Nonexistence of weak solutions for evolution
problems on R"
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Abstract

We study the nonexistence of global weak solutions for equations of the
following type:
u — A u+g(t) ue = luf? (1)

where ¢(t) behaves like t?, 0 < § < 1. Then the situation is extended to
systems of equations of the same type, and more general equation than (1).

1 Introduction

This article discusses the following problem
e — A g(t) e = ul? @)
for (¢,x) € (0, 4+00) x R™, which the initial conditions are defined as
u(0,z) = ug(x), w(0,2) =u(x), x€R" (3)

where p > 1, g(t) is a function behaving like t°, 0 < 8 < 1. We provide conditions
relating the space dimension n with parameters (3, and p for which every global
solution of (2) is trivial.

In [3], M. Qafsaoui and M. Kirane showed that the critical exponent for the semi-
linear wave equation with linear damping

wy + (=)™ z|*"A™u +u, = f(t, 2)|ul’ + w(t,x), t >0, z € R"
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iS1+m()\+2)—oz

, where @ < m(A+2), A > 0. In a recent paper [10], Todorova
n
and Yordanov deal with the problem

Ut — Au + up = ‘U,‘p

They gave a Fujita’s type results. For their proof, they used the fondamental solution
of (0 — A, + 0;)* and a series of two propositions and four lemmas. However, they

2
did not decide for the critical case p. = 1+—. In [11], Qi S. Zhang uses a different and
n

much shorter approach, he proves a blow up result more general than the interesting
blow up result in [10]. He also showed that the critical exponent belongs to the blow
up case. This problem had been left open by Todorova and Yordanov. Here, we
present a brief and versatile proof of (2) based on Mitidieri, Pohozaev, Tesei and
Véron [7], [8], [9] methods. This consists in a judicious choice of the test function in
the weak formulation of the sought for solution of (2). The same method is applied
for the more general equation:

ug + (=1)"A™ u+g(t) wp = f(t, 0)[ul” +w(t,z), >0, xR (4)

where A™ m > 1 is the m-iterated Laplacian, g(t) behaves like t°, 0 < 3 < 1,
w(t,x) is a given function, and f(¢, ) is a given function behaving, like t?|x|°, and
the system:

subjected to the conditions

u(0, ) = up(x), v(0,z) =vo(x), u(0,z) = ui(z), v:(0,2) = vy (z).

2 Notations and Definitions

Definition. 2.1. A weak solution u of the differential equation (2) on R x R
with initial data u(.,0) = ue(.) and us(.,0) = uy(.) belonging to L} (R™), is a locally
integrable function u € LY (R* X R”) which satisfies

loc

[ [ur¢= [ u@i.2) de+ [ [uce— [ [ugic— [ [ugt)c= [ [uac

—/nuo(x)g(o,x) dx —/ u(z)¢(0, ) dx

n

for any smooth nonnegative test function (.
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3 Statement and proof of the main result

In this section, we give the critical exponent for the equation (2). More precisely,
we have the following result:

Theorem 3.1. Assume that

1. ug,u; € L*(R™) such that | (uo+u1) dx >0,
Rn

n+ 2

2. 1<p§pc:m,

hold, then there exist no weak solution u to (2) defined on RT x R™.

Proof. Let u be such a weak solution to (2) and ¢ be a smooth test function which
will be specified later. We have from the definition of the weak solution

| [1ure+ [ uo@i.a) da+ [ un@)i0,0) de= [ uo@)o.2) do+ [ [ ug
— [ Jugia— [ [ugtc— [ [unc
If ¢ is chosen such that
/R" uo(x)¢(0,2) de =0 (6)
and
[ 7 (1 + Lol + ladl + i) < oo
then

//|u|p<+/ uo(@)¢(0. ) da+ [ ui(@)¢(0.2) datg//\uHCtt\
+ [ [rdglch+ [ [ugc+ [ [ullac

By applying Holder’s inequality, with parameters p and p’, to the right hand side of
inequality (7), we obtain

//|u|pc+/ (o + u1)¢(0, z) da < (//|u|p§> [(//IQ#’ __>
o/ Jurrc#) s ([ fueres) (] vt = o
< / / |u|p(>% [Ap@ + By +Cpe + D, C] ’

4
Y

=
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where p' = Ll An application of the e-Young’s inequality to the right hand side

D
of (8), yields for some C(e) > 0,

b

[ 1 [ ot u)c(0.0) do < CE) (Apeu + B+ Coc 4 )+ 0

t2 4
Now we take ((t,z) = <;5< —;Jlx\ > where ¢ € C°(R™) satisfies 0 < ¢ < 1 and
0 if r>2,
d”:{ 1 if 0<r<1. (10)
2+ |z|*
Since 0,((t,z) = 2tR4<;5'< ) the estimate (6) holds. In order to estimate

the right hand side of (9) we consider the scale of variables

t=R*1; z=Ry. (11)

Denoting 2 = {(t,x) eERT xR : 2+ |z]* < R4}. With such choice of ¢ and by
using the scaled variables (11) we get from (9) that

/lﬂmﬁ+/mm+m)gC(R“+RM+JF“+RM) (12)

for R sufficiently large and the constant C' is positive and independent of R, and

4 20 —2

p—1 p—1
20 — 2 2
p—1 p—1

Since R is large and \; < Ay < A3 = Ay then inequality (12) can be rewritten as

//ﬁmp+/um+ugg40f#z (13)
Q
Now, if Az < 0, ie
n+2
14
p<n+2ﬁ (14)

then it follows from (13) by letting R — oo that //Q lul? + /(uo +uy) = 0 and
n+ 2

n+ 206

Next, consider the case Ay = 0 and let M denote the restriction to B, p = {(t, x) €

Rt xR": R* < * + |z|* < 2R4} of (Ap,g“tt + By, +Cpc + Dp,c). We have

/ﬁm+uﬂ§+/AUM%fglM</L%JM%>é (15)

hence u = 0. This proves Theorem 3.1 in the case of p <
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By letting R — oo, the inequality (13) with Ay = 0 leads to

// [ulP < 0.
R+ xR"

Since Ay = 0, it follows from (8) that

[ oo (], o) (b e 022
/ / ulP < oo
R+ xR™

i f ], o
A2 S e lufP[¢ =0
Now, letting R — oo in (15), we obtain

Since

we get

/(uo—l—u1) d:c—l—//\u\p:0:>u:0.

This ends the proof of Theorem 3.1.

4 Remarks

Remark 4.1. We notice that, in the case where 3 = 0, we retrieve the critical

exponent pg, = 1+ g obtained by Todorova and Yordanov [10)].

The following remark is devoted to some generalization of equation (2).

Remark 4.2. We can treat, in the same manner, the more general equation with
linear damping

ug + (=1)"A™u + g(t)uy = f(z, t)|ulf +w(t,z), t>0,z€R", (16)
subjected to the initial conditions
w(0,2) = ug(x), u(0,2) =wus(z), zeR"

where A™ m > 1, is the m—iterated Laplacian, p > 1, f(t,z) > 0 is a given function
behaving like t°|x|°, w(t,x) is a given function, and g(t) behaves like t°,0 < 8 < 1.

Our assumption on the initial conditions reads

/ (uop +uy) dz >0, //w(t,:c)dtd:c > 0.
Rn

Taking in the weak formulation of the solution of (16) the test function ¢ such that

/nuo(a:) ¢(0,z) de =0
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this can be obtained by choosing ((t,z) = qb( i

). We obtain as before

1
7

(/ fuariar)
_|_<//(fo%l(gKt|)p/>ﬁ n (//(fg)%(g’C)plf + (//(fé)%\ﬁmé\p'> ﬁ]

(17)
Applying e—Young’s inequality to the right hand side to (17), we obtain for some
C(e) >0

//ijL/Rn(uojLul) dx+/f\u\pC§C

//wC +/R (uo +uy) dw + /f|u|pC < C(e) (Ap7<tt + By, + Cpc + Dp,C) :
Using the scale variables 7 = R72t, y = R’%x, we obtain

| <p< EmCHA
n+ 28m

Y

for the nonexistence of global solutions of equation (16).

5 Case of system of equations
In this section we consider nonnegative solutions to

{“tt —Aug(t)w =lof  (t,x) € (0,00) x R” (18)

v — A v+ f(t) v = |ul? (t,x) € (0,00) x R™
subjected to the conditions
uw(0,2) = ug(x) >0, w(0,2) =wui(x) >0
v(0,2) = vo(z) v(0,2) = vy (x).
Theorem 5.1. Assume that
1. g(t) behaves like t°, 0 < < 1

2. f(t) behaves like t*, 0 < a <1

3. n < —2 max(a, §) + 2 N max(l—ﬁ+p(1—oz), 1—a+q(1—ﬁ)),

pq —

then problem (18) has only the trivial solution (u,v) = (0,0).
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t2 4
Proof. Set ((t,z) = <;5( ;Jlﬂ

integrating over Qr = (0,7") x R", we get

/QT lv|P¢ = /Rn uo()C: (0, ) dx+/QT uGy _/QT ug(t)G _/QT ug' ()¢ _/QT uAC

= [ wo@)(0,2) de = [ wi(@)C(0,2) de

n

. Now multiplying equation of (18) by ¢ and

(19)
hence

Lowres [ tulicd + [ ul@ial + [ ulg0c+ [ llac (20

To estimate

| liGal.
Qr

we observe that it can be rewritten as

/QT ful|Cul = /Q ulGHGul¢

Using Holder’s inequality, we obtain

g—1

/QT |ul[Gre| < (/QT‘u‘qC>%</QT‘Ctt‘q%C_q+1>T

Arguing as above we have

[ liagi< (/Q |u|qc)%</QT |A<|ﬁgq—%)qql,

1 q—1

[ talgtoic < (/Q |u|qc>a</%gq%w#cﬁ>7

g—1

[, o= ([ |u|qg>% ([

Finally, we obtain
1
/ |v|pgs</ |u|q<) Ay (21)
Qr Qr

q—1 g—1

t= ([, tetem) T ([ jaesn)

g—1 g—1

+</QTgﬁ|<t|ﬁ<ﬁ> q +</QTg'q—%g> "

and

where
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Also, we have

-

[t < ( [ |v\p<)5 A, (22

p—1 p—1

p—1

e </Q ‘94*4*1)7 + (/Q \Aqﬁgﬁ> "
+</QT f%|<t|ﬁ<‘f)_il>%l - (/QT f’#g)T.

Using the later inequality into the former one, we obtain

where

( /Q Wg) To<a, AL (23)

Next we consider the scale of variables

t=R*1, z2=Ry

then
pg—1 1
rq o
(/ \v|pg> SC[RSI+R52+R33+RS4 X |R* 4+ R+ R+ R|" (24)
Qr
where
—1 -1 —1
51:—4+(2+n)qT, 32:—2+(2+n)qq , 33:2ﬁ—2+(2+n)q ,
—1 -1 —1
54:25—2+(2+n)q7, 55:—4+(2+n)pT, 56:—2+(2—|—n)pp ,

-1 -1
57:2a—2+(2+n)p : 58:2a—2+(2+n)p—.
p p

We deduce

</Q M’”C) S soRE (25)

If s4 + % - 0, the right hand side of (25) goes to 0, as R goes to infinity, while the
q
left hand side of (25) goes to

pq—1

pq

v[P )
(/mml \<>

This implies that v = 0 and hence u = 0.
Ifs4+§:0, we get
4q

/ [v|P dedt < oo.
Rt xRn
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Using again Holder’s inequality we infer

>
1 < / re) A,
/QT Jule < < {R2<i2+]z4<2R?) o C) !

—-

Since
/ [v|P dedt < 0o
R+ xR™

we get

lim [v[P¢ = 0.
R—+400 J{R2<t?+|z|*<2R?}

The later inequality implies

/ |u|? dxdt =0
Rt xRn

which ends the proof.
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