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Abstract

We study the nonexistence of global weak solutions for equations of the
following type:

utt − ∆ u + g(t) ut = |u|p (1)

where g(t) behaves like tβ, 0 ≤ β < 1. Then the situation is extended to
systems of equations of the same type, and more general equation than (1).

1 Introduction

This article discusses the following problem

utt − ∆ u + g(t) ut = |u|p (2)

for (t, x) ∈ (0, +∞) × R
n, which the initial conditions are defined as

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R
n (3)

where p > 1, g(t) is a function behaving like tβ , 0 ≤ β < 1. We provide conditions
relating the space dimension n with parameters β, and p for which every global
solution of (2) is trivial.
In [3], M. Qafsaoui and M. Kirane showed that the critical exponent for the semi-
linear wave equation with linear damping

utt + (−1)m|x|α∆mu + ut = f(t, x)|u|p + w(t, x), t > 0, x ∈ R
n
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is 1 +
m(λ + 2) − α

n
, where α < m(λ + 2), λ > 0. In a recent paper [10], Todorova

and Yordanov deal with the problem

utt − ∆u + ut = |u|p.

They gave a Fujita’s type results. For their proof, they used the fondamental solution
of (∂tt −∆x + ∂t)

k and a series of two propositions and four lemmas. However, they

did not decide for the critical case pc = 1+
2

n
. In [11], Qi S. Zhang uses a different and

much shorter approach, he proves a blow up result more general than the interesting
blow up result in [10]. He also showed that the critical exponent belongs to the blow
up case. This problem had been left open by Todorova and Yordanov. Here, we
present a brief and versatile proof of (2) based on Mitidieri, Pohozaev, Tesei and
Véron [7], [8], [9] methods. This consists in a judicious choice of the test function in
the weak formulation of the sought for solution of (2). The same method is applied
for the more general equation:

utt + (−1)m∆m u + g(t) ut = f(t, x)|u|p + w(t, x), t > 0, x ∈ R
n, (4)

where ∆m, m ≥ 1 is the m-iterated Laplacian, g(t) behaves like tβ, 0 ≤ β < 1,
w(t, x) is a given function, and f(t, x) is a given function behaving, like tσ|x|δ, and
the system:

{

utt − ∆ u + g(t) ut = |v|p

vtt − ∆ v + f(t) vt = |u|q
(5)

subjected to the conditions

u(0, x) = u0(x), v(0, x) = v0(x), ut(0, x) = u1(x), vt(0, x) = v1(x).

2 Notations and Definitions

Definition. 2.1. A weak solution u of the differential equation (2) on R
+ × R

n

with initial data u(., 0) = u0(.) and ut(., 0) = u1(.) belonging to L1
loc(R

n), is a locally

integrable function u ∈ L
p
loc

(

R
+ × R

n
)

which satisfies

∫ ∫

|u|pζ =
∫

Rn
u0(x)ζt(0, x) dx +

∫ ∫

uζtt −
∫ ∫

ug(t)ζt −
∫ ∫

ug′(t)ζ −
∫ ∫

u∆ζ

−
∫

Rn
u0(x)ζ(0, x) dx −

∫

Rn
u1(x)ζ(0, x) dx

for any smooth nonnegative test function ζ.
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3 Statement and proof of the main result

In this section, we give the critical exponent for the equation (2). More precisely,
we have the following result:

Theorem 3.1. Assume that

1. u0, u1 ∈ L1(Rn) such that

∫

Rn
(u0 + u1) dx ≥ 0,

2. 1 < p ≤ pc =
n + 2

n + 2β
,

hold, then there exist no weak solution u to (2) defined on R
+ × R

n.

Proof. Let u be such a weak solution to (2) and ζ be a smooth test function which
will be specified later. We have from the definition of the weak solution

∫ ∫

|u|pζ +
∫

Rn
u0(x)ζ(0, x) dx +

∫

Rn
u1(x)ζ(0, x) dx =

∫

Rn
u0(x)ζt(0, x) dx +

∫ ∫

uζtt

−
∫ ∫

ug(t)ζt −
∫ ∫

ug′(t)ζ −
∫ ∫

u∆ζ.

If ζ is chosen such that
∫

Rn
u0(x)ζt(0, x) dx = 0 (6)

and
∫ ∫

ζ
− 1

p−1

(

|ζtt|
p

p−1 + |gζt|
p

p−1 + |∆ζ |
p

p−1 + |g′ζ |
p

p−1

)

< ∞

then
∫ ∫

|u|pζ +
∫

Rn
u0(x)ζ(0, x) dx +

∫

Rn
u1(x)ζ(0, x) dx ≤

∫ ∫

|u||ζtt|

+
∫ ∫

|u|g|ζt| +
∫ ∫

ug′ζ +
∫ ∫

|u||∆ζ |.

(7)
By applying Hölder’s inequality, with parameters p and p′, to the right hand side of
inequality (7), we obtain

∫ ∫

|u|pζ +
∫

Rn
(u0 + u1)ζ(0, x) dx ≤

(

∫ ∫

|u|pζ

)
1

p





(

∫ ∫

|ζtt|
p′ζ

− p′

p

)
1

p′

+

(

∫ ∫

(g|ζt|)
p′ζ

− p′

p

)
1

p′

+

(

∫ ∫

(g′ζ)p′ζ
− p′

p

)
1

p′

+

(

∫ ∫

|∆ζ |p
′

ζ
− p′

p

)
1

p′



 =

(

∫ ∫

|u|pζ

)
1

p
[

Ap,ζtt
+ Bp,ζt

+ Cp,ζ + Dp,ζ

]

,

(8)
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where p′ =
p

p − 1
. An application of the ε-Young’s inequality to the right hand side

of (8), yields for some C(ε) > 0,

∫ ∫

|u|pζ +
∫

Rn
(u0 + u1)ζ(0, x) dx ≤ C(ε)

(

Ap,ζtt
+ Bp,ζt

+ Cp,ζ + Dp,ζ

)

p

p−1

. (9)

Now we take ζ(t, x) = φ

(

t2 + |x|4

R4

)

where φ ∈ C∞
c (R+) satisfies 0 ≤ φ ≤ 1 and

φ(r) =

{

0 if r ≥ 2,
1 if 0 ≤ r ≤ 1.

(10)

Since ∂tζ(t, x) = 2tR−4φ′

(

t2 + |x|4

R4

)

, the estimate (6) holds. In order to estimate

the right hand side of (9) we consider the scale of variables

t = R2 τ ; x = R y. (11)

Denoting Ω =
{

(t, x) ∈ R
+ × R

n : t2 + |x|4 ≤ R4

}

. With such choice of ζ and by

using the scaled variables (11) we get from (9) that

∫ ∫

Ω

|u|p +
∫

(u0 + u1) ≤ C

(

Rλ1 + Rλ2 + Rλ3 + Rλ4

)

(12)

for R sufficiently large and the constant C is positive and independent of R, and

λ1 = 2 + n −
4p

p − 1
; λ2 = 2 + n +

(2β − 2)p

p − 1
;

λ3 = 2 + n +
(2β − 2)p

p − 1
; λ4 = 2 + n −

2p

p − 1
.

Since R is large and λ1 < λ4 < λ3 = λ2 then inequality (12) can be rewritten as

∫ ∫

Ω

|u|p +
∫

(u0 + u1) ≤ 4C Rλ2 . (13)

Now, if λ2 < 0, ie

p <
n + 2

n + 2β
(14)

then it follows from (13) by letting R → ∞ that
∫ ∫

Ω

|u|p +
∫

(u0 + u1) = 0 and

hence u ≡ 0. This proves Theorem 3.1 in the case of p <
n + 2

n + 2β
.

Next, consider the case λ2 = 0 and let M denote the restriction to Bt,R =
{

(t, x) ∈

R
+ × R

n : R4 < t2 + |x|4 < 2R4
}

of
(

Ap,ζtt
+ Bp,ζt

+ Cp,ζ + Dp,ζ

)

. We have

∫

(u0 + u1)ζ +
∫ ∫

Ω

|u|pζ ≤ CM

(

∫ ∫

Bt,R

|u|pζ

)
1

p

. (15)
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By letting R → ∞, the inequality (13) with λ2 = 0 leads to

∫ ∫

R+×Rn
|u|p < ∞.

Since λ2 = 0, it follows from (8) that

∫ ∫

R+×Rn
|u|pζ ≤

(

∫ ∫

Bt,R

|u|pζ

)
1

p
(

Ap,ζττ
+ Bp,ζτ

+ Cp,ζ + Dp,ζ

)

.

Since
∫ ∫

R+×Rn
|u|p < ∞

we get

lim
R→+∞

∫ ∫

Bt,R

|u|pζ = 0.

Now, letting R → ∞ in (15), we obtain

∫

(u0 + u1) dx +
∫ ∫

|u|p = 0 =⇒ u = 0.

This ends the proof of Theorem 3.1.

4 Remarks

Remark 4.1. We notice that, in the case where β = 0, we retrieve the critical

exponent pdw = 1 +
n

2
obtained by Todorova and Yordanov [10].

The following remark is devoted to some generalization of equation (2).

Remark 4.2. We can treat, in the same manner, the more general equation with

linear damping

utt + (−1)m∆mu + g(t)ut = f(x, t)|u|p + w(t, x), t > 0, x ∈ R
n, (16)

subjected to the initial conditions

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R
n,

where ∆m, m ≥ 1, is the m−iterated Laplacian, p > 1, f(t, x) ≥ 0 is a given function

behaving like tσ|x|δ, w(t, x) is a given function, and g(t) behaves like tβ, 0 ≤ β < 1.

Our assumption on the initial conditions reads

∫

Rn
(u0 + u1) dx ≥ 0,

∫ ∫

w(t, x)dtdx ≥ 0.

Taking in the weak formulation of the solution of (16) the test function ζ such that

∫

Rn
u0(x) ζt(0, x) dx = 0
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this can be obtained by choosing ζ(t, x) = φ

(

t2 + |x|4m

R4

)

. We obtain as before

∫ ∫

wζ +
∫

Rn
(u0 + u1) dx +

∫

f |u|pζ ≤ C





(

∫ ∫

(fζ)−
p′

p |ζtt|
p′

)
1

p′

+

(

∫ ∫

(fζ)−
p′

p (g|ζt|)
p′

)
1

p′

+

(

∫ ∫

(fζ)−
p′

p (g′ζ)p′

)
1

p′

+

(

∫ ∫

(fζ)−
p′

p |∆mζ |p
′

)
1

p′





(17)
Applying ε−Young’s inequality to the right hand side to (17), we obtain for some
C(ε) > 0

∫ ∫

wζ +
∫

Rn
(u0 + u1) dx +

∫

f |u|pζ ≤ C(ε)

(

Ap,ζtt
+ Bp,ζt

+ Cp,ζ + Dp,ζ

)
p

p−1

.

Using the scale variables τ = R−2t, y = R− 1

m x, we obtain

1 < p ≤
n + m(2 + λ)

n + 2βm
,

for the nonexistence of global solutions of equation (16).

5 Case of system of equations

In this section we consider nonnegative solutions to

{

utt − ∆ u + g(t) ut = |v|p (t, x) ∈ (0,∞) × R
n

vtt − ∆ v + f(t) vt = |u|q (t, x) ∈ (0,∞) × R
n (18)

subjected to the conditions

u(0, x) = u0(x) ≥ 0, ut(0, x) = u1(x) ≥ 0

v(0, x) = v0(x) vt(0, x) = v1(x).

Theorem 5.1. Assume that

1. g(t) behaves like tβ, 0 ≤ β < 1

2. f(t) behaves like tα, 0 ≤ α < 1

3. n ≤ −2 max(α, β) +
2

pq − 1
max

(

1 − β + p(1 − α), 1 − α + q(1 − β)
)

,

then problem (18) has only the trivial solution (u, v) = (0, 0).
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Proof. Set ζ(t, x) = φ

(

t2 + |x|4

R4

)

. Now multiplying equation of (18) by ζ and

integrating over QT = (0, T ) × R
n, we get

∫

QT

|v|pζ =
∫

Rn
u0(x)ζt(0, x) dx +

∫

QT

uζtt −
∫

QT

ug(t)ζt −
∫

QT

ug′(t)ζ −
∫

QT

u∆ζ

−
∫

Rn
u0(x)ζ(0, x) dx −

∫

Rn
u1(x)ζ(0, x) dx

(19)
hence

∫

QT

|v|pζ ≤
∫

QT

|u||ζtt| +
∫

QT

|u|g(t)|ζt| +
∫

QT

|u|g′(t)ζ +
∫

QT

|u||∆ζ |. (20)

To estimate
∫

QT

|u||ζtt|,

we observe that it can be rewritten as
∫

QT

|u||ζtt| =
∫

QT

|u|ζ
1

q |ζtt|ζ
− 1

q .

Using Hölder’s inequality, we obtain

∫

QT

|u||ζtt| ≤

(

∫

QT

|u|qζ

)
1

q
(

∫

QT

|ζtt|
q

q−1 ζ
− 1

q−1

)
q−1

q

.

Arguing as above we have

∫

QT

|u||∆ζ | ≤

(

∫

QT

|u|qζ

)
1

q
(

∫

QT

|∆ζ |
q

q−1 ζ
− 1

q−1

)
q−1

q

,

∫

QT

|u|g(t)|ζt| ≤

(

∫

QT

|u|qζ

)
1

q
(

∫

QT

g
q

q−1 |ζt|
q

q−1 ζ
− 1

q−1

)
q−1

q

and
∫

QT

|u|g′(t)ζ ≤

(

∫

QT

|u|qζ

)
1

q
(

∫

QT

g
′ q

q−1 ζ

)

q−1

q

.

Finally, we obtain
∫

QT

|v|pζ ≤

(

∫

QT

|u|qζ

)
1

q

Aq, (21)

where

Aq =

(

∫

QT

|ζtt|
q

q−1 ζ
− 1

q−1

)
q−1

q

+

(

∫

QT

|∆ζ |
q

q−1 ζ
− 1

q−1

)
q−1

q

+

(

∫

QT

g
q

q−1 |ζt|
q

q−1 ζ
− 1

q−1

)
q−1

q

+

(

∫

QT

g
′ q

q−1 ζ

)
q−1

q

.
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Also, we have
∫

QT

|u|qζ ≤

(

∫

QT

|v|pζ

)
1

p

Ap, (22)

where

Ap =

(

∫

QT

|ζtt|
p

p−1 ζ
− 1

p−1

)
p−1

p

+

(

∫

QT

|∆ζ |
p

p−1 ζ
− 1

p−1

)
p−1

p

+

(

∫

QT

f
p

p−1 |ζt|
p

p−1 ζ
− 1

p−1

)
p−1

p

+

(

∫

QT

f
′ p

p−1 ζ

)
p−1

p

.

Using the later inequality into the former one, we obtain

(

∫

QT

|v|pζ

)
pq−1

pq

≤ Aq .A
1

q
p . (23)

Next we consider the scale of variables

t = R2 τ, x = R y

then

(

∫

QT

|v|pζ

)

pq−1

pq

≤ C

[

Rs1 + Rs2 + Rs3 + Rs4

]

×
[

Rs5 + Rs6 + Rs7 + Rs8

]
1

q

(24)

where

s1 = −4 + (2 + n)
q − 1

q
, s2 = −2 + (2 + n)

q − 1

q
, s3 = 2β − 2 + (2 + n)

q − 1

q
,

s4 = 2β − 2 + (2 + n)
q − 1

q
, s5 = −4 + (2 + n)

p − 1

p
, s6 = −2 + (2 + n)

p − 1

p
,

s7 = 2α − 2 + (2 + n)
p − 1

p
, s8 = 2α − 2 + (2 + n)

p − 1

p
.

We deduce
(

∫

QT

|v|pζ

)
pq−1

pq

≤ C R
s4+

s8
q . (25)

If s4 +
s8

q
< 0, the right hand side of (25) goes to 0, as R goes to infinity, while the

left hand side of (25) goes to

(

∫

R+×Rn
|v|pζ

)
pq−1

pq

.

This implies that v = 0 and hence u = 0.

If s4 +
s8

q
= 0, we get

∫

R+×Rn
|v|p dxdt < ∞.
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Using again Hölder’s inequality we infer

∫

QT

|u|qζ ≤

(

∫

{R2≤t2+|x|4≤2R2}
|v|pζ

)
1

p

Ap.

Since
∫

R+×Rn
|v|p dxdt < ∞

we get

lim
R→+∞

∫

{R2≤t2+|x|4≤2R2}
|v|pζ = 0.

The later inequality implies

∫

R+×Rn
|u|q dxdt = 0

which ends the proof.
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