The sets closest to ovoids in $Q^{-}(2n+1,q)$

Klaus Metsch

1 Introduction

An *ovoid* of a polar space is a set of points with the property that every maximal subspace contains exactly one point of it. The existence of ovoids in polar spaces was studied extensively, see for example [5, 2, 3, 4] and the overview in [1, Appendix VI]. Clearly, if a polar space contains an ovoid \mathcal{O} , then $|\mathcal{O}|$ is the minimum size of a set of points that meets every maximal subspace of that polar space.

By $Q^{-}(2n+1,q)$ we denote the elliptic quadric of PG(2n+1,q). An ovoid of $Q^{-}(2n+1,q)$ has $q^{n+1}+1$ points [1]. However, Thas [5] has shown that $Q^{-}(2n+1,q)$ has no ovoids for $n \geq 2$. We will improve this result by showing that $q^{n+1} + q^{n-1}$ is the minimum cardinality of a set of points that meets every maximal subspace of $Q^{-}(2n+1,q)$. More precisely, we prove the following theorem.

Theorem 1.1 Let B be a set of points of $Q = Q^{-}(2n+1,q)$ such that every maximal subspace of Q has a point in B. Let \perp be the related polarity of PG(2n+1,q). Then $|B| \ge q^{n+1} + q^{n-1}$ with equality if and only if $B = (U^{\perp} \setminus U) \cap Q$ for a subspace U of dimension n-2 with $U \subseteq Q$.

If U is a subspace of Q of dimension n-2, then the set $B := (U^{\perp} \setminus U) \cap Q$ meets all maximal subspaces of Q. For, if S is a maximal subspace of Q, then $\dim(S \cap U^{\perp}) = 1 + \dim(S \cap U)$ and thus $S \cap U \neq \emptyset$.

Notice that the quotient space U^{\perp}/U is a 3-space and that Q induces a $Q^{-}(3,q)$ on this 3-space (that is the set $\{\langle U, P \rangle \mid P \in (U^{\perp} \setminus U) \cap Q\}$ is a $Q^{-}(3,q)$ of U^{\perp}/U). Thus $B := (U^{\perp} \setminus U) \cap Q$ has cardinality $(q^{2} + 1)q^{n-1}$.

Bull. Belg. Math. Soc. 5 (1998), 389-392

Received by the editors August 1997.

Communicated by James Hirschfeld.

¹⁹⁹¹ Mathematics Subject Classification. 51E20,51E21.

Key words and phrases. Ovoid, quadric, polar space.

2 Proof of the theorem

In this section Q denotes the elliptic quadric $Q^{-}(2n+1,q)$, $n \geq 1$, and \bot denotes the related polarity of PG(2n+1,q). A subspace of PG(2n+1,q) contained in Q will be called *singular*. In order to prove the theorem, we suppose that B is a minimal set of points of Q that meets all maximal singular subspaces and that $|B| \leq q^{n+1} + q^{n-1}$. We show in a series of lemmas that equality holds and that $B = (U^{\perp} \setminus U) \cap Q$ for a singular subspace U of dimension n-2. Put $\delta := |B| - q^{n+1}$, so

$$|B| = q^{n+1} + \delta \qquad \text{with} \qquad \delta < q^{n-1}.$$

Lemma 2.1 Suppose that T is a maximal singular subspace that meets B in exactly one point P. Then $|P^{\perp} \cap B| \leq \delta$ and there exists a hyperplane S of T with $P \notin S$ such that every maximal singular subspace on S meets B in exactly one point.

Proof. Consider a hyperplane S of T. Then Q induces an $Q^{-}(3,q)$ on S^{\perp}/S and hence S lies in $|Q^{-}(3,q)| = q^2 + 1$ maximal singular subspaces. If $P \notin S$, then q^2 of these maximal singular subspaces do not contain P and hence S^{\perp} contains q^2 points of B that do not lie in P^{\perp} . Since T has q^{n-1} hyperplanes S with $P \notin S$, and since distinct choices of S yield distinct points of B, it follows that $|B \setminus P^{\perp}| \ge q^{n-1} \cdot q^2 =$ q^{n+1} . Hence $|P^{\perp} \cap B| \le \delta$.

For some of the hyperplanes S of T with $P \notin S$, we must have that each maximal singular subspace on S contains a unique point in B, since otherwise we could improve the above bound to $|B \setminus P^{\perp}| \ge q^{n-1} \cdot (q^2 + 1)$, which is not possible, since $|B| \le (q^2 + 1)q^{n-1}$ and $P \in B \cap P^{\perp}$.

Lemma 2.2 If $P \in B$, then $|P^{\perp} \cap B| \leq \delta$.

Proof. By the minimality of B, some maximal singular subspace on P meets B only in P. Apply the previous lemma.

By Q(2n,q) we denote the parabolic quadric of PG(2n,q). Recall that Q(2n,q) has $(1+q)(1+q^2)...(1+q^n)$ maximal subspaces and each point of Q(2n,q) lies in $(1+q)(1+q^2)...(1+q^{n-1})$ of them ([1]). Hence, a set of points of Q(2n,q) that meets all maximal singular subspaces of Q(2n,q) has at least $q^n + 1$ points with equality if it is an ovoid.

Lemma 2.3 If R is a point with $R \notin Q$, then $|R^{\perp} \cap B| \leq q^n + \delta$.

Proof. Put $H := R^{\perp}$. Then $Q \cap H$ is an Q(2n, q) and thus H contains maximal singular subspaces. Therefore $B \cap H \neq \emptyset$.

Let P be a point of $B \cap H$. Then Q induces on $(P^{\perp} \cap H)/P$ an Q(2n-2,q)and $B' = \{\langle P, X \rangle \mid X \in P^{\perp} \cap H \cap B, X \neq P\}$ is a set of points of this Q(2n-2,q)with $|B'| < |B \cap P^{\perp}| \le \delta \le q^{n-1}$. Since a set of points of Q(2n-2,q) that meets all maximal subspaces of Q(2n-2,q) has at least $1+q^{n-1}$ points, it follows that the Q(2n-2,q) has a maximal singular subspace that contains no 'point' of B'. This shows that P lies on a maximal singular subspace T of H that meets B only in P.

Consider a hyperplane S of T with $P \notin S$. Then S lies in $q^2 + 1$ maximal singular subspaces and q + 1 of these are contained in H. Since $S \cap B = \emptyset$, each of the $q^2 - q$

maximal singular subspaces on S that is not contained in H meets B in a point that is not in H. This gives $q^2 - q$ points of B in $S^{\perp} \setminus H$. For distinct hyperplanes Sof T, the sets $(S^{\perp} \cap Q) \setminus H$ are disjoint, since $T^{\perp} \cap Q = T \subseteq H$. Since there are q^{n-1} hyperplanes S of H with $P \notin S$, it follows that $|B \setminus H| \ge q^{n-1}(q^2 - q)$. Hence $|H \cap B| \le |B| - q^{n-1}(q^2 - q) = q^n + \delta$.

Lemma 2.4 (a) $|B| = q^{n+1} + q^{n-1}$.

- (b) If $P \in B$, then $|P^{\perp} \cap B| = q^{n-1}$.
- (c) If P and R are distinct points of B and if $\langle P, R \rangle$ is a secant line of Q, then $P^{\perp} \cap R^{\perp} \cap B = \emptyset$.

Proof. Consider a point $P \in B$. Then $|P^{\perp} \cap B| \leq \delta$ and hence there exists a point $R \in B$ with $R \notin P^{\perp}$. Then $l := \langle P, R \rangle$ is a secant line of Q and the (2n - 1)-space $l^{\perp} = P^{\perp} \cap R^{\perp}$ lies in q + 1 hyperplanes, which are X^{\perp} with $X \in l$. If $X \in l \cap Q$, that is X = P or X = R, then $|X^{\perp} \cap B| \leq \delta$ by Lemma 2.2. Otherwise $X \in l \setminus Q$ and then $|X^{\perp} \cap B| \leq q^{n-1} + \delta$ by Lemma 2.3. Since the q + 1 hyperplanes X^{\perp} with $X \in l$ cover the whole space, it follows that

$$|B| \le 2\delta + (q-1)(q^n + \delta).$$

with equality only if $l^{\perp} \cap B = \emptyset$ and $|P^{\perp} \cap B| = |R^{\perp} \cap B| = \delta$.

Since $|B| = q^{n+1} + \delta$, we obtain $q^n \leq \delta q$. Hence $\delta = q^{n-1}$ and we obtain equality. This proves all parts.

Lemma 2.5 $B = (U^{\perp} \setminus U) \cap Q$ for a singular subspace U of dimension n-2.

Proof. Consider $P \in B$. Then $|P^{\perp} \cap B| = q^{n-1}$ by Lemma 2.4 (a). If X and Y are distinct points of $P^{\perp} \cap B$, then P is a point of B in $X^{\perp} \cap Y^{\perp}$ and therefore Lemma 2.4 (c) shows that $\langle X, Y \rangle$ is a singular line. Hence, $P^{\perp} \cap B$ spans a singular subspace S. As $|P^{\perp} \cap B| = q^{n-1}$, we have $\dim(S) \ge n-1$, so S is a maximal singular subspace.

Consider any point $R \in B$ that is not in P^{\perp} . Then $P^{\perp} \cap R^{\perp} \cap B = \emptyset$ by Lemma 2.4 (c). Hence, the hyperplane $R^{\perp} \cap S$ of S contains no point of B. As $|P^{\perp} \cap B| = q^{n-1}$ and $P^{\perp} \cap B \subseteq S$, this gives $P^{\perp} \cap B = S \setminus (S \cap R^{\perp})$.

Since this holds for all points R of $B \setminus P^{\perp}$, it follows that S has a hyperplane U with $U = R^{\perp} \cap S$ for all $R \in B \setminus P^{\perp}$. Hence $U \subseteq X^{\perp}$ for all points $X \in B$. As $|B| = (q^2 + 1)q^{n-1}$ and $U \cap B = \emptyset$, this implies that $B = (U^{\perp} \setminus U) \cap Q$.

References

- J. W. P. Hirschfeld and J. A. Thas. *General Galois Geometries*. Oxford Science Publications, Oxford, 1991.
- [2] W. M. Kantor. Ovoids and translation planes. Canad. J. Math., 34:1195–1207, 1982.

- [3] S. E. Payne and J. A. Thas. *Finite Generalized Quadrangles*, volume 110 of *Research Notes in Mathematics*. Pitman, Boston, 1984.
- [4] E. E. Shult. Nonexistence of ovoids in $\Omega^+(10,3)$. J. Combin. Theory Ser. A, 51:250–257, 1989.
- [5] J. A. Thas. Ovoids and spreads of finite classical polar spaces. *Geom. Dedicata*, 10:135–144, 1981.

Klaus Metsch Mathematisches Institut Arndtstr. 2 D-35392 Giessen e-mail: Klaus.Metsch@math.uni-giessen.de