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Abstract

We present several results about the extension of vector-valued holomor-
phic or meromorphic functions from an open domain in C to a larger domain
on which the function has a weakly holomorphic or meromorphic extension.

1 Introduction

The main problem which is considered in this article can be stated as follows: Let
Ω1 ⊆ Ω2 be two non empty open connected subsets of C, and let E be a complex
Hausdorff locally convex space satisfying certain completeness assumptions. Which
conditions on the space E ensure that every function f : Ω1 −→ E such that u ◦ f
admits a meromorphic extension to Ω2 for each u ∈ E ′ can be extended to Ω2

as a meromorphic function with values in E? One of our main tools is the result
proved by Bonet, Maestre and the author in [6]: if E is locally complete and does not
contain the countable product ω of copies of C, then there is a canonical isomorphism
between the space of meromorphic functions M(Ω, E) from a domain Ω in C to E
and the ε-product of Schwartz M(Ω)εE = L(E ′

co, M(Ω)) when M(Ω) is endowed
with the locally convex topology defined by Holdgrün in [18] and deeply studied by
Grosse-Erdmann in [14].

Our main results give the following answers to the problem stated above. They
constitute extensions of results due to Hai, Khue and Nga [17] and Grosse-Erdmann
[13]: Suppose that E is locally complete and does not contain ω. The meromorphic
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6 E. Jordá

extension f̂ ∈ M(Ω2, E) exists if E ′

β is suprabarrelled (Theorem 12), or if E is a
barrelled complete Schwartz space (Theorem 16) or if E is a distinguished Fréchet
space such that E ′′

β has a continuous norm (Theorem 17).
We study also the analogous problem for holomorphic functions, obtaining that

whenever E is a locally complete locally convex space and f : Ω1 → E is a function
such that u◦f admits a holomorphic extension to Ω2 for each u ∈ E ′ then also f can
be holomorphically extended to Ω2 (Theorem 3). The proofs use almost exclusively
functional analytic techniques.

2 Notation and Preliminaries

Throughout this paper, E denotes a complex and Hausdorff locally convex space and
Ω denotes a domain, i.e. a non-empty open and connected set, in C. Our notation for
locally convex spaces and functional analysis is standard. We refer to [21, 25, 27].
We recall the terminology which will be repeatedly used. In a topological vector
space we denote by cx(A) and acx(A) the convex and the absolutely convex hull
of A respectively. In a metric space we denote by B(a, r), D(a, r) and S(a, r) the
open ball, the closed ball and the sphere centered on a with radius r respectively.
Given a subset A of a topological space we denote by A the closure of A and by
∂A its boundary. Eσ denotes E endowed with the weak topology σ(E, E ′), E ′

β

denotes the strong dual of E, E ′

co denotes the dual of E endowed with the topology
of uniform convergence on absolutely convex compact sets of E and E ′

µ denotes the
dual endowed with the topology of uniform convergence in absolutely convex weakly
compact sets, i.e. E ′

µ = (Eσ)′co. A subspace S of E ′ is called separating if S◦ = {0},
the polar taken in E. For two locally convex spaces E and F , we denote by L(E, F )
the space of continuous linear maps defined on E and with values in F . A locally
convex space E is said to be Montel if it is barrelled and each bounded set in E is
relatively compact. The space of holomorphic functions H(Ω) is an example of a
Fréchet-Montel space. If E is a Montel space, E ′

co = E ′

β holds. For E and F locally
convex spaces, the space Le(F

′

co, E), that is, the space L(F ′

co, E) endowed with the
topology of the uniform convergence on the equicontinuous subsets of F ′, is called
ε-product of Schwartz and denoted by EεF . We remark that, in this paper, we will
not use the topology defined in the space EεF . Actually, we are only interested in
which vectors belong to an ε-product. The ε-product of Schwartz has the following
property [24, 43.3.(3)]:

EεF = Le(F
′

co, E) ≃ Le(E
′

co, F ) = FεE.

Let I be an index set, the product of locally convex spaces each one of them
isomorphic to E is denoted by EI , and their direct sum is denoted by E(I). CN is
denoted by ω and C(N) by ϕ. We refer to [29] for elementary properties of holomor-
phic and meromorphic functions. The space of E-valued functions holomorphic on
Ω is denoted by H(Ω, E). For equivalent definitions of vector-valued holomorphic
and meromorphic functions we refer to [9, 13].

Let E be a locally convex space. A disc in E is a subset which is bounded and
absolutely convex. Given a disc B, we denote by EB the linear span of B endowed
with the norm topology ‖ · ‖B, where ‖x‖B = inf{λ ∈ R+ : x ∈ λB}. If EB is a



Extension of vector-valued holomorphic and meromorphic functions 7

Banach space B is called a Banach disc. Recall that a locally complete space is a
locally convex space in which every closed disc is a Banach disc.

A sequence (xn)n in E is said to be locally convergent if there is a disc B in E
such that the sequence converges to x in EB. Given a subset A of E, a point x is a
local limit point of A if there is a sequence in A locally convergent to x. A is called
locally closed if every local limit point of A belongs to A. Every locally complete
subspace of E is locally closed and a locally closed subspace of a locally complete
space is locally complete [27, Proposition 5.1.20]. In this paper we deal with locally
complete locally convex spaces, and for this kind of spaces a function is holomorphic
if and only if it is weakly holomorphic [7, Lemma 3.1.1]. The spaces in which this
happens were called differentially stable by Nachbin [26].

Lemma 1. Let Ω be a domain in C, let E be a locally complete locally convex space
and let F be a locally closed subspace of E. If f ∈ H(Ω, E) and there exists a
non-empty open subset V of Ω with f(V ) ⊂ F , then f ∈ H(Ω, F ).

Proof. It is enough to prove that given a ∈ ∂V ∩ Ω there exists r > 0 such that
f(B(a, r)) ⊂ F . Let r > 0 such that D(a, r) ⊂ Ω. We define the set

B1 :=

{
f(z) − f(t)

|z − t|
: z, t ∈ D(a, r), z 6= t

}

,

which is seen to be bounded as in the proof of [6, Proposition 2] (see also [4]). Since
u◦f is continuous on D(a, r) for each u ∈ E ′, the set f(D(a, r)) is (weakly) bounded
in E. We set

B := acx{f(D(a, r)) ∪ B1}.

B is a Banach disc since E is locally complete. Moreover, we have that the restriction
of f to B(a, r) is continuous considering in the image the topology inherited from
EB, since

‖f(z) − f(t)‖B ≤ |z − t|.

Thus, if we take a sequence (zn)n ⊂ B(a, r)∩ V which converges to a, we have that
(f(zn))n ⊂ F converges to f(a) in EB. We apply that F is locally closed to get
f(a) ∈ F . Since f ∈ H(V, F ) (F is locally complete and then differentially stable),
the n − th derivatives f (n) ∈ H(V, F ). Thus, the same argument shows that, for
n ∈ N, f (n)(a) ∈ F . The restriction of the functionals of E ′ to EB form a separating
subspace of E ′

B since the topology of EB is finer than the topology of E and, by
the assumptions, u ◦ f ∈ H(B(a, r)) for every u ∈ E ′. We can apply [13, Theorem
5.2] (cf. [15, Theorem 1]) to conclude that f : B(a, r) → EB is holomorphic. Hence
f (n)(a) ∈ F ∩ EB and, for every z ∈ B(a, r),

f(z) =
∞∑

n=0

(z − a)n

n!
f (n)(a)

holds in EB. Since F is locally closed, f(z) ∈ F . �

Let Ω be a domain in C. A function f defined on Ω with values in a locally
convex space E is called meromorphic if there exists a subset D discrete in Ω such
that f ∈ H(Ω \D, E) and for each α ∈ D there exists k ∈ N such that (z −α)kf(z)
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admits holomorphic extension in α. We write f ∈ M(Ω, E) (M(Ω) if E = C). A
function f defined on an open non-empty set Ω ⊆ C with values in a locally convex
space E is called weakly meromorphic if there exists a set D discrete in Ω such that
f is holomorphic in Ω \ D and u ◦ f is a meromorphic function in Ω with poles
contained in D for each u ∈ E ′. We denote by WM(Ω, E) the space of weakly
meromorphic functions defined on Ω with values in E. A function f : Ω → E is
called very weakly meromorphic if u ◦ f is meromorphic for every u ∈ E. The space
of very weakly meromorphic functions defined on Ω with values in E is denoted by
Merω(Ω, E) (cf. [13]). It was proved in [6] that for a locally complete space E,
WM(Ω, E) = M(Ω, E) if and only if E does not contain ω. For a space like this, [6,
Proposition 6] shows that the mapping T : M(Ω, E) −→ L(E ′

co, M(Ω)) = M(Ω)εE,
T (f)(u) = u◦f is an isomorphism, if one identifies (as we do) meromorphic functions
which coincide except on a discrete set. M(Ω) is endowed with the complete locally
convex topology studied in [14] by Grosse-Erdmann. This topology is generated by
the seminorms

‖f‖K,b = sup
z∈K

|(f −
∑

α∈K

hα(f))(z)| +
∑

α∈K

∞∑

n=1

bn
α|(a

−n
α (f))|,

where K runs over the compact subsets of Ω, b = (bn
α)α∈K,n∈N, bn

α ≥ 0 for every
α ∈ K and for every n ∈ N, and hα(f) =

∑
∞

j=1 a−j
α (f)(z −α)−j is the principal part

of f at α, where a−j
α (f) = 0 except for a finite number.

Remark 2. As mentioned above we identify meromorphic functions which coincide
except on a discrete set. With this identification, the locally convex space M(Ω)
is Hausdorff. As a consequence of the principle of isolated zeros of holomorphic
functions, two meromorphic functions on Ω which coincide in a set D which has an
accumulation point in Ω only can differ in a discrete subset of Ω, and then both
represent the same vector in the locally convex space M(Ω).

Grosse Erdmann [13, Theorem 2.6] showed that if E is locally complete and E ′

β is
Baire, then M(Ω, E) = Merω(Ω, E). We conjecture that this holds for every locally
complete space E which does not contain ω. Partial positive results can be found
in Section 4.

3 Holomorphic extension

In this introductory section we deal with E-valued functions f defined on subsets
A ⊆ Ω and such that u◦f admits a holomorphic extension to Ω for each u ∈ S ⊆ E ′,
obtaining results on holomorphic extension of f . For literature concerning this
problem we refer to [1, 2, 3, 11, 12, 13, 15, 19, 20].

From [6, Proposition 2] it follows that if E is a locally complete locally convex
space then for each holomorphic function f : Ω −→ E and for each compact subset
K of Ω the subset acxf(K) is compact in E. Therefore one can easily obtain that
the canonical identification H(Ω, E) ≃ H(Ω)εE is valid for locally complete spaces
E. That is, a linear map T : E ′ −→ H(Ω) belongs to H(Ω)εE if and only if there
exists f ∈ H(Ω, E) such that T (u) = u ◦ f for each u ∈ E ′ (see [21, Theorem 16.7.4]
where it is done for complete spaces).
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Theorem 3. Let E be locally complete locally convex space, and let Ω1 ⊆ Ω2 be two
complex domains. If f : Ω1 −→ E is a function such that u◦f admits a holomorphic
extension to Ω2 for each u ∈ E ′, then f can be holomorphically extended to Ω2.

Proof. First we assume E to be a distinguished space, i.e. with barrelled strong
dual, and we observe that if Ω1 ⊆ Ω2 are two complex domains and f : Ω1 −→ E is a

function such that u ◦ f admits a holomorphic extension û ◦ f to Ω2, then the linear

mapping T : E ′

β −→ H(Ω2), u 7→ û ◦ f , has closed graph, and it is continuous as a
consequence of Pták’s closed graph theorem (see [27, Theorem 7.1.12]). Since H(Ω2)
is a Montel space we have that T t ∈ L(H(Ω2)co, E

′′

β). Thus, T is also continuous
if we endow E ′′ with the topology σ(E ′′, E ′), topology which is locally complete by
[27, Corollary 5.1.35]. The symmetry of the ε-product of Schwartz [24, 43.3.(3)]
yields that T tt ∈ H(Ω2)εE

′′, E ′′ endowed with the (locally complete) weak star
topology. Hence there exists a holomorphic function g : Ω −→ (E ′′, σ(E ′′, E ′)) such
that T tt(u) = u ◦ g for each u ∈ E ′. But for each z ∈ Ω1, if we denote by ∂z the
evaluation functional, we have u ◦ g(z) = ∂z(T

tt(u)) = u(T t(∂z)) = ∂z(T (u)) =
u ◦ f(z). This yields that g extends f . Lemma 1 implies that g(Ω2) ⊆ E. Thus,
g : Ω2 −→ (E, σ(E, E ′)) is holomorphic and the result follows from the differential
stability of the locally complete space E.

To conclude, we observe that every locally complete space E is a subspace of a
suitable product Y of Banach spaces [25, Remark 24.5 (a)]. Then Y is distinguished
and f : Ω1 −→ Y admits weak holomorphic extensions to Ω2. By the above argu-
ment there exists f̂ ∈ H(Ω2, Y ) extending f and f(Ω1) ⊂ E. Lemma 1 yields the
conclusion. �

Corollary 4. Let Ω1 and Ω2 two domains in C with Ω1 ⊆ Ω2 and let E be a barrelled
space. If f : Ω1 → E ′ is a function such that u ◦ f admits a holomorphic extension
to Ω2 for each u ∈ E, then we can get a function g ∈ H(Ω2, E

′

β) extending f .

Proof. Observe that since E is barrelled E ′

σ (and then E ′

β) is quasicomplete. There-
fore Theorem 3 yields that f has a holomorphic extension g : Ω2 −→ (E ′, σ(E ′, E)).
Hence g : Ω2 −→ E ′

β is a locally bounded function such that u◦f is holomorphic for
each u ∈ E ⊆ E ′′. Hence the result is a direct consequence of the Grosse-Erdmann’s
criterion [15, Theorem 1] ([13, Theorem 5]). �

Remark 5. In [3, Corollary 3], Theorem 3 is obtained for sequentially complete
spaces. Thus, an alternative proof of Theorem 3 can be obtained by applying [3,
Corollary 3] and Lemma 1 to f : Ω1 → Ê, where Ê is the completion of E. Requiring
E to be sequentially complete but removing the hypothesis that E is Hausdorff,
Corollary 4 is also obtained in [3, Corollary 1]. In the setting of Banach spaces, the
strongest result of holomorphic extension deduced from weak holomorphic extensions
seems to be [1, Theorem 3.5].

The next two stated results are inspired by a theorem due to Grosse-Erdmann.
We need the following definition to formulate them.

Let Ω be a complex domain. A subset M of Ω is said to be a set which determines
the locally uniform convergence in H(Ω) (cf. [15]), if the seminorms

pK(f) = sup
z∈K∩M

|f(z)| (K ⊂ Ω compact, f ∈ H(Ω))
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define the usual topology in H(Ω).
Our next two theorems show that Theorem 2 in [15], valid for Fréchet spaces,

even for Br-complete spaces [15, Remark 2 (a)], is also valid for semireflexive spaces
and even for locally complete spaces, if stronger assumptions on S are supposed in
the later case. Recall that a locally convex space is called semireflexive if E = E ′′

as vector spaces. If the topological equality holds too, then E is called reflexive. A
space E is semireflexive if and only if each bounded set B in E is relatively σ(E, E ′)-
compact (cf. [25, Proposition 23.18]) and, consequently E ′

β = E ′

µ holds. Since every
absolutely convex σ(E, E ′)-compact set is a Banach disc, every semireflexive space
E is locally complete.

Theorem 6. Let E be a semireflexive locally convex space, let Ω be a domain in C,
let M ⊂ Ω be a set which determines the locally uniform convergence in H(Ω) and
let S be a separating subspace of E ′. If f : M → E is a function such that:

(i) u ◦ f has a holomorphic extension to Ω for each u ∈ S,

(ii) f(K ∩ M) is bounded in E for all compact subsets K of Ω,

then f has a (unique) holomorphic extension to Ω.

Proof. If u ∈ S, we denote by û ◦ f the holomorphic extension of u ◦ f to Ω. For
every compact subset K ∈ Ω we have

pK(û ◦ f) = sup
z∈K∩M

|û ◦ f(z)| = sup
e∈f(K∩M)

|u(e)| ≤ sup
e∈acxf(K∩M)

|u(e)|. (1)

The weak compactness of acxf(K ∩ M) together with the fact that the topology
of H(Ω) is generated by the seminorms pK imply that, if we consider in S the

topology inherited from E ′

µ, the map T : S → H(Ω), u 7→ û ◦ f , which is linear
since M determines the locally uniform convergence in H(Ω), is continuous. As S
is separating, S is dense in E ′

µ. Consequently, since H(Ω) is complete, T admits

a (unique) continuous extension T̂ : E ′

µ → H(Ω). But E ′

µ = (Eσ)′co, and the
property of being locally complete depends only on the dual pair. Therefore we get
a holomorphic function g : Ω → Eσ such that T̂ (u) = u ◦ g holds for every u ∈ E ′.
This yields that, for each z ∈ M and for each u ∈ S, the equality u ◦ f(z) = u ◦ g(z)
holds. Since S is separating f(z) = g(z) for every z ∈ M . Thus, g extends f and
g ∈ H(Ω, Eσ), that is, g is a weakly holomorphic function with values in the locally
complete locally convex space E, and consequently g is holomorphic. �

To obtain natural extensions of Theorem 6 for arbitrary locally complete spaces
stronger assumptions on S are needed. Actually we require S to be a subspace of
E ′ such that every σ(E, S)-bounded set is bounded in E. However condition (ii) in
Theorem 6 is deduced from these assumptions by the next lemma, which provides
a slight improvement of Proposition 2 in [6]. Recall that, for n, m ∈ N, a function
defined on an open subset of Rn and with values in Rm is called C1 if it admits
continuous partial derivatives of first order.

Lemma 7. Let E be a locally complete locally convex space, let S be a subspace of
E ′ such that every σ(E, S)-bounded set is bounded in E, let K be a precompact set
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in Rn, n ∈ N, and let f : K → E be a function. If there exists an open set Ω ⊆ Rn

such that K ⊂ Ω and u ◦ f admits C1 extension to Ω for each u ∈ S, then the set
acxf(K) is compact in E.

Proof. Let K and Ω be as in the assumptions. We define

B1 :=

{
f(z) − f(t)

‖z − t‖
: z, t ∈ K, z 6= t

}

.

A similar method to the one used in the proof of [6, Proposition 2] shows that both
B1 and f(K) are (σ(E, S)-) bounded sets. The details are left to the reader.

Now we define the (Banach) disc B := acx(B1∪f(K)). The function f : K → EB

is uniformly continuous since ‖f(z) − f(t)‖B ≤ ‖z − t‖. Hence f(K) is precompact
in EB. Since EB is a Banach space, the set acxEBf(K) is precompact and complete,
i.e. compact, in EB. This yields that acxEBf(K) is compact in E, which completes
the proof. �

Theorem 8. Let E be a locally complete locally convex space, let Ω be domain in
C, let M ⊂ Ω a set which determines the locally uniform convergence topology in
H(Ω) and let S be a subspace of E ′ such that every σ(E, S)-bounded set is bounded
in E. If f : M → E is a function such that u ◦ f admits a holomorphic extension
to Ω for each u ∈ S, then f admits a holomorphic extension to S.

Proof. Applying Lemma 7, for every compact subset K of Ω, the set acxf(K ∩ M)
is compact in E. The conclusion is obtained as in the proof of Theorem 6. �

Our final comments in this section are connected with possible extensions of
Theorem 3. Given a locally complete space E, a domain Ω ⊆ C and a holomorphic
function f : Ω → E, we denote S(f) := {u ◦ f : u ∈ E ′}.

Proposition 9. If E is a Fréchet space and f : Ω −→ E is a holomorphic function,
then S(f) is barrelled if and only if f(Ω) is contained in a finite dimensional subspace
of E.

Proof. Suppose that f(Ω) has finite dimensional range with basis B = {x1, . . . , xn}.
Then we can get a subset U = {u1, . . . , un} ⊂ E ′ such that ui(xj) = δj

i , where δj
i is

the Dirac delta. Hence it follows that {u1 ◦ f, . . . , un ◦ f} is a basis of S(f).
Conversely, if S(f) is barrelled, we have that S(f) is the image of the continuous

linear mapping T : E ′

co −→ H(Ω), u 7→ u ◦ f . E ′

co is B-complete since E is a
Fréchet space; see [24, page 30 (5)]. Then S(f) is isomorphic to a quotient of E ′

co by
the open mapping Theorem [27, Theorem 7.1.13]. Moreover, E ′

co is a (gDF) space
[27, Proposition 8.3.10] and this class of spaces is stable under the formation of
separated quotients [27, Proposition 8.3.16]. Thus S(f) is metrisable and nuclear as
subspace of H(Ω) and has a fundamental sequence of bounded sets since it is (gDF).
This implies that S(f) is nuclear and normable, and then finite dimensional by the
Dvoretzky-Rogers Theorem. If we suppose f(Ω) to be infinite dimensional then we
can select a sequence (zn)n such that (f(zn))n is linearly independent. By the proof
of [27, Theorem 2.1.3] we can get a sequence (un)n ⊂ E ′ such that ui(f(zj)) = δj

i .
Hence it follows that (un ◦ f)n is linearly independent in S(f), a contradiction. �
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Proposition 10. Let E be a (DF)-space and let f be an element of H(Ω, E). The
space S(f) is barrelled if and only if it is closed in H(Ω).

Proof. E ′

β is a Fréchet space. S(f) is the range of the continuous linear mapping
T : E ′

β → H(Ω), T (u) := u ◦ f . If S(f) is barrelled, then T is open from E ′

β onto
S(f) by the open mapping theorem. This implies that S(f) is (isomorphic to a
quotient of) a Fréchet space. �

Proposition 11. Every closed subspace F of H(Ω) can be written in the form S(f)
for certain f ∈ H(Ω, E) and E being a (DF)-space.

Proof. Let F be a closed subspace of H(Ω). F is reflexive by [25, Proposition 23.26].
Let f : Ω → F ′

β be the map defined by f(z) := ∂z|F . For each g ∈ F , g ◦ f = g ∈
H(Ω). The differential stability of complete spaces shows that f ∈ H(Ω, F ′

β) and
we have S(f) = F . �

4 Meromorphic extension

L. M. Hai, N. V. Khue, and N.T. Nga, in the main theorem of [17], have shown the
following result.

Let Ω1 and Ω2 be two domains in C with Ω1 ⊆ Ω2 and let E be a Banach
space. If f : Ω1 → E is a function such that u◦f admits a meromorphic
extension to Ω2 for every u ∈ E ′, then f can be meromorphically extended
to Ω2.

Actually, in [17] it is shown that the result is true assuming E to be only se-
quentially complete with Baire strong dual. Moreover, this theorem is valid for
vector-valued functions of several variables. In this paper, our technique only al-
lows us to deal with vector-valued functions of one variable. However, our method
provides a generalization of the above theorem with weaker assumptions on E.

A locally convex space is said to be suprabarrelled if, given any increasing se-
quence (En)n of subspaces of E covering E, there exists p such that Ep is barrelled
and dense in E [27, Definition 9.1.22]. Every Baire space is suprabarrelled [27, Ob-
servation 9.1.23]. Every space whose strong dual is suprabarrelled does not contain
ω according to [5, Propositions 4 and 7].

Theorem 12. Let Ω1 and Ω2 be two domains in C with Ω1 ⊆ Ω2 and let E be a
locally complete locally convex space with suprabarrelled strong dual. If f : Ω1 → E
is a function such that u◦f admits a meromorphic extension to Ω2 for every u ∈ E ′,
then f can be meromorphically extended to Ω2

Proof. Let f be as in the hypothesis of the theorem. For u ∈ E ′, we denote by û ◦ f
the meromorphic extension of u ◦ f to Ω2; without loss of generality we can assume

that û ◦ f does not have removable singularities on Ω2 \ Ω1. We also assume that

û ◦ f takes the value 0 on its poles outside Ω1. Given a domain Ω1 ⊆ U ⊆ Ω2, we
call U domain of meromorphy of f in Ω2 if either U = Ω1 or Ω1  U and there exists
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a meromorphic extension fU of f to U without removable singularities outside Ω1

and such that, if we denote by PU the discrete subset of U \ Ω1 in which fU is not
holomorphic, then fU(z) = 0 for each z ∈ PU . With these definitions it is clear that

u ◦ fU(z) = û ◦ f(z) for each u ∈ E ′ and for each z ∈ U \ PU .

CLAIM. If U is a domain of meromorphy of f in Ω2 then there exists a domain V
of meromorphy of f in Ω2 such that U ∪ (∂U ∩ Ω2) ⊆ V ⊆ Ω2.

PROOF OF THE CLAIM. Notice that, according to our definition, Ω1 is a domain
of meromorphy of f to Ω2 and we do not know a priori if f is meromorphic. We only
can assume that fU is an E-valued extension of f which is (weakly) holomorphic
in a set U \ (PU ∪ Ω1) which could be empty. With these assumptions, we need to
show that f is meromorphic in U and that fU can be meromorphically extended to
∂U ∩ Ω2. We fix a ∈ U ∩ Ω2 and we denote by An the subspace

{u ∈ E ′ : (z − a)nû ◦ f(z) is holomorphic and bounded on B(a, 1/n) \ {a}}.

An is the subspace of E ′ formed by the functionals u for which (z − a)nû ◦ f(z) is
holomorphic on B(a, 1/n) with a removable singularity at a. Then we can consider

(z − a)nû ◦ f(z) holomorphic on B(a, 1/n) for every u ∈ An. By the hypothesis, we
have

E ′ =
∞⋃

n=1

An.

We apply now that E ′

β is suprabarrelled to get n0 ∈ N such that An0
is barrelled

and dense in E ′

β. Let τ be the locally convex topology in H(B(a, 1/n0)) defined by
the pointwise convergence on B(a, 1/n0) ∩ (U \ PU). The principle of isolated zeros
of holomorphic functions yields that τ is Hausdorff. The map

T : An0
→ (H(B(a, 1/n0)), τ)

u 7→ (z − a)n0 û ◦ f(z)

is linear and continuous, if we consider on An0
the topology inherited from E ′

β , since

û ◦ f(z) = u ◦ fU(z) for z ∈ U \ PU . Since τ is Hausdorff and weaker than the
usual topology in H(B(a, 1/n0)) we have that the map has closed graph in An0

×
H(B(a, 1/n0)) if we endow the two spaces with their strong topologies. Therefore T
is continuous as a consequence of Pták’s Closed Graph Theorem. We apply now that
An0

is β(E ′, E)-dense and that H(B(a, 1/n0)) is complete to obtain a continuous
linear extension of T to E ′

β . We denote the extension by T̂ . A similar argument to
the one used in Theorem 3 yields

T̂ tt ∈ L(E ′, H(B(a, 1/n0))), (2)

E ′ endowed with the (locally complete) topology of uniform convergence on the
absolutely convex σ(E ′′, E ′)-compact subsets of E ′′. This implies that there exists
g defined on B(a, 1/n0) and with values in E ′′ which is σ(E ′′, E ′)-holomorphic such
that T̂ tt(u) = u ◦ g for every u ∈ E ′. Again as in the proof of Theorem 3, we can
get u ◦ g(z) = u ◦ fU(z) for every u ∈ An0

and for every z ∈ B(a, 1/n0) ∩ U \ PU .
Since An0

is β(E ′, E)-dense (i.e. separating in E ′′), we have

g(z) = (z − a)n0fU(z) ∈ E
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for each z ∈ B(a, 1/n0) ∩ U \ PU . The assumption of local completeness in E
yields that it is a locally closed subspace of (E ′′, σ(E ′′, E ′)). Thus Lemma 1 shows
that g(z) ∈ E for every z ∈ B(a, 1/n0). Therefore g is holomorphic in E for the
topology σ(E, E ′), and then g ∈ H(B(a, 1/n0), E) since E is locally complete. Hence
ha(z) = (1/(z− a)n0)g(z) is a meromorphic function on B(a, 1/n0) with values in E
which extends fU . If a ∈ ∂U ∩Ω2 and (1/(z− a)n0)g(z) has a removable singularity
at a, then we give to ha(a) the value which makes ha a holomorphic function on
B(a, 1/n0), assigning ha(a) = 0 if a is a pole. If we write Va = B(a, 1/n0), for
every a ∈ U ∩ Ω2 we have found a meromorphic function ha defined on Va such
that ha restricted to Va ∩ (U \ PU) agrees with fU (and then extends f), ha does
not have removable singularities outside Ω1 and ha(a) = 0 if a is a pole, a being
the unique possible pole of ha at Va. If we define V := ∪Va and fV (z) = ha(z) if
z ∈ Va, according to the principle of isolated zeros of holomorphic functions, fV is
well defined and meromorphic on V , and the claim is proved.

We complete the proof assuming the claim. We define M as the set formed by
the pairs (V, fV ), such that V is a proper domain of meromorphy of f to Ω2, i.e.
Ω1 ⊂ V ⊆ Ω2 and fV is a meromorphic extension of f to V . M is not empty by the
claim applied to U = Ω1. We define in M the order relation (V, fV ) ≤ (U, fU) if V ⊆
U and fU |V = fV . Let (Vi, fVi

)i∈I be a completely ordered chain in M . V := ∪i∈IVi

is a domain and fV (z) := fVi
(z) if z ∈ Vi is well defined and meromorphic. This

yields that (V, fV ) is an upper bound of the chain. We apply Zorn’s Lemma to get
a maximal element (W, fW ) of M . If we suppose that W is strictly included in Ω2,
then we apply the claim to U = W obtaining a contradiction with the maximality
of W .

�

Remark 13. The claim stated in the proof of Theorem 12 might seem unnecessary.
Actually, after proving that f can be extended throughout its boundary, it seems to
be possible to obtain the conclusion by a simple repetition of the argument. But,
for E locally complete without extra assumptions, it could happen that a function
f : Ω1 −→ E satisfies that u ◦ f admits a meromorphic extension to Ω2 for each
u ∈ E ′ and that there exists a domain Ω1 ⊆ V ⊆ Ω2 and a meromorphic function
g : V −→ E extending f such that there exists u ∈ E ′ for which u ◦ g does not
admit a meromorphic extension to Ω2, and thus the hypothesis on (g, V ) differ from
those on (f, Ω1). To clarify this, for n ∈ N we take fn : C −→ C meromorphic
with one unique pole at 1 − 1/(n + 1) in which it takes the value 0 and without
removable singularities, we set D := {1− 1/n : n ≥ 2}, and we define hn : C −→ C,
by hn(z) = fn(z) if z ∈ C \ D and hn(z) = 0 for z ∈ D. We set Ω1 = B(0, 1/2)
and Ω2 = C. Clearly, f : B(0, 1/2) −→ ω, z 7→ (fn(z))∞n=1, is a function which
can be weakly meromorphically extended to C. If we define g : B(0, 1) −→ ω by
g(z) = (hn(z))n, we have that g is an extension of f to B(0, 1) which is easily
checked to be meromorphic with their set of poles contained in D by [13, Theorem
6.5], g does not have removable singularities because each α ∈ D is a pole of one
coordinate and then it is a pole of g, g takes the value 0 at each pole and, for

each u ∈ ϕ, if we get the weak extensions û ◦ f without removable singularities and

taking the value 0 at its poles, which are contained in D, then u ◦ g(z) = û ◦ f(z)
for every z ∈ B(0, 1)\D since the two functions are holomorphic on B(0, 1)\D and
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they agree in B(0, 1/2). However, for each coordinate vector un ∈ ϕ, the function
un ◦ g = hn is not continuous on almost all α ∈ D because each fn ∈ M(C) only has
a finite number of zeros in B(0, 1) and hn vanishes on D. Since D is not discrete in
C, we conclude that hn does not have a meromorphic extension to C. This is why
we had to show that this situation can not happen in spaces with suprabarrelled
strong dual

Corollary 14. Let Ω1 and Ω2 be two domains in C with Ω1 ⊆ Ω2 and let E be
a suprabarrelled space. If f : Ω1 → E ′ is a function such that u ◦ f admits a
meromorphic extension to Ω2 for each u ∈ E, then there is f̂ ∈ M(Ω2, E

′

β) extending
f .

Proof. Since E is barrelled (E ′, σ(E ′, E)) is locally complete by [27, Corollary 5.1.35].
We can apply Theorem 12 to obtain a meromorphic function f̂ : Ω2 → (E ′, σ(E ′, E))
extending f . This yields that there exists a discrete set D in Ω2 such that f̂ is
continuous and then locally bounded in Ω2\D. Again the barrelledness of E implies
that every σ(E ′, E)-bounded set is β(E ′, E)-bounded and consequently f̂ : Ω2 \
D −→ E ′

β is locally bounded. Moreover, for each u ∈ E, u ◦ f̂ is a meromorphic
function which has all its poles in D. Moreover the order of these poles is bounded
by its order in f̂ . Hence we can apply [13, Theorem 6.5] ( [15, Theorem 4]) to obtain
f̂ ∈ M(Ω2, E

′

β). �

To obtain more results in the same direction, we make a distinction in the no-
tation for poles and removable singularities in very weakly meromorphic functions.
Given f ∈ Merω(Ω, E) we denote by P (f) the subset of Ω formed by the points
which are poles of u◦f for some u ∈ E ′ and we denote by A(f) the subset of Ω\P (f)
formed by the points which are removable singularities of u ◦ f for some u ∈ E ′.
Notice that there exist very weakly meromorphic functions with only removable sin-
gularities which are not weakly meromorphic. Indeed, if we take a sequence (zn)
with some accumulation point in C and a sequence of functions fn : C → C holo-
morphic with a removable singularity at zn, the function f : C → ω, z 7→ (fn(z))n

verifies that f ∈ Merω(C, ω) \ WM(C, ω).

Lemma 15. Let Ω be a complex domain, let E be a locally complete locally convex
space which does not contain ω and let f ∈ Merω(Ω, E). If P (f) is discrete in Ω,
then f ∈ M(Ω, E).

Proof. By [6, Theorem 5], we only have to show that f ∈ WM(Ω, E), and for this
we have to see that A(f) is discrete in Ω. According to the definitions, for every
z ∈ Ω \ (P (f) ∪ A(f)) and for every u ∈ E ′, u ◦ f is holomorphic in z. As, by
hypothesis, P (f) is discrete in Ω, if we show that A(f) is discrete in Ω, we will have
that, for the discrete subset D := P (f)∪A(f) of Ω, u ◦ f ∈ H(Ω \D)∩M(Ω) holds
for each u ∈ E ′, which permits to conclude.

Let z0 ∈ A(f). We define the increasing sequence of subspaces of E ′

En := {u ∈ E ′ : u ◦ f is holomorphic on B(z0, 1/n) \ {z0}}, n ∈ N.

Since f ∈ Merω(Ω, E), for each u ∈ E ′, the set formed by the poles and removable
singularities of u ◦ f is discrete in Ω. Therefore, we can write

E ′ =
⋃

n∈N

En.
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Now, since E does not contain ω, we apply [5, Proposition 4 and 7] to obtain n0 ∈ N
such that En0

is σ(E
′

, E)-dense. Since P (f) is discrete, we can choose n0 large
enough to verify (a) B(z0, 2/n0) ⊂ Ω and (b) B(z0, 2/n0)

⋂
P (f) = ∅. Condition

(b) implies that, for each u ∈ E
′

, the restriction of u ◦ f to B(z0, 2/n0) has only
removable singularities. Moreover, since u ◦ f is meromorphic in Ω for each u ∈ E ′,
the set of removable singularities of u ◦ f in the closed ball D(z0, 1/n0) is finite for
every u ∈ E ′. Thus, we have that, for every u ∈ E ′, the function u ◦ f , restricted to
D(z0, 1/n0) is continuous except on a finite subset. Hence

sup
z∈B(z0,1/n0)

|u(f(z))| < ∞

for each u ∈ E ′. Consequently, f(B(z0, 1/n0)) is bounded in E and the restriction of
f to B(z0, 1/n0) \ {z0} is a locally bounded function such that u ◦ f is holomorphic
for each u ∈ En0

. We obtain now that f is holomorphic on B(z0, 1/n0) \ {z0} as
a consequence of [13, Theorem 5.2], concluding then that A(f) is discrete. This
completes the proof. �

A locally convex space is said to be a Schwartz space if for each absolutely
convex 0-neighbourhood U in E there exists a 0-neighbourhood V so that for each
ε > 0, points x1, . . . , xn ∈ V exist such that V ⊂

⋃n
i=1(xi + εU). Given a subspace

E of a locally convex space G, we can always identify algebraically E ′ with the
quotient space G′/E◦. A complete Schwartz Hausdorff locally convex space E has
the following property [21, pages 179 and 201]: For each Hausdorff locally convex
space G which contain E as a subspace, the quotient topology induced by G′

β in
E ′ = G′/E◦ coincides with the strong topology β(E ′, E).

Theorem 16. Let E be a barrelled complete Schwartz space which does not contain
ω. If Ω1 ⊆ Ω2 are domains in C, and f : Ω1 → E is a function with the property
that u ◦ f admits a meromorphic extension to Ω2 for every u ∈ E ′, then f admits a
meromorphic extension to Ω2.

Proof. We denote by û ◦ f the meromorphic extension of u ◦ f .
We consider E as a subspace of the product of a family of Banach spaces (Ei)i∈I

(cf. [25, Remark 24.5 (a)]). Therefore, we can write

f : Ω1 →
∏

i∈I Ei

z 7→ (fi(z))i∈I .

Since each fi is a meromorphic function which takes its values in a Banach space
and u ◦ f can be meromorphically extended to Ω2 for each u ∈ E ′

i, we can get a
meromorphic extension f̂i : Ω2 → Ei. We apply [6, Proposition 6] (or Theorem 12)
to conclude that the map

Tf̂i
: E ′

i → M(Ω2)

u 7→ u ◦ f̂i

is continuous if we consider in E ′

i the strong topology β(E ′

i, Ei), since this topology
is finer than the topology of the space (E ′

i)co. Therefore, the linear map

Tf :
⊕

i∈I E
′

i → M(Ω2)

(ui)i∈I 7→
∑

i∈I ui ◦ f̂i
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is continuous. Since f takes its values in E, we use Remark 2 to obtain E◦ ⊂ KerTf .
Therefore the map

T̂f :
⊕

i∈I E
′

i/E
◦ → M(Ω2)

[(ui)i∈I ] 7→
∑

i∈I ui ◦ f̂i

is continuous. As E is a complete Schwartz space, we have that T̂f is a continuous

linear map defined on E ′

β with values in M(Ω2). Moreover, for each u ∈ E ′, û ◦ f

and T̂f(u) coincide in Ω1 with u ◦ f . Again Remark 2 yields T̂f(u) = û ◦ f for every
u ∈ E ′ in the locally convex space M(Ω2). We apply that E is a Montel space [25,
Remark 24.24], to conclude T̂f ∈ L(E ′

co, M(Ω2)) = M(Ω2)εE. As E does not contain
ω, we can apply [6, Proposition 6] to obtain a meromorphic function g : Ω2 → E,

such that T̂f(u) = u ◦ g for each u ∈ E ′. Therefore, for u ∈ E ′, we have u ◦ g = û ◦ f
in the topological vector space M(Ω2). Thereby, again Remark 2 implies that, for

each u ∈ E ′, there exists a subset Du discrete in Ω2 such that u ◦ g(z) = û ◦ f(z)
for each z ∈ Ω2 \ Du. We define

h(z) :=

{
f(z) if z ∈ Ω1

g(z) if z ∈ Ω2 \ Ω1,

h ∈ Merω(Ω2, E) and u ◦ g = u ◦ h in the topological vector space M(Ω2) since
u ◦ g(z) = u ◦ h(z) for each u ∈ E

′

and for each z ∈ Ω2 \ Du. As g ∈ M(Ω2, E), we
have that P (h) = P (g) is a discrete set in Ω2. Lemma 15 implies h ∈ M(Ω2, E). �

Notice that theorem 16 is valid for every Fréchet-Schwartz space with a con-
tinuous norm (recall that a Fréchet space has a continuous norm if and only if it
does not contain ω). However, we have a better result for Fréchet spaces. Recall
that a Fréchet space E is distinguished if and only if E ′

β is ultrabornological [25,
Proposition 25.12].

Theorem 17. Let E be a distinguished Fréchet space such that E ′′

β has a continuous
norm. If Ω1 ⊆ Ω2 are domains in C and f : Ω1 → E satisfies that u ◦ f admits
a meromorphic extension to Ω2 for each u ∈ E ′, then f admits a meromorphic
extension to Ω2.

Proof. We can choose a sequence of Banach spaces (En)n such that E is a subspace
of

∏
n∈NEn [25, Remark 24.5 (a)]. We write

f : Ω1 →
∏

n∈NEn

z 7→ (fn(z))n∈N.

As in the proof of Theorem 16, for each n, we get f̂n ∈ M(Ω2, En) such that f̂n re-
stricted to Ω1 coincides with fn. We fix u ∈ E

′

. By the Hahn-Banach Theorem, there
exists (un)n ∈

⊕
n E

′

n such that, for every (en)n ∈ E ⊂
∏

n En, u(e) =
∑

n un(en).
Therefore, u ◦ f =

∑
un ◦ fn, and, again as a consequence of Remark 2 we have that

û ◦ f =
∑

n un ◦ f̂n in the locally convex space M(Ω2). We define now the subspace
of M(Ω2)

F := span{û ◦ f : u ∈ E ′}.

Let Pn be the discrete subset of Ω2 formed by the poles of the meromorphic functions
f̂n. If we define P :=

⋃
n Pn we have that P is countable and the set of the poles of
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the functions which are in F is contained in P . We recall the projective description
of the topology of the space of meromorphic functions given in [14]. For every
exhaustion (On)∞n=1 in Ω2, i.e. each On is a relatively compact subdomain of Ω2

such that On ⊂ On+1 and Ω =
⋃

∞

n=1 On, M(Ω2) is a closed subspace of

∏

n∈N

H(On) × C
(On×N).

If the principal part of f at α is hα(f) =
∑k

n=1 an
α(f)(z − α)−j, k being an element

of N, then the projection of f over each C(On×N) is defined by P n
α (f) = an

α(f) for
every (α, n) ∈ (On,N), and the projection of f over each H(On) is obtained as
the difference between f and the sum of its principal parts in On. Then F can be
considered as a subspace of

∏

n∈N

H(On) ×C
((On∩P )×N). (3)

This product is a webbed space according to the definition given in [25, page 287]
(cf. [25, Lemma 24.28, Corollary 24.29]). Therefore the closure of F in M(Ω2) is
webbed because it is closed in the webbed space (3). We define

T : E ′

β → M(Ω2)

u 7→ û ◦ f.

We have T (E ′) ⊂ F . Moreover T is continuous if we consider in F the Hausdorff lo-
cally convex topology of pointwise convergence on Ω1\P . As this topology is weaker
than the topology inherited from M(Ω2), T is a linear map with closed graph and
it takes values in the webbed space F . Since E ′

β is ultrabornological by hypothesis,
we can apply De Wilde’s Closed Graph theorem [25, Theorem 24.31] to obtain that
T is continuous. We apply that M(Ω2) is a Montel space [14, Theorem 3] and the
symmetry of the ε-product of Schwartz to obtain T tt ∈ L(E ′′′

co, M(Ω2)) = M(Ω2)εE
′′

β .
By hypothesis, E ′′

β has a continuous norm. It follows from [6, Proposition 6] that
there exists a meromorphic function g : Ω2 → E ′′

β , such that T tt(u) = u ◦ g for each
u ∈ E ′′′. Therefore, for every u ∈ E ′ and for every v ∈ M(Ω2)

′ we have

v(u ◦ g) = v(T tt(u)) = u(T t(v)) = v(T (u)) = v(û ◦ f).

Hence, u ◦ g = û ◦ f in the topological vector space M(Ω2). Thereby, for each

u ∈ E
′

there exists a subset Du discrete in Ω2 such that u ◦ g(z) = û ◦ f(z) for each
z ∈ Ω2 \ Du. If we proceed as in the proof of Theorem 16, we can apply Lemma 15
together with the hypothesis that E ′′

β has continuous norm to get h ∈ M(Ω2, E
′′

β)
extending f . Since h(Ω1) ⊂ E we can apply Lemma 1 to conclude that h(Ω2) ⊂ E
except on a discrete set. This yields h ∈ M(Ω2, E). �
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Remark 18. (a) Clearly, every Fréchet space whose bidual has a continuous norm
has a continuous norm itself. Examples showing that the converse is not
generally true can be found in [8, 31].

(b) For every complex domain Ω, applying Theorems 12, 16 and 17 to Ω1 = Ω2 = Ω
we obtain that if E is a locally complete space with Baire strong dual or
E is a complete barrelled Schwartz space which does not contain ω or E
is a distinguished Fréchet space whose bidual has a continuous norm, then
Merω(Ω, E) = M(Ω, E) holds.

(c) The product of a DFS and a FS space with a continuous norm satisfies the
assumptions of Theorem 16 but not those of Theorems 12 and 17

(d) In Theorem 17 we can not apply the argument of Theorem 3 to avoid the
assumption that E is distinguished, because infinite products of Banach spaces
contain ω as subspace.

All the counterexamples that we have found for functions which admit weak
meromorphic extension but not a meromorphic extension are with range space ω
(see Remark 4 and [6]). We conjecture that all the results stated in this section can
be extended to all the locally complete locally convex spaces which do not contain
subspaces isomorphic to ω.
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[27] P. Pérez Carreras and J. Bonet, Barrelled Locally Convex Spaces, North-
Holland, Amsterdam, 1987.

[28] H.J. Petzsche, Some results of Mittag-Leffler-type for vector valued function
spaces of class A ”Functional Analysis: Surveys and Recent Results II”,(eds
K. D. Bierstedt and B. Fuchssteiner) North-Holland Mathematics Studies 38

(1982) 183-204.

[29] W. Rudin, Real and Complex Analysis, 3rd edition (McGraw-Hill,New
York,1991).

[30] M. A. Simoes, Very strongly and very weakly convergence sequence in locally
convex spaces, Proc. Roy. Irish Acad. Sect. A 84 (1984) 125-132.
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