An Existence Theorem of Solutions for Degenerate Semilinear Elliptic Equations

Albo Carlos Cavalheiro

Abstract

In this paper we study existence of solutions to a class of semilinear degenerate elliptic equations in Weighted Sobolev spaces.

1 Introduction

In this paper we prove the existence of a solution in $H_0(\Omega)$ (see definition in section 2) for the semilinear Dirichlet problem

$$(P) \begin{cases} Lu(x) - \mu u(x)g_1(x) + h(u(x))g_2(x) = f(x), & \text{in } \Omega \\ u(x) = 0, & \text{in } \partial\Omega \end{cases}$$

where L is an elliptic operator in divergence form

$$Lu(x) = -\sum_{i,j=1}^{n} D_j (a_{ij}(x)D_i u(x)), \text{ with } D_j = \frac{\partial}{\partial x_j}$$
 (1.1)

where the coefficients a_{ij} are measurable, real-valued functions whose coefficient matrix $\mathcal{A} = (a_{ij})$ is symmetric and satisfies the degenerate ellipticity condition

$$|\xi|^2 \omega(x) \le \sum_{i,j=1}^n a_{ij}(x) \xi_i \xi_j \le |\xi|^2 v(x),$$
 (1.2)

Received by the editors December 2002.

Communicated by P. Godin.

1991 Mathematics Subject Classification: 35J50, 35D05.

Key words and phrases: Degenerate elliptic equations, Weighted Sobolev space.

for all $\xi \in \mathbb{R}^n$ and almost everywhere $x \in \Omega$, $\Omega \subset \mathbb{R}^n$ is bounded and open, ω and v are weight functions (locally integrable, nonnegative functions on \mathbb{R}^n) and $\mu \in \mathbb{R}$.

The following will be proved in section 3.

THEOREM 1. Suppose that: (H1) The function $h : \mathbb{R} \longrightarrow \mathbb{R}$ is continuous and bounded $(|h(t)| \leq M$, for all $t \in \mathbb{R}$); (H2) $(v, \omega) \in A_2$; (H3) $g_1/v \in L^{\infty}(\Omega)$, $g_2/\omega \in L^2(\Omega, \omega)$ and $f/\omega \in L^2(\Omega, \omega)$; (H4) $\mu > 0$ is not an eigenvalue of the linearized problem

$$(LP) \begin{cases} Lu(x) - \mu u(x)g_1(x) = 0, & \text{in } \Omega \\ u(x) = 0, & \text{in } \partial\Omega. \end{cases}$$

Then the problem (P) has a solution $u \in H_0(\Omega)$.

Simple example. Let $\Omega = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$. By theorem 1, with $h(t) = t e^{-t^2}$, $f(x,y) = e^{-(x^2+y^2)}$, $g_1(x,y) = (x^2+y^2)^{-1/3} \cos(xy)$, $g_2(x,y) = (x^2+y^2)^{-1/2} \sin(xy)$, $\omega(x,y) = (x^2+y^2)^{-1/2}$ and $v(x,y) = (x^2+y^2)^{-1/3}$ the problem

$$\begin{cases} Lu(x,y) - \mu u(x,y)g_1(x,y) + h(u(x,y))g_2(x,y) = f(x,y), & \text{in } \Omega \\ u(x,y) = 0, & \text{in } \partial\Omega \end{cases}$$

where

$$Lu(x,y) = -\frac{\partial}{\partial x} \left((x^2 + y^2)^{-1/2} \frac{\partial u}{\partial x} \right) - \frac{\partial}{\partial y} \left((x^2 + y^2)^{-1/3} \frac{\partial u}{\partial y} \right),$$

has solution $u \in H_0(\Omega)$ if $\mu > 0$ is not an eigenvalue of the linearized problem (LP).

2 Definitions and basic results

Let ω be a locally integrable nonnegative function in \mathbb{R}^n and assume that $0 < \omega < \infty$ almost everywhere. We say that ω belongs to a Muckenhoupt class A_p , $1 , or that <math>\omega$ is an A_p -weight, if there is a constant $C_1 = C_{p,\omega}$ such that

$$\left(\frac{1}{|B|} \int_{B} \omega(x) dx\right) \left(\frac{1}{|B|} \int_{B} \omega^{1/(1-p)}(x) dx\right)^{p-1} \le C_{1}$$

for all balls B in \mathbb{R}^n , where |.| denotes the n-dimensional Lebesgue measure in \mathbb{R}^n . If $1 < q \le p$ then $A_q \subset A_p$ (see [HKM] or [GR] for more information about A_p -weights). As an example of A_p -weights, if $x \in \mathbb{R}^n$, the function $\omega(x) = |x|^{\alpha}$ is A_p if and only if $-n < \alpha < n(p-1)$. Let $\Omega \subset \mathbb{R}^n$ be a bounded open set. We shall denote by $L^p(\Omega, \omega)$ $(1 \le p < \infty)$ the Banach space of all measurable functions, f, defined in Ω for which

$$||f||_{L^p(\Omega,\omega)} = \left(\int_{\Omega} |f(x)|^p \omega(x) dx\right)^{1/p} < \infty.$$

For $p \ge 1$ and k a nonnegative integer, the Weighted Sobolev spaces $W^{k,p}(\Omega,\omega)$ is defined by

$$W^{k,p}(\Omega,\omega) = \{u{\in}L^p(\Omega,\omega) \ : \ D^{\alpha}u{\in}L^p(\Omega,\omega), \ 1{\leq}|\alpha|{\leq}k\}$$

with norm

$$||u||_{W^{k,p}(\Omega,\omega)} = \left(\int_{\Omega} |u(x)|^p \omega(x) dx + \sum_{1 \le |\alpha| \le k} \int_{\Omega} |D^{\alpha}u(x)|^p \omega(x) dx\right)^{1/p}.$$
 (2.1)

If $\omega \in A_p$ then $W^{k,p}(\Omega,\omega)$ is a closure of $C^{\infty}(\overline{\Omega})$ with respect to the norm (2.1) (see proposition 3.5 in [CS]). The space $W_0^{k,p}(\Omega,\omega)$ is the closure of $C_0^{\infty}(\Omega)$ with respect to the norm

$$||u||_{W_0^{k,p}(\Omega,\omega)} = \left(\sum_{1 \le |\alpha| \le k} \int_{\Omega} |D^{\alpha}u(x)|^p \omega(x) dx\right)^{1/p}.$$

When k=1 and p=2 the spaces $W^{1,2}(\Omega,\omega)$ and $W^{1,2}_0(\Omega,\omega)$ are Hilbert spaces. The space $H(\Omega)$ is defined to be the completion of $C^{\infty}(\overline{\Omega})$ with respect to the norm

$$||u||_{H(\Omega)} = \left(\int_{\Omega} u^2 v dx + \int_{\Omega} \langle \mathcal{A} \nabla u, \nabla u \rangle dx\right)^{1/2}$$

where $\mathcal{A} = (a_{ij})$ is the coefficient matrix of operator L defined in (1.1), $\langle .,. \rangle$ denotes the usual inner product in \mathbb{R}^n and the symbol ∇ indicates the gradient. The space $H_0(\Omega)$ is defined to be the completion of $C_0^{\infty}(\Omega)$ with respect to the norm

$$||u||_{H_0(\Omega)} = \left(\int_{\Omega} \langle A\nabla u, \nabla u \rangle dx\right)^{1/2}.$$

We say that the pair (v, ω) of nonnegative locally integrable functions v and ω satisfies the condition A_p , $1 , and we write <math>(v, \omega) \in A_p$, if there is a constant $C_2 = C_{p,v,\omega}$ such that

$$\left(\frac{1}{|B|}\int_{B}v(x)dx\right)\left(\frac{1}{|B|}\int_{B}\omega^{1/(1-p)}(x)dx\right)^{p-1}\leq C_{2},$$

for all balls B in \mathbb{R}^n .

Remark 2. If $(v, \omega) \in A_p$ and $\omega \le v$ then $v \in A_p$ and $\omega \in A_p$. In this cases, for p = 2 and using condition (1.2) we obtain

$$\int_{\Omega} |\nabla u|^2 \omega dx \le \int_{\Omega} \langle \mathcal{A} \nabla u, \nabla u \rangle dx \le \int_{\Omega} |\nabla u|^2 v dx.$$

Therefore $W_0^{1,2}(\Omega, v) \subset H_0(\Omega) \subset W_0^{1,2}(\Omega, \omega)$.

We make the following basic assumption on the weights ω and v.

The Weighted Sobolev Inequality (WSI). Let Ω be a bounded open set in \mathbb{R}^n . There is an index $q = 2\sigma$, $\sigma > 1$, such that for every ball B and every $f \in \text{Lip}_0(B)$ (i.e., $f \in \text{Lip}(B)$ and whose support is contained in the interior of B),

$$\left(\frac{1}{v(B)}\int_{B}|f|^{q}vdx\right)^{1/q} \leq CR_{B}\left(\frac{1}{\omega(B)}\int_{B}|\nabla f|^{2}\omega dx\right)^{1/2}$$

with the constant C independent of f and B, R_B is the radius of B, $v(B) = \int_B v(x)dx$ and $\omega(B) = \int_B \omega(x)dx$. Thus, we can write

$$||f||_{L^q(B,v)} \le C_S |||\nabla f|||_{L^2(B,\omega)}$$

where C_S is called the Sobolev constant and

$$C_S = \frac{C[v(B)]^{1/q}R_B}{[\omega(B)]^{1/2}}.$$

For instance, the WSI holds if ω and v are as in Theorem 4.8, chapter X of [T] or if ω and v are as in Theorem 1.5 of [CW].

Lemma 3. If $\omega \in A_2$ then $W_0^{1,2}(\Omega,\omega) \hookrightarrow L_2(\Omega,\omega)$ is compact and

$$||u||_{L_2(\Omega,\omega)} \le C_2 ||u||_{W_0^{1,2}(\Omega,\omega)}.$$

Proof. The proof of this lemma follows the lines of theorem 4.6 in [FS].

Remark 4. Let $q=2\sigma, \, \sigma>1$ be as in (WSI). We have that: (i) If $u\in L^q(\Omega,v)$ then $u\in L^2(\Omega,v)$ and $\|u\|_{L^2(\Omega,v)}\leq [v(\Omega)]^{1/2\sigma'}\|u\|_{L^q(\Omega,v)}$. (ii) If $u\in H_0(\Omega)$ then

$$\int_{\Omega} |\nabla u|^2 \omega dx \le \int_{\Omega} \langle \mathcal{A} \nabla u, \nabla u \rangle dx < \infty.$$

Using (WSI) we obtain

$$||u||_{L^q(\Omega,v)} \le C_S \left(\int_B |\nabla u|^2 \omega dx \right)^{1/2},$$

that is, $u \in L^q(\Omega, v)$. Hence, using (i),we get $u \in L^2(\Omega, v)$. Therefore $H_0(\Omega) \subset L^2(\Omega, v)$ and

$$||u||_{L^{2}(\Omega,v)} \leq C_{S}[v(\Omega)]^{1/2\sigma'} ||u||_{H_{0}(\Omega)}.$$

Definition 5. We say that an element $u \in H_0(\Omega)$ is a (weak) solution of problem (P) if

$$\int_{\Omega} \left(a_{ij}(x) D_i u(x) D_j \varphi(x) - \mu u(x) g_1(x) \varphi(x) \right) dx + \int_{\Omega} h(u(x)) g_2(x) \varphi(x) dx = \int_{\Omega} f(x) \varphi(x) dx$$

for every $\varphi \in H_0(\Omega)$.

3 Proof of theorem 1

The basic idea is to reduce (P) to an operator equation Bu + Nu = T and apply the following theorem.

Theorem A. Let $B, N : X \longrightarrow X^*$ be forms on the real separable reflexive Banach space X. Assume:

- (a) The operator $B: X \longrightarrow X^*$ is linear and continuous;
- (b) The operator $N: X \longrightarrow X^*$ is demicontinuous and bounded;
- (c) B + N is asymptotically linear;
- (d) For each $T \in X^*$ and each $t \in [0, 1]$ the operator $A_t(u) = Bu + t(Nu T)$ satisfies condition (S) in X.

If Bu = 0 implies u = 0, then for each $T \in X^*$ the operator equation Bu + Nu = T has a solution in X.

Proof. See [H] or theorem 29.C in [EZ].

Remark 6. Let X be a real separable reflexive Banach space.

(i) The operator $N: X \longrightarrow X^*$ is said to be demicontinuous if

$$u_n \longrightarrow u$$
 implies $Nu_n \rightharpoonup Nu$, as $n \longrightarrow \infty$.

(ii) The operator N is strongly continuous if

$$u_n \rightharpoonup u$$
 implies $Nu_n \longrightarrow Nu$, as $n \to \infty$.

(iii) $B + N : X \longrightarrow X^*$ is asymptotically linear if B is linear and

$$\frac{\|Nu\|}{\|u\|} \longrightarrow 0$$
 as $\|u\| \longrightarrow \infty$.

(iv) The operator $B: X \longrightarrow X^*$ satisfies condition (S) if

$$u_n \rightharpoonup u$$
 and $\lim_{n \to \infty} (Bu_n - Bu|u_n - u) = 0$ implies $u_n \longrightarrow u$,

where (f|x) denotes the value of linear functional f at the point x.

Step 1. We define the operators $B_1, B_2 : H_0(\Omega) \times H_0(\Omega) \longrightarrow \mathbb{R}$ through

$$B_1(u,\varphi) = \int_{\Omega} a_{ij}(x) D_i u(x) D_j \varphi(x) dx - \mu \int_{\Omega} u(x) \varphi(x) g_1(x) dx,$$

$$B_2(u,\varphi) = \int_{\Omega} h(u(x)) g_2(x) \varphi(x) dx,$$

and $T: H_0(\Omega) \longrightarrow \mathbb{R}$ through

$$T(\varphi) = \int_{\Omega} f(x)\varphi(x)dx.$$

We have that $u \in H_0(\Omega)$ solves problem (P) if

$$B_1(u,\varphi) + B_2(u,\varphi) = T(\varphi)$$
, for all $\varphi \in H_0(\Omega)$.

Using Hölder inequality, condition (H3) and remark 4(ii) we get

$$|B_{1}(u,\varphi)| \leq \int_{\Omega} |\langle \mathcal{A}\nabla u, \nabla \varphi \rangle| dx + |\mu| \int_{\Omega} |u| |\varphi| |g_{1}| dx$$

$$\leq \int_{\Omega} \langle \mathcal{A}\nabla u, \nabla u \rangle^{1/2} \langle \mathcal{A}\nabla \varphi, \nabla \varphi \rangle^{1/2} dx + |\mu| \int_{\Omega} |u| |\varphi| \left| \frac{g_{1}}{v} \right| v dx$$

$$\leq \left(\int_{\Omega} \langle \mathcal{A}\nabla u, \nabla u \rangle dx \right)^{1/2} \left(\int_{\Omega} \langle \mathcal{A}\nabla \varphi, \nabla \varphi \rangle dx \right)^{1/2} +$$

$$+ |\mu| |\|g_{1}/v\|_{L^{\infty}(\Omega)} \int_{\Omega} |u| |\varphi| v dx$$

$$\leq ||u||_{H_{0}(\Omega)} ||\varphi||_{H_{0}(\Omega)} + |\mu| ||g_{1}/v||_{L^{\infty}(\Omega)} ||u||_{L^{2}(\Omega,v)} ||\varphi||_{L^{2}(\Omega,v)}$$

$$\leq \left(1 + C|\mu| ||g_{1}/v||_{L^{\infty}(\Omega)} \right) ||u||_{H_{0}(\Omega)} ||\varphi||_{H_{0}(\Omega)}$$

$$= \mathbf{C} ||u||_{H_{0}(\Omega)} ||\varphi||_{H_{0}(\Omega)}.$$

By conditions (H1) and (H3), Lemma 3 and remark 2, we obtain

$$|B_{2}(u,\varphi)| \leq \int_{\Omega} |h(u)||\varphi||g_{2}|dx$$

$$\leq M \int_{\Omega} \left| \frac{g_{2}}{\omega} \right| |\varphi|\omega dx$$

$$\leq M ||g_{2}/\omega||_{L^{2}(\Omega,\omega)} ||\varphi||_{L^{2}(\Omega,\omega)}$$

$$\leq M ||g_{2}/\omega||_{L^{2}(\Omega,\omega)} C_{2} ||\varphi||_{W_{0}^{1,2}(\Omega,\omega)}$$

$$\leq C_{2} M ||g_{2}/\omega||_{L^{2}(\Omega,\omega)} ||\varphi||_{H_{0}(\Omega)}. \tag{3.1}$$

Moreover, we also have

$$|T(\varphi)| \leq \int_{\Omega} |f| |\varphi| dx$$

$$= \int_{\Omega} \left(\frac{|f|}{\omega} \right) |\varphi| \omega dx$$

$$\leq ||f/\omega||_{L^{2}(\Omega,\omega)} ||\varphi||_{L^{2}(\Omega,\omega)}$$

$$\leq C_{2} ||f/\omega||_{L^{2}(\Omega,\omega)} ||\varphi||_{W_{0}^{1,2}(\Omega,\omega)}$$

$$\leq C_{2} ||f/\omega||_{L^{2}(\Omega,\omega)} ||\varphi||_{H_{\alpha}(\Omega)}.$$

Step 2. Since $H_0(\Omega)$ is a real Hilbert space with inner product

$$a_0(u,\varphi) = \int_{\Omega} \langle A\nabla u, \nabla \varphi \rangle dx$$

using the Identification Principle (theorem 21.18 in [EZ]) we set $H_0(\Omega) = [H_0(\Omega)]^*$ and $a_0(u,\varphi) = (u|\varphi)$ (if $f \in X^*$ and $u \in X$, then (f|u) = f(u)).

We define the operators $B, N : H_0(\Omega) \longrightarrow H_0(\Omega)$ through

$$(Bu|\varphi) = B_1(u,\varphi);$$

$$(Nu|\varphi) = B_2(u,\varphi), \forall u, \varphi \in H_0(\Omega).$$

Since $T \in [H_0(\Omega)]^*$, the problem (P) is equivalent to the operator equation

$$Bu + Nu = T, \quad u \in H_0(\Omega).$$

Step 3: Using that $H_0(\Omega) \hookrightarrow L_2(\Omega, v)$ is compact (see Lemma 3 and remark 4(ii)), we have that $B_1(., .)$ is a regular Gårding form. In fact: since $\mu > 0$ and by condition (1.2) we obtain

$$B_{1}(u,u) = \int_{\Omega} a_{ij} D_{i} u D_{j} u dx - \mu \int_{\Omega} u^{2} g_{1} dx$$

$$= \int_{\Omega} \langle \mathcal{A} \nabla u, \nabla u \rangle dx - \mu \int_{\Omega} u^{2} \left(\frac{g_{1}}{v}\right) v dx$$

$$\geq \int_{\Omega} \langle \mathcal{A} \nabla u, \nabla u \rangle dx - \mu \|g_{1}/v\|_{L^{\infty}(\Omega)} \int_{\Omega} u^{2} v dx$$

$$= \|u\|_{H_{0}(\Omega)}^{2} - \mu \|g_{1}/v\|_{L^{\infty}(\Omega)} \|u\|_{L_{2}(\Omega,v)}^{2}.$$

Hence, there exist a decomposition of the form $B = T_1 + T_2$, where T_1 and T_2 are bilinear and bounded, $T_1(.,.)$ is strongly positive and $T_2(.,.)$ is compact (see lemma 22.38 in [EZ]). Thus, B is Fredholm of index zero (see definition 8.13 and theorem 21.F in [EZ]) and B satisfies condition (S) (see proposition 27.12, [EZ]).

Step 4: By (3.1) we get

$$|(Nu,\varphi)| = |B_2(u,\varphi)|$$

$$\leq C_2 M \|g_2/\omega\|_{L^{\infty}(\Omega)} \|\varphi\|_{H_0(\Omega)}.$$

Hence, $||Nu|| \leq C$, for all $u \in H_0(\Omega)$. Therefore,

$$\frac{\|Nu\|}{\|u\|} \longrightarrow 0$$
, as $\|u\|_{H_0(\Omega)} \longrightarrow \infty$,

that is, B + N is asymptotically linear and the operator N is strongly continuous (see corollary 26.14 in [EZ]).

Step 5. For each $t \in [0, 1]$, the operator $A_t(u) = Bu + t(Nu - T)$ is a strongly continuous perturbation of the operator B. Thus, the operator A_t also satisfies condition (S) (see proposition 27.12, [EZ]).

If μ is not an eigenvalue of the linearized problem (LP), Bu = 0 implies u = 0. Therefore, by theorem A, the operator equation Bu + Nu = T has a solution $u \in H_0(\Omega)$ and u is solution for the problem (P).

References

[CW] S. Chanillo and R.L. Wheeden, Weighted Poincaré and Sobolev Inequalities and Estimates for the Peano Maximal Function. Amer. J.Math. 107 (1985), 1191-1226.

- [CS] V. Chiadò Piat and F. Serra Cassano, Relaxation of Degenerate Variational Integrals, Nonlinear Anal. 22, (1994), 409-429.
- [EZ] E. Zeidler, Nonlinear Functional Analysis and its Applications, Part I and Part II/A B, Springer-Verlag, 1990.
- [FS] B. Franchi and R. Serapioni, *Pointwise Estimates for a Class of Strongly Degenerate Elliptic Operators: a Geometrical Approach*, Ann. Scuola Norm. Sup. Pisa, 14 (1987), 527-568.
- [GR] J. Garcia-Cuerva and J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Mathematics Studies 116, 1985.
- [H] P. Hess, On the Fredholm Alternative for Nonlinear Functional Equations in Banach Spaces, Proc. Amer. Math. Soc. 33, 55-61 (1972).
- [HKM] J. Heinonen, T. Kilpeläinen and O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Math. Monographs, Clarendon Press, 1993.
- [T] A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, 1986.

Departamento de Matemática Universidade Estadual de Londrina Campus Universitrio 86051-990 - Londrina - PR Brasil

E-mail: albo@uel.br