Sectional category of fibrations of fibre
K(Q, 2k).

J.-B. Gatsinzi *

Abstract

We show that the sectional category of a non trivial fibration p with fibre
K (Q, 2k) has sectional category 1 although all n-fold fibre joins p* - - - * p are
not trivial.

1 Introduction

We recall here some homotopic invariants related to the Lusternik-Schnirelmann
category [8].

Definition 1. The category of a map f : X — Y, denoted by cat(f), is the least
integer n such that X can be covered by n + 1 open subsets U;, for which the
restriction of f to each U; is null homotopic. The category of X, cat(X), is the
category of the identity mapping on X.

We have the relation
cat(f) < min{cat(X), cat(Y)}. (1)

The rational category of X, denoted by caty(X), is defined by cato(X) = cat(X).
Here X, denotes the rationalization of X. For a mapping f : X — Y, cato(f) will
denote cat(fy), where fy: Xo — Yy is the rationalization of f.
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Let X be a simply connected CW-complex for which H*(X, Q) is a finite dimen-
sional Q-vector space, for each i. The Sullivan minimal model of X is a free commu-
tative cochain algebra (AZ,d) such that dZ C A2?Z, with Z" = Homg(m,(X), Q)
(see [11], [7]). Félix and Halperin showed that the rational category can be computed
by the means of the Sullivan minimal model of X.

Theorem 2. [5] If (ANZ,d) is the Sullivan minimal model of X, then cato(X) is the
least integer n such that © has a retraction p in the following diagram:

(AZ,d)

<.

1

(ANZ) N7 Z,d) E— NZ & AT

The rational Toomer invariant of X, written eg(X), is the largest integer k such
that some non trivial cohomology class is represented by a cocycle in AZ¥Z. Tt is
always true that

eo(X) < cato(X) [13]. (2)

Definition 3. Let p: E — B be a fibration. The sectional category of p, secat(p),
is the least integer n such that B can be covered by (n + 1) open subsets, over each
of which p has a section.

Definition 4. The genus of a fibration X — E 2 B is the least integer n such that
B can be covered by (n+ 1) open subsets, over each of which p is a trivial fibration,
in the sense of fibre homotopy type [10, Chap.2, Sec.§].

It is straightforward that secat(p) < genus(p) and equality holds when p is a
principal fibration.

Fibrations with fibre in the homotopy type of X are obtained, up to fibre homo-
topy equivalence, as pull back of the universal fibration

X — Baut*X — Baut X [2],

where aut X denotes the monoid of self-homotopy equivalences of X, aut®X is the
monoid of pointed self-homotopy equivalences of X, and B is the Dold-Lashof functor
from monoids to topological spaces [3].

Letting Baut X — Baut X be the universal covering, the induced fibration
X — Baut*X — Baut X is universal for fibrations with simply connected base
spaces [4, Proposition 4.2]. Note that Baut X is homeomorphic to Baut(X),
where aut;(X) denotes the path component of aut X containing the identity.

The genus is related to classifying spaces by the following

Proposition 5. [8] If X — E 2 B is a fibration, then

genus(p) = cat(f), (3)

where f: B — Baut X is the classifying map of p.



Sectional category of fibrations of fibre K(Q, 2k). 67

2 Fibrations with fibre a product of  n copies of K(Q,2k).

Let p: E — B be a fibration with fibre a product of n copies of K(Q, 2k). Then p is
represented by the KS-extension A — (A ® A(y1,y2,...,Yn),d), with |y;| = 2k and
where dy; = ;. The «;’s represent cohomology classes in H?**1(A). A lower bound
of the sectional category is given by the nilpotency index of the ideal generated by
the «;’s [8]. Since the «;’s have odd degrees, this nilpotency index is < n. The
following result provides an upper bound.

Theorem 6. Let X be a product of n copies of K(Q,2k) and p a rational fibration
with fibre X, then secat(p) = genus(p) < n.

Proof. We use a model of the classifying space B aut;(X), as described by Sullivan
in [11]. A model of Baut,(X) is obtained as the Lie algebra of derivations of a
Sullivan model of X. Since the Sullivan minimal model of X is (A(z1,...,2,),0)
where |x;| = 2k, a Lie model of the classifying space is the abelian Lie algebra
@I 1Qa;, where all o; have degree 2k, and with zero differential. The classifying
space B aut;(X) has therefore the rational homotopy type of a product of n copies
of S*+1 Applying Proposition 5 and the relation (1), we deduce that

genus(p) < cat(SHF x .. x S = p,

Using a model of the universal fibration as described in [12], a model of B aut$(X) is
given by @7, (A(z4,yi), d), with |z;| = 2k, |y;| = 2k+1, dz; = y;. Therefore the total
space is rationally contractible, hence the universal fibration is the path fibration.
We conclude that every rational fibration p with fibre X is principal. This yields
genus(p) = secat(p). ]

In particular we have the following

Corollary 7. A non trivial rational fibration p with fibre K (Q, 2k) verifies secat(p) =
genus(p) = 1.

3 Join and cojoin operations

IfF, — E; 2 Band F, — Ey 23 B are fibrations with the same base space, then
the fibrewise join is the fibration p; * ps : Ey xg F5 — B, where elements of F xg Fj
are of the form (tieq,tze9), t1 + 12 = 1, pi(e1) = p2(es), with the restriction that
t;e; is independent of e; if ¢; = 0. Naturally (p; * p2)(t1e1, tae) = p1(e1) = pa(es).
Note that the fibre is the join F} % Fy. If p is a fibration, then p(n) will denote the
fibrewise join of n + 1 copies of p. Schwarz proved the following

Proposition 8. /8, 9/ If p: E — B is a fibration, then the sectional category of p
is the least integer n such that the (n + 1)-fold fibre join p(n) admits a homotopic
section.

In the category of commutative differential graded algebras, we consider the
subcategory of 1-connected objects, that is, each object A verifies A° = Q and
Al = 0. This assumption is sufficient to enable us to compute cojoins in that
category [1], in which fibrations are surjective mappings while cofibrations are KS-
extensions A——= AR AV .
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Figure 1: Cojoin operation

Consider two maps f: A — B and g : A — C between commutative differential
graded algebras (see Figure 1). Factorize f = 7 o4, where i is a cofibration and 7 a
weak equivalence, form then the push out of 7 and ¢g. Now factorize ¢’ = po o where
p is a fibration and o a weak equivalence. The pullback of p and ¢/, B*4 C, is called
the cojoin of the maps f and g. If A is the zero object of the cojoin category, that
is, A = Q and At = 0, then B ** C is simply written B xC and is called the cojoin
of B and C.

We will use the cojoin process to prove the following

Theorem 9. Let K(Q,2k) — E % B be a non trivial fibration between rational
spaces. The fibrations p(n) verify the following properties:

1. p(1) = p*p admits a section,
2. For alln > 1, p(n) is not trivial.

Proof. First of all, note that a fibration p with fibre K(Q, 2k) is trivial if and only
if genus(p) = secat(p) = 0.
Let p be a non trivial fibration with fibre K(Q, 2k). Consider the KS-extension

(A, dp)—> (A® Az, d) — (Az,0)

modelling the fibration p. The element o = dx € A represents a non-trivial cohomol-

ogy class in H**1(A,d,), otherwise the fibration is trivial. Such a fibration does not

admit a section. A model of pxp is the cojoin 1%z where 2 : (A, ds)— (A ® Az, d) .
Now consider the push out

) |

A® Ay——>A® A(z,y),

where A ® Ay is canonically isomorphic to A ® Ax.

Factorize 7: A® Ae —= A® A(z,y) as

A®Ax —=> (A® Az, y,t),d) —= A Az,y),
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where dz = a, (jy — a+tand dt = 0. The mapping 7 is such that 7|agr: = 7,
7(y) = y and 7(t) = 0. The total space of the fibre join p * p is the pullback

(A1, D1) —= AR A(x,y,t)

AR Ny —> A A(z,y)

The natural inclusion mapping ¢(1) : A — A; is a model of the fibre join fibration
p*p.

Note that
A ={(u,v) € [A® Ay BIA® Az, y,1)] : 2(u) = 7(v)} .

One can verify that the algebra A, is isomorphic to A® (Ay & t. A (z,y)), of which
the underlying vector space is A® (Ay @®t. A (x,y)), but y™.ta"y" = ta"y™*". More-
over Dy = a+t, Dit = 0, Diy® = ny" ‘oo +ny" 't and for r > 1 or s > 1,
Dy (z"y’t) = raz" 'yt + sx(a + t)y* 't = raz"'y*t + sxay®~'t. The cohomology
of the fibre (Q ®4 Ay, D) is isomorphic to t. A¥z ® Ay. The projection map is
surjective onto [tz] because [tz 4+ ay] maps to [tx], but there is no cohomology class
in A; that maps to [tz?]. Suppose in fact that there exists such a class [u]. We write
u = tz® + 8y? + ptx + oty + pt + vy + 0, with |§| = 2k + 1, |p| = |o| = 2k, |u| = 4k,
lv| = 4k + 1 and |#| = 6k + 1. The equation Dyu = 0 implies 2o = —d 4(p) which
is in contradiction with our assumption on . This shows that the fibration is not
trivial.

Furthermore one can define a retraction p : A; — A as follows:
pla =1ida, p(y) =0, p(t) = —a and p(z"y’t) = 0 for r > 0 or s > 0.

It is easily checked that p commutes with the differentials. Hence the fibration p* p
has sectional category 1 as expected (see Corollary 7).

To show that p(n) is not trivial, we have to repeat the above cojoin process.
Computations yield

(An, Dn) = (A® (Ayn & tn. (Va1 @ Ayn)), Da),

where |y,| = 2k, |t,| = 2k + 1. The algebras V;,i > 1 are defined inductively by the
formula
Vi=Ay @ ti A (Yo, y1), Vi=Ayi @ 6 (Vier @ A1),

where |y;| = 2k and |t;| = 2k + 1.

The differential verifies D,,(yo) = a and D, (y,) = a +t, for p=1,...,n. The
same argument as in the case n = 1 works. The element ¢, ...ty represents a
nonzero cohomology class in the quotient that can not lift into a cocycle in A,,.
Therefore the fibration is not trivial. ]
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The following example shows that Theorem 6 does not hold if the fibre is a
product of distinct Eilenberg-MacLane spaces.

Ezample 10. Consider the space X = K(Q,2) x K(Q,4). The minimal Sullivan
model of Bauti(X) is (A(z3,ys,T5),d), with des = dys = 0, dzs = x3y3. Here sub-
scripts indicate degrees. Applying Theorem 2 in conjunction with the inequality (2),
we deduce that cat(B aut,(X)) = 3 since the nilpotency index of (A(z3,ys, z5),d) is
three and x3y3z5 represents a nonzero cohomology class. Therefore the genus of the
universal fibration is 3.
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