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Abstract

In this paper we characterize the family of secant lines of an ovoid of
PG(3, q) and the family of external lines to an ovoid of PG(3, q).

1 Introduction

In the paper ”A characterization of the family of secant lines of an elliptic quadric

in PG(3, q), q odd” [2] O. Ferri and G. Tallini characterize the family of secant lines
of an ovoid of PG(3, q), q odd. The same result is obtained for q even (q > 2) by
M.J. de Resmini in the paper ”A characterization of the secants of an ovaloid in

PG(3, q), q even, q > 2 [1]. They got the following results.

Theorem 1.1 (Ferri-Tallini). Let F be a family of lines of PG(3, q), q odd, sat-

isfying the following properties.

I Through every point of PG(3, q) there are either q2 or q2
−q

2
lines of F .

II In every plane of PG(3, q) there are either q2+q

2
or zero lines of F .

III Let p be a point on some line of F . In every pencil with center p there are
q−1

2
, q+1

2
or q lines of F .

IV Let π be a plane of PG(3, q) containing at least one line of F . Through every

point of π there is at least one line of F contained in π.

Then F is the family of secant lines to an elliptic quadric of PG(3, q).
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Theorem 1.2 (de Resmini). Let F be a family of lines of PG(3, q), q even and

q > 2, satisfying the following properties.

I’ Through every point of PG(3, q) there are either q2 or n lines of F , where

0 < n < q2.

II’ Let p be a point on some line of F . In every pencil with center p there are

either q

2
or q lines of F .

Then n = q2
−q

2
and F is the family of secant lines to an ovoid of PG(3, q).

In this paper we show that by using only properties I and II it is possible to
prove both results. The theorem we will prove is the following.

Theorem 1.3. A family F of lines of PG(3, q), q > 2, satisfying properties I and

II is the family of secant lines to an ovoid of PG(3, q).

As an application to Theorem 1.3 we also get the following result.

Theorem 1.4. Let F be a family of lines of PG(3, q), q > 2, satisfying the following

properties.

I∗ In every plane of PG(3, q) there are either q2
−q

2
or q2 lines of F .

II∗ Through every point of PG(3, q) there are either q2+q

2
or zero lines of F .

Then F is the family of external lines to an ovoid of PG(3, q).

2 The characterization theorem

In this section F will be a family of lines of PG(3, q), q > 2, satisfying Properties I
and II. In order to simplify the exposition we will call black a point of PG(3, q) on
q2 lines of F . Let Ω be the set of black points of PG(3, q). A plane containing no
lines of F will be called a tangent plane, while a secant plane is a plane containing
q2+q

2
lines of F . Next propositions will show that there are exactly q2 + 1 black

points, that Ω is an ovoid of PG(3, q) and that F is the family of secant lines to Ω.

Proposition 2.1. On every line of F there are exactly two black points.

Proof : Let ℓ be a line of F . Let a be the number of black points on ℓ and let µℓ

be the number of lines of F , different from ℓ, meeting ℓ. Since every plane through
ℓ is a secant plane and as in those planes there are the lines of F meeting ℓ we get

µℓ = (q + 1)(
q2 + q

2
− 1) = a(q2 − 1) + (q + 1 − a)(

q2 − q

2
− 1). (1)

Hence a = 2 and the assertion follows.
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From the previous proposition, counting |Ω| by considering the lines of F through
a black point p we have,

|Ω| ≥ q2 + 1. (2)

We can now prove the following

Proposition 2.2. A line containing two black points is a line of F .

Proof : Let p and p′ be two different black points and let ℓ be the line pp′.
Suppose, by way of contradiction, that ℓ is not in F . Denote again by a the number
of black points on ℓ and by µℓ the number of lines of F meeting ℓ. Let π be a
secant plane through ℓ. Denote by ρπ the number of lines of F contained in π and
containing the point p. Since ℓ /∈ F then we have ρπ ≤ q. If π1, . . . , πm are the
secant planes through ℓ, then we have

q2 =
∑

i

ρπi
≤ mq

and hence there are at least q secant planes through ℓ.
If m = q, then

µℓ = q
q2 + q

2
= aq2 + (q + 1 − a)

q2 − q

2
and hence a = 1, while a ≥ 2.

Hence m = q + 1 and

µℓ = (q + 1)
q2 + q

2
= aq2 + (q + 1 − a)

q2 − q

2
.

Therefore a = 2. If follows that Ω is a cap, hence, since q > 2, it |Ω| ≤ q2 + 1
[3]. Count |Ω| by considering all lines through p. We obtain |Ω| ≥ q2 + 2 and this
is a contradiction. It follows that ℓ ∈ F and hence the assertion.

From propositions 2.1 and 2.2 it follows that the set Ω of black points is a cap
and hence |Ω| ≤ q2 + 1 [3]. From Equation (2) |Ω| = q2 + 1 and hence Ω is an
ovoid, and propositions 2.1 e 2.2 show that F is the family of secant lines to Ω.

3 Applications: Theorem 1.4

It is well known that the points of the dual space PG∗(3, q) of PG(3, q) are the planes
of PG(3, q) and the lines are the pencils of planes with axis a line of PG(3, q). By
identifying a pencil of planes with axis the line t, with the line t itself, the planes
and the lines of PG(3, q) can be seen as the points and the lines of PG∗(3, q).

With such an identification a ”point” π is on a line t if the point π contains t. If
Ω is an ovoid of PG(3, q), the q2 + 1 tangent planes to Ω are, in the dual space, the
points of an ovoid Ω∗ and the secant lines to Ω are the external lines to Ω∗, while the
external lines to Ω are the secant lines to Ω∗. Moreover if Ω′ is an ovoid of PG∗(3, q)
there is an ovoid Ω of PG(3, q) such that Ω∗ = Ω′. We can now prove Theorem 1.4.
Let F be a family of lines of PG(3, q) satisfying properties I∗ and II∗. In the dual
space the family F satisfies properties I and II and hence by Theorem 1.3 it is the
family of secant lines to an ovoid Ω′ of PG∗(3, q). Let Ω be the ovoid of PG(3, q)
such that Ω∗ = Ω′. Then it follows that F is the family of external lines to Ω.
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