$$\frac{1}{1-\alpha} \left(\frac{zf'(z)}{f(z)} - \alpha \right) = \frac{1 + \frac{\lambda w(z)}{1-\alpha} + \frac{\alpha \lambda}{1-\alpha} \int_1^\infty w(t^{-1/\mu}z) dt}{1 - \lambda \int_1^\infty w(t^{-1/\mu}z) dt}.$$

We want f to be in $S^*(\alpha)$. To do this, according to a well known result [14] and the last equation, it suffices to show that

$$\frac{1 + \frac{\lambda w(z)}{1 - \alpha} + \frac{\alpha \lambda}{1 - \alpha} \int_{1}^{\infty} w(t^{-1/\mu}z) dt}{1 - \lambda \int_{1}^{\infty} w(t^{-1/\mu}z) dt} \neq -iT, \quad T \in \mathbb{R},$$

which is equivalent to

$$\lambda \left[\frac{w(z) + (\alpha - i(1 - \alpha)T) \int_{1}^{\infty} w(t^{-1/\mu}z) dt}{(1 - \alpha)(1 + iT)} \right] \neq -1, \quad T \in \mathbb{R}.$$

If we let

$$M = \sup_{z \in \Delta, w \in \mathcal{B}_n, T \in \mathbb{R}} \left| \frac{w(z) + (\alpha - i(1 - \alpha)T) \int_1^\infty w(t^{-1/\mu}z) dt}{(1 - \alpha)(1 + iT)} \right|$$

then, in view of the rotation invariance property of the space \mathcal{B}_n , we obtain that

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha \quad \text{if } M\lambda \le 1.$$

This observation shows that it suffices to find M. First we notice that

$$M \le \sup_{T \in \mathbb{R}} \left\{ \frac{(n-\mu) + \mu \sqrt{\alpha^2 + (1-\alpha)^2 T^2}}{(n-\mu)(1-\alpha)\sqrt{1+T^2}} \right\}.$$

Define $\phi: [0, \infty) \longrightarrow \mathbb{R}$ by

$$\phi(x) = \frac{(n-\mu) + \mu\sqrt{\alpha^2 + (1-\alpha)^2 x}}{(n-\mu)(1-\alpha)\sqrt{1+x}}.$$

Then, by differentiating ϕ with respect to x, we get

$$\phi'(x) = \frac{\mu(1-2\alpha) - (n-\mu)\sqrt{\alpha^2 + (1-\alpha)^2 x}}{2(n-\mu)(1-\alpha)(1+x)^{3/2}\sqrt{\alpha^2 + (1-\alpha)^2 x}}.$$

<u>Case(i)</u>: Let $0 < \alpha < \mu/(n+\mu)$. Then we see that ϕ has its only critical point in the positive real line at

$$x_0 = \frac{1}{(1-\alpha)^2} \left[\left(\frac{\mu(1-2\alpha)}{n-\mu} \right)^2 - \alpha^2 \right].$$

Further, we easily observe that $\phi'(x) > 0$ for $0 \le x < x_0$ and $\phi'(x) < 0$ for $x > x_0$. Therefore, $\phi(x)$ attains maximum value at x_0 and hence,

$$\phi(x) \le \phi(x_0) = \frac{\sqrt{(n-\mu)^2 + \mu^2(1-2\alpha)}}{\sqrt{1-2\alpha}(n-\mu)} \quad \text{for } x \ge 0.$$
 (4.5)

Case(ii): Let $\alpha > \mu/(n+\mu)$. We can easily observe that

$$\phi'(x) \le 0 \iff \mu(1-2\alpha) < (n-\mu)\sqrt{\alpha^2 + (1-\alpha)^2 x}, \quad \text{for } x \ge 0.$$

This implies that $\phi'(x) \leq 0$ for all $x \geq 0$ whenever $\mu(1-2\alpha) < (n-\mu)\alpha$. Therefore, if $\alpha \geq \mu/(n+\mu)$, ϕ is decreasing on $[0,\infty)$ and hence,

$$\phi(x) \le \phi(0) = \frac{n - \mu + \mu\alpha}{(n - \mu)(1 - \alpha)} \quad \text{for all } x \ge 0.$$
 (4.6)

The required conclusion follows from (4.5) and (4.6).

4.7. Proof of Theorem 3.4. Let $f \in \mathcal{U}_n(\lambda, \mu)$ for some $\mu \in (0, n)$. Following the proof of Theorem 3.1, we obtain that

$$\left| \arg \left(\frac{z}{f(z)} \right)^{\mu+1} f'(z) \right| < \arcsin(\lambda r^n)$$

and

$$\left| \arg \left(\frac{z}{f(z)} \right)^{\mu} \right| < \arcsin \left(\frac{\lambda \mu}{n - \mu} r^n \right).$$

Combining the last two inequalities we get

$$\left|\arg \frac{zf'(z)}{f(z)}\right| \le \arcsin \left[\lambda r^n \sqrt{1 - \left(\frac{\lambda\mu}{n-\mu}\right)^2 r^{2n}} + \frac{\lambda\mu}{n-\mu} r^n \sqrt{1 - \lambda^2 r^2}\right].$$

By a calculation, we see that the right hand side of the last inequality is less than or equal to $\pi\gamma/2$ provided

$$r^n \le \frac{(n-\mu)\sin(\gamma\pi/2)}{\lambda\sqrt{(n-\mu)^2 + \mu^2 + 2\mu(n-\mu)\cos(\gamma\pi/2)}}$$

which completes the proof.

4.8. Proof of Theorem 3.6. Let $f \in \mathcal{U}_n(\lambda, \mu)$. Then, by the representations (2.1) and (2.2), it follows that

$$\frac{zf'(z)}{f(z)} = \frac{1 + \lambda w(z)}{1 - \lambda \int_{1}^{\infty} w(t^{-1/\mu}z) dt},$$
(4.9)

where $w \in \mathcal{B}_n$. Then, $|w(z)| \leq |z|^n$. We proceed with the method of the proof of Theorem 1.9 in [7]. According to this

$$\left| \frac{zf'(z)}{f(z)} - \frac{1}{2\beta} \right| = \frac{1}{2\beta} \frac{\left| 2\beta - 1 + 2\beta\lambda w(z) + \lambda \int_{1}^{\infty} w(t^{-1/\mu}z) dt \right|}{\left| 1 - \lambda \int_{1}^{\infty} w(t^{-1/\mu}z) dt \right|} \\
\leq \frac{1}{2\beta} \frac{\left| 2\beta - 1 \right| + 2\beta\lambda |z|^{n} + \frac{\lambda\mu}{n-\mu}|z|^{n}}{1 - \frac{\lambda\mu}{n-\mu}|z|^{n}} \\
= \frac{1}{2\beta} \left[\frac{\left| 2\beta - 1 \right| (n-\mu) + 2\beta\lambda(n-\mu)|z|^{n} + \lambda\mu|z|^{n}}{1 - \lambda\mu|z|^{n}} \right].$$

It is a simple exercise to see that the square bracketed term in the last step is less than 1 provided

$$|z| < \left[\frac{\beta^*(n-\mu)}{\beta\lambda(n-\mu) + \lambda\mu} \right]^{1/n} =: r_{\lambda,\mu,n}^{\beta}$$

where $2\beta^* = 1 - |2\beta - 1|$. We remark that $r_{\lambda,\mu,n}^{\beta} \geq 1$ if and only if

$$\lambda \le \frac{\beta^*(n-\mu)}{\beta(n-\mu) + \mu}.$$

The desired result follows.

4.10. Proof of Theorem 3.8. Let $f \in \mathcal{U}_n(\lambda, \mu)$. Then taking logarithmic derivative of the representation given by (2.1), we have

$$1 + \frac{zf''(z)}{f'(z)} = (\mu + 1)\frac{zf'(z)}{f(z)} - \mu + \frac{\lambda zw'(z)}{1 + \lambda w(z)}.$$

In view of this equation and (4.9) we see that

$$1 + \frac{zf''(z)}{f'(z)} - \frac{1}{2\beta} = (\mu + 1)\frac{1 + \lambda w(z)}{1 - \lambda \int_{1}^{\infty} w(t^{-1/\mu}z) dt} - \mu + \frac{\lambda z w'(z)}{1 + \lambda w(z)} - \frac{1}{2\beta}.$$

Since $w \in \mathcal{B}_n$, by the definition of \mathcal{B}_n , we have $|w(z)| \leq |z|^n$. By the well-known Schwarz-Pick lemma, we find that

$$|w'(z)| \le \frac{1 - |w(z)|^2}{1 - |z|^2}.$$

It follows that (as $\lambda \leq 1$)

$$\left| \frac{zw'(z)}{1 + \lambda w(z)} \right| \le \frac{|z|}{1 - \lambda |w(z)|} \left(\frac{1 - |w(z)|^2}{1 - |z|^2} \right) \le \frac{|z|(1 + |z|^n)}{1 - |z|^2}.$$

With the help of this inequality and the fact that $|w(z)| \leq |z|^n$, after computation, we obtain

$$\left|1 + \frac{zf''(z)}{f'(z)} - \frac{1}{2\beta}\right| < \frac{1}{2\beta}R_{\mu}(\lambda, \beta, |z|),$$

where $R_{\mu}(\lambda, \beta, |z|) := R_{\mu}$ with

$$R_{\mu} = \frac{(|2\beta - 1| + 2\beta\lambda(\mu + 1)|z|^{n})(n - \mu) + (2\beta\mu + 1)\lambda\mu|z|^{n}}{n - \mu - \lambda\mu|z|^{n}} + \frac{2\beta\lambda(|z| + |z|^{n+1})}{1 - |z|^{2}}.$$

It can be easily seen that the equality $R_{\mu}(\lambda, \beta, |z|) < 1$ is equivalent to (3.9). The desired conclusion follows.

5 Integral Transforms

In this section we consider the following integral transform I(f) of $f \in \mathcal{A}$ defined by

$$[I(f)](z) = F(z) = z \left[\frac{c+1-\mu}{z^{c+1-\mu}} \int_0^z \left(\frac{t}{f(t)} \right)^{\mu} t^{c-\mu} dt \right]^{1/\mu}, \quad c+1-\mu > 0. \quad (5.1)$$

This transform is similar to the Alexander transform when $c = \mu = 1$ and is similar to Bernardi transformation when $\mu = 1$ and c > 0.

Theorem 5.2. Let $f \in \mathcal{U}_n(\lambda, \mu)$ for some $\lambda > 0$, $n \geq 2$ and $\mu \in (0, n)$. For $c + 1 - \mu > 0$ and $\alpha < 1$, let F(z) be defined by (5.1). Then $F \in \mathcal{S}_{\alpha}^*$ whenever c, λ are related by

$$0 < \lambda \le \frac{(1-\alpha)(n-\mu)(c+1-\mu+n)}{(c+1-\mu)(n+(1-\alpha)\mu)}.$$
 (5.3)

Proof. Assume that $f(z) = z + \sum_{k=n+1}^{\infty} a_k z^k \in \mathcal{U}_n(\lambda, \mu)$. By (5.1), we see that

$$(c+1-\mu)\left(\frac{F(z)}{z}\right)^{\mu} + z\frac{d}{dz}\left(\frac{F(z)}{z}\right)^{\mu} = (c+1-\mu)\left(\frac{z}{f(z)}\right)^{\mu}.$$

It is a simple exercise to show that

$$\frac{1}{\mu(c+1-\mu)} \left[(c-\mu)(\mu+1) \left(\frac{F(z)}{z} \right)^{\mu} - (c-2\mu) \frac{d}{dz} \left(z \left(\frac{F(z)}{z} \right)^{\mu} \right) - z \frac{d^2}{dz^2} \left(z \left(\frac{F(z)}{z} \right)^{\mu} \right) \right] = \left(\frac{z}{f(z)} \right)^{\mu+1} f'(z).$$

If we set

$$P(z) = z \left(\frac{F(z)}{z}\right)^{\mu},\tag{5.4}$$

then, from the last equation and the assumption $f \in \mathcal{U}_n(\lambda, \mu)$, it follows that P(z) satisfies the second order differential equation

$$\frac{(c-\mu)(\mu+1)}{\mu(c+1-\mu)} \frac{P(z)}{z} - \frac{c-2\mu}{\mu(c+1-\mu)} P'(z) - \frac{1}{\mu(c+1-\mu)} z P''(z) = 1 + \lambda w(z) \quad (5.5)$$

where $w \in \mathcal{B}_n$. If we take $P(z) = z + \sum_{k=n+1}^{\infty} c_k z^k$ and $w(z) = \sum_{k=n}^{\infty} w_k z^k$ in (5.5), then by equating the coefficients of z^n we get the representations

$$\frac{P(z)}{z} = 1 - \frac{\lambda(c+1-\mu)}{c+1} \int_{1}^{\infty} w(t^{-1/\mu}z)(1-t^{-(c+1)/\mu}) dt$$
 (5.6)

and

$$P'(z) = 1 - \frac{\lambda(c+1-\mu)}{c+1} \int_{1}^{\infty} w(t^{-1/\mu}z)(\mu + 1 + (c-\mu)t^{-(c+1)/\mu}) dt.$$
 (5.7)

In view of the equality

$$\left(\frac{z}{f(z)}\right)^{\mu+1} f'(z) = \left(\frac{z}{f(z)}\right)^{\mu} - \frac{z}{\mu} \left\{ \left(\frac{z}{f(z)}\right)^{\mu} \right\}' = 1 + \lambda w(z),$$

where $w \in \mathcal{B}_n$, it follows that (see Section 2)

$$\left(\frac{z}{f(z)}\right)^{\mu} = 1 - \lambda \int_{1}^{\infty} w(t^{-1/\mu}z)dt.$$

From (5.4) we have

$$\frac{zF'(z)}{F(z)} - 1 = \frac{1}{\mu} \left(\frac{zP'(z)}{P(z)} - 1 \right). \tag{5.8}$$

Using (5.6), (5.7) and (5.8), we compute that

$$\begin{split} &\frac{zF'(z)}{F(z)} - 1 \\ &= \frac{1}{\mu} \left[-1 + \frac{1 - \frac{\lambda(c+1-\mu)}{c+1} \int_{1}^{\infty} w(t^{-1/\mu}z) \left(\mu + 1 + (c-\mu)t^{-(c+1)/\mu}\right) dt}{1 - \frac{\lambda(c+1-\mu)}{c+1} \int_{1}^{\infty} w(t^{-1/\mu}z) \left(1 - t^{-(c+1)/\mu}\right) dt} \right] \\ &= -\frac{\frac{\lambda(c+1-\mu)}{\mu(c+1)} \int_{1}^{\infty} w(t^{-1/\mu}z) \left(\mu + (c+1-\mu)t^{-(c+1)/\mu}\right) dt}{1 - \frac{\lambda(c+1-\mu)}{c+1} \int_{1}^{\infty} w(t^{-1/\mu}z) \left(1 - t^{-(c+1)/\mu}\right) dt}} \\ &= -\frac{\lambda(c+1-\mu)}{1 - \frac{\lambda(c+1-\mu)}{c+1} \int_{1}^{\infty} w(t^{-1/\mu}z) \left(1 - t^{-(c+1)/\mu}\right) dt}}{1 - \frac{\lambda(c+1-\mu)}{c+1} \int_{1}^{\infty} w(t^{-1/\mu}z) \left(1 - t^{-(c+1)/\mu}\right) dt}} \end{split}$$

so that

$$\left| \frac{zF'(z)}{F(z)} - 1 \right| < \frac{\frac{\lambda(c+1-\mu)}{\mu(c+1)} \int_{1}^{\infty} t^{-n/\mu} \left(\mu + (c+1-\mu)t^{-(c+1)/\mu}\right) dt}{1 - \frac{\lambda(c+1-\mu)}{c+1} \int_{1}^{\infty} t^{-n/\mu} \left(1 - t^{-(c+1)/\mu}\right) dt}
< \frac{\frac{\lambda(c+1-\mu)}{c+1} \left[\frac{\mu}{n-\mu} + \frac{c+1-\mu}{c+1+n-\mu}\right]}{1 - \frac{\lambda\mu(c+1-\mu)}{c+1} \left[\frac{1}{n-\mu} - \frac{1}{c+1+n-\mu}\right]} \le 1 - \alpha, \text{ by (5.3)}.$$

This completes the proof.

The case $\mu = 1$ of Theorem 5.2 has been obtained in [11] (see also [12] for further discussion on this operator for $\mu = 1$). Taking $\alpha = 0$ in Theorem 5.2 we have

Corollary 5.9. Let $n \geq 1$, $\mu \in (0, n)$, $c + 1 - \mu > 0$ and $f \in \mathcal{U}_n(\lambda, \mu)$, for some λ such that $0 < \lambda \leq \frac{(n - \mu)(c + 1 - \mu + n)}{(c + 1 - \mu)(n + \mu)}$. Then F defined in (5.1) satisfies the condition

$$\left| \frac{zF'(z)}{F(z)} - 1 \right| < 1, \quad z \in \Delta,$$

and, in particular, F is starlike in Δ .

In particular, if $f(z) = z + a_{n+1}z^{n+1} + \cdots \in \mathcal{U}(\lambda)$ for some $0 < \lambda \le n-1$ and n > 1, then

$$\int_0^z \frac{t}{f(t)} \, dt$$

is starlike in Δ .

We end the paper with the following remark: It would be interesting to know whether the bounds/estimates in Theorems 3.1, 3.3, 3.4 and 5.2 are all sharp.

References

- [1] I.E. BAZILEVIČ: On a case of integrability in quadratures of the Löewner-Kufarev equation, *Mat. Sb.* **37**(79)(1955), 471-476.
- [2] D. Brannan and W. Kirwan: On some classes of bounded univalent functions, J. London Math. Soc. (2) 1(1969), 431-443.
- [3] P. L. Duren: Univalent functions (Grundlehren der mathematischen Wissenschaften 259, New York, Berlin, Heidelberg, Tokyo), Springer-Verlag, 1983.
- [4] A.W. GOODMAN: Univalent functions, Vol. I & II, Mariner Publ. Co. Tampa, Florida 1983.
- [5] M. Obradović: A class of univalent functions, *Hokkaido Mathematical Journal* **27**(1998), 329-335.
- [6] M. Obradović and S. Ponnusamy: New criteria and distortion theorems for univalent functions, *Complex Variables: Theory and Appl.* 44(2001), 173-191. (Also Reports of the Department of Mathematics, Preprint 190, June 1998, University of Helsinki, Finland).
- [7] M. OBRADOVIĆ, S. PONNUSAMY, V. SINGH AND P. VASUNDHRA: Univalency, starlikeness and convexity applied to certain classes of rational functions, *Analysis (Munich)* **22**(3)(2002), 225-242.
- [8] S. Ozaki and M. Nunokawa: The Schwarzian derivative and univalent functions, *Proc. Amer. Math. Soc.* **33**(2)(1972), 392-394.

- [9] S. Ponnusamy: Pólya-Schoenberg conjecture by Carathéodory functions, *J. London Math. Soc.* (2)**51**(1995), 93-104.
- [10] S. Ponnusamy and V. Singh: Convolution properties of some classes analytic functions, *Zapiski Nauchnych Seminarov POMI* **226**(1996), 138-154.
- [11] S. Ponnusamy, V. Singh and P. Vasundhra: Starlikeness and convexity of an integral transform, *Integral Transforms and Special Functions*, **15**(3)(2004), 267–280.
- [12] S. Ponnusamy and P. Vasundhra: Univalent functions with missing Taylor coefficients, *Hokkaido Mathematical Journal*, **33**(2004), 341–355.
- [13] S. Ponnusamy and P. Vasundhra: Criteria for univalence, starlikeness and convexity, Annales Polonici Mathematici, To appear.
- [14] St. Ruscheweyh: Convolutions in geometric function theory, Les Presses de l'Université de Montréal, Montréal, 1982.
- [15] T. Sheil-Small: Some remarks on Bazilevič functions, *J. Analyse Math.* **43** (1983/84), 1-11.

Department of Mathematics, Indian Institute of Technology IIT-Madras, Chennai- 600 036, India email: samy@iitm.ac.in

Department of Mathematics Mahila Maha Vidyalaya (MMV), Banaras Hindu University, Banaras 221 005, India e-mail: pravatis@yahoo.co.in