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1 Introduction

An ovoid of a polar space is a set of points with the property that every maximal
subspace contains exactly one point of it. The existence of ovoids in polar spaces
was studied extensively, see for example [5, 2, 3, 4] and the overview in [1, Appendix
VI]. Clearly, if a polar space contains an ovoid O, then |O| is the minimum size of
a set of points that meets every maximal subspace of that polar space.

By Q−(2n + 1, q) we denote the elliptic quadric of PG(2n + 1, q). An ovoid of
Q−(2n+1, q) has qn+1+1 points [1]. However, Thas [5] has shown that Q−(2n+1, q)
has no ovoids for n ≥ 2. We will improve this result by showing that qn+1 + qn−1

is the minimum cardinality of a set of points that meets every maximal subspace of
Q−(2n + 1, q). More precisely, we prove the following theorem.

Theorem 1.1 Let B be a set of points of Q = Q−(2n+1, q) such that every maximal
subspace of Q has a point in B. Let ⊥ be the related polarity of PG(2n+1, q). Then
|B| ≥ qn+1 + qn−1 with equality if and only if B = (U⊥ \U)∩Q for a subspace U of
dimension n− 2 with U ⊆ Q.

If U is a subspace of Q of dimension n − 2, then the set B := (U⊥ \ U) ∩ Q
meets all maximal subspaces of Q. For, if S is a maximal subspace of Q, then
dim(S ∩ U⊥) = 1 + dim(S ∩ U) and thus S ∩ U 6= ∅.

Notice that the quotient space U⊥/U is a 3-space and that Q induces a Q−(3, q)
on this 3-space (that is the set {〈U, P 〉 | P ∈ (U⊥ \U)∩Q} is a Q−(3, q) of U⊥/U).
Thus B := (U⊥ \ U) ∩ Q has cardinality (q2 + 1)qn−1.
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2 Proof of the theorem

In this section Q denotes the elliptic quadric Q−(2n+1, q), n ≥ 1, and ⊥ denotes the
related polarity of PG(2n+1, q). A subspace of PG(2n+1, q) contained in Q will be
called singular. In order to prove the theorem, we suppose that B is a minimal set
of points of Q that meets all maximal singular subspaces and that |B| ≤ qn+1+qn−1.
We show in a series of lemmas that equality holds and that B = (U⊥ \U) ∩Q for a
singular subspace U of dimension n− 2. Put δ := |B| − qn+1, so

|B| = qn+1 + δ with δ ≤ qn−1.

Lemma 2.1 Suppose that T is a maximal singular subspace that meets B in exactly
one point P . Then |P⊥ ∩ B| ≤ δ and there exists a hyperplane S of T with P /∈ S
such that every maximal singular subspace on S meets B in exactly one point.

Proof. Consider a hyperplane S of T . Then Q induces an Q−(3, q) on S⊥/S and
hence S lies in |Q−(3, q)| = q2 + 1 maximal singular subspaces. If P /∈ S, then q2 of
these maximal singular subspaces do not contain P and hence S⊥ contains q2 points
of B that do not lie in P⊥. Since T has qn−1 hyperplanes S with P /∈ S, and since
distinct choices of S yield distinct points of B, it follows that |B \P⊥| ≥ qn−1 · q2 =
qn+1. Hence |P⊥ ∩ B| ≤ δ.

For some of the hyperplanes S of T with P /∈ S, we must have that each maximal
singular subspace on S contains a unique point in B, since otherwise we could
improve the above bound to |B \ P⊥| ≥ qn−1 · (q2 + 1), which is not possible, since
|B| ≤ (q2 + 1)qn−1 and P ∈ B ∩ P⊥. �

Lemma 2.2 If P ∈ B, then |P⊥ ∩ B| ≤ δ.

Proof. By the minimality of B, some maximal singular subspace on P meets B
only in P . Apply the previous lemma. �

By Q(2n, q) we denote the parabolic quadric of PG(2n, q). Recall that Q(2n, q)
has (1 + q)(1 + q2) . . . (1 + qn) maximal subspaces and each point of Q(2n, q) lies in
(1 + q)(1 + q2) . . . (1 + qn−1) of them ([1]). Hence, a set of points of Q(2n, q) that
meets all maximal singular subspaces of Q(2n, q) has at least qn + 1 points with
equality if it is an ovoid.

Lemma 2.3 If R is a point with R /∈ Q, then |R⊥ ∩B| ≤ qn + δ.

Proof. Put H := R⊥. Then Q ∩ H is an Q(2n, q) and thus H contains maximal
singular subspaces. Therefore B ∩H 6= ∅.

Let P be a point of B ∩ H. Then Q induces on (P⊥ ∩ H)/P an Q(2n − 2, q)
and B ′ = {〈P,X〉 | X ∈ P⊥ ∩H ∩ B,X 6= P} is a set of points of this Q(2n− 2, q)
with |B ′| < |B∩P⊥| ≤ δ ≤ qn−1. Since a set of points of Q(2n− 2, q) that meets all
maximal subspaces of Q(2n − 2, q) has at least 1 + qn−1 points, it follows that the
Q(2n − 2, q) has a maximal singular subspace that contains no ’point’ of B ′. This
shows that P lies on a maximal singular subspace T of H that meets B only in P .

Consider a hyperplane S of T with P /∈ S. Then S lies in q2+1 maximal singular
subspaces and q+1 of these are contained in H. Since S ∩B = ∅, each of the q2− q
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maximal singular subspaces on S that is not contained in H meets B in a point that
is not in H. This gives q2 − q points of B in S⊥ \H. For distinct hyperplanes S
of T , the sets (S⊥ ∩ Q) \H are disjoint, since T⊥ ∩ Q = T ⊆ H. Since there are
qn−1 hyperplanes S of H with P /∈ S, it follows that |B \H| ≥ qn−1(q2− q). Hence
|H ∩B| ≤ |B| − qn−1(q2 − q) = qn + δ. �

Lemma 2.4 (a) |B| = qn+1 + qn−1.

(b) If P ∈ B, then |P⊥ ∩B| = qn−1.

(c) If P and R are distinct points of B and if 〈P,R〉 is a secant line of Q, then
P⊥ ∩R⊥ ∩B = ∅.

Proof. Consider a point P ∈ B. Then |P⊥ ∩B| ≤ δ and hence there exists a point
R ∈ B with R /∈ P⊥. Then l := 〈P,R〉 is a secant line of Q and the (2n − 1)-space
l⊥ = P⊥ ∩ R⊥ lies in q + 1 hyperplanes, which are X⊥ with X ∈ l. If X ∈ l ∩ Q,
that is X = P or X = R, then |X⊥ ∩ B| ≤ δ by Lemma 2.2. Otherwise X ∈ l \ Q
and then |X⊥ ∩B| ≤ qn−1 + δ by Lemma 2.3. Since the q+ 1 hyperplanes X⊥ with
X ∈ l cover the whole space, it follows that

|B| ≤ 2δ + (q − 1)(qn + δ).

with equality only if l⊥ ∩B = ∅ and |P⊥ ∩B| = |R⊥ ∩B| = δ.
Since |B| = qn+1 + δ, we obtain qn ≤ δq. Hence δ = qn−1 and we obtain equality.

This proves all parts. �

Lemma 2.5 B = (U⊥ \ U) ∩Q for a singular subspace U of dimension n− 2.

Proof. Consider P ∈ B. Then |P⊥ ∩ B| = qn−1 by Lemma 2.4 (a). If X and Y
are distinct points of P⊥ ∩ B, then P is a point of B in X⊥ ∩ Y ⊥ and therefore
Lemma 2.4 (c) shows that 〈X, Y 〉 is a singular line. Hence, P⊥ ∩B spans a singular
subspace S. As |P⊥∩B| = qn−1, we have dim(S) ≥ n−1, so S is a maximal singular
subspace.

Consider any point R ∈ B that is not in P⊥. Then P⊥ ∩ R⊥ ∩ B = ∅ by
Lemma 2.4 (c). Hence, the hyperplane R⊥ ∩ S of S contains no point of B. As
|P⊥ ∩B| = qn−1 and P⊥ ∩B ⊆ S, this gives P⊥ ∩B = S \ (S ∩ R⊥).

Since this holds for all points R of B \ P⊥, it follows that S has a hyperplane
U with U = R⊥ ∩ S for all R ∈ B \ P⊥. Hence U ⊆ X⊥ for all points X ∈ B. As
|B| = (q2 + 1)qn−1 and U ∩B = ∅, this implies that B = (U⊥ \ U) ∩Q. �
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