The sets closest to ovoids in $Q^{-}(2 n+1, q)$

Klaus Metsch

1 Introduction

An ovoid of a polar space is a set of points with the property that every maximal subspace contains exactly one point of it. The existence of ovoids in polar spaces was studied extensively, see for example [5, 2, 3, 4] and the overview in [1, Appendix VI]. Clearly, if a polar space contains an ovoid \mathcal{O}, then $|\mathcal{O}|$ is the minimum size of a set of points that meets every maximal subspace of that polar space.

By $Q^{-}(2 n+1, q)$ we denote the elliptic quadric of $\operatorname{PG}(2 n+1, q)$. An ovoid of $Q^{-}(2 n+1, q)$ has $q^{n+1}+1$ points [1]. However, Thas [5] has shown that $Q^{-}(2 n+1, q)$ has no ovoids for $n \geq 2$. We will improve this result by showing that $q^{n+1}+q^{n-1}$ is the minimum cardinality of a set of points that meets every maximal subspace of $Q^{-}(2 n+1, q)$. More precisely, we prove the following theorem.

Theorem 1.1 Let B be a set of points of $Q=Q^{-}(2 n+1, q)$ such that every maximal subspace of Q has a point in B. Let \perp be the related polarity of $\mathrm{PG}(2 n+1, q)$. Then $|B| \geq q^{n+1}+q^{n-1}$ with equality if and only if $B=\left(U^{\perp} \backslash U\right) \cap Q$ for a subspace U of dimension $n-2$ with $U \subseteq Q$.

If U is a subspace of Q of dimension $n-2$, then the set $B:=\left(U^{\perp} \backslash U\right) \cap Q$ meets all maximal subspaces of Q. For, if S is a maximal subspace of Q, then $\operatorname{dim}\left(S \cap U^{\perp}\right)=1+\operatorname{dim}(S \cap U)$ and thus $S \cap U \neq \emptyset$.

Notice that the quotient space U^{\perp} / U is a 3 -space and that Q induces a $Q^{-}(3, q)$ on this 3 -space (that is the set $\left\{\langle U, P\rangle \mid P \in\left(U^{\perp} \backslash U\right) \cap Q\right\}$ is a $Q^{-}(3, q)$ of $\left.U^{\perp} / U\right)$. Thus $B:=\left(U^{\perp} \backslash U\right) \cap Q$ has cardinality $\left(q^{2}+1\right) q^{n-1}$.

[^0]
2 Proof of the theorem

In this section Q denotes the elliptic quadric $Q^{-}(2 n+1, q), n \geq 1$, and \perp denotes the related polarity of $\mathrm{PG}(2 n+1, q)$. A subspace of $\mathrm{PG}(2 n+1, q)$ contained in Q will be called singular. In order to prove the theorem, we suppose that B is a minimal set of points of Q that meets all maximal singular subspaces and that $|B| \leq q^{n+1}+q^{n-1}$. We show in a series of lemmas that equality holds and that $B=\left(U^{\perp} \backslash U\right) \cap Q$ for a singular subspace U of dimension $n-2$. Put $\delta:=|B|-q^{n+1}$, so

$$
|B|=q^{n+1}+\delta \quad \text { with } \quad \delta \leq q^{n-1}
$$

Lemma 2.1 Suppose that T is a maximal singular subspace that meets B in exactly one point P. Then $\left|P^{\perp} \cap B\right| \leq \delta$ and there exists a hyperplane S of T with $P \notin S$ such that every maximal singular subspace on S meets B in exactly one point.

Proof. Consider a hyperplane S of T. Then Q induces an $Q^{-}(3, q)$ on S^{\perp} / S and hence S lies in $\left|Q^{-}(3, q)\right|=q^{2}+1$ maximal singular subspaces. If $P \notin S$, then q^{2} of these maximal singular subspaces do not contain P and hence S^{\perp} contains q^{2} points of B that do not lie in P^{\perp}. Since T has q^{n-1} hyperplanes S with $P \notin S$, and since distinct choices of S yield distinct points of B, it follows that $\left|B \backslash P^{\perp}\right| \geq q^{n-1} \cdot q^{2}=$ q^{n+1}. Hence $\left|P^{\perp} \cap B\right| \leq \delta$.

For some of the hyperplanes S of T with $P \notin S$, we must have that each maximal singular subspace on S contains a unique point in B, since otherwise we could improve the above bound to $\left|B \backslash P^{\perp}\right| \geq q^{n-1} \cdot\left(q^{2}+1\right)$, which is not possible, since $|B| \leq\left(q^{2}+1\right) q^{n-1}$ and $P \in B \cap P^{\perp}$.

Lemma 2.2 If $P \in B$, then $\left|P^{\perp} \cap B\right| \leq \delta$.
Proof. By the minimality of B, some maximal singular subspace on P meets B only in P. Apply the previous lemma.

By $Q(2 n, q)$ we denote the parabolic quadric of $\mathrm{PG}(2 n, q)$. Recall that $Q(2 n, q)$ has $(1+q)\left(1+q^{2}\right) \ldots\left(1+q^{n}\right)$ maximal subspaces and each point of $Q(2 n, q)$ lies in $(1+q)\left(1+q^{2}\right) \ldots\left(1+q^{n-1}\right)$ of them ([1]). Hence, a set of points of $Q(2 n, q)$ that meets all maximal singular subspaces of $Q(2 n, q)$ has at least $q^{n}+1$ points with equality if it is an ovoid.

Lemma 2.3 If R is a point with $R \notin Q$, then $\left|R^{\perp} \cap B\right| \leq q^{n}+\delta$.
Proof. Put $H:=R^{\perp}$. Then $Q \cap H$ is an $Q(2 n, q)$ and thus H contains maximal singular subspaces. Therefore $B \cap H \neq \emptyset$.

Let P be a point of $B \cap H$. Then Q induces on $\left(P^{\perp} \cap H\right) / P$ an $Q(2 n-2, q)$ and $B^{\prime}=\left\{\langle P, X\rangle \mid X \in P^{\perp} \cap H \cap B, X \neq P\right\}$ is a set of points of this $Q(2 n-2, q)$ with $\left|B^{\prime}\right|<\left|B \cap P^{\perp}\right| \leq \delta \leq q^{n-1}$. Since a set of points of $Q(2 n-2, q)$ that meets all maximal subspaces of $Q(2 n-2, q)$ has at least $1+q^{n-1}$ points, it follows that the $Q(2 n-2, q)$ has a maximal singular subspace that contains no 'point' of B^{\prime}. This shows that P lies on a maximal singular subspace T of H that meets B only in P.

Consider a hyperplane S of T with $P \notin S$. Then S lies in $q^{2}+1$ maximal singular subspaces and $q+1$ of these are contained in H. Since $S \cap B=\emptyset$, each of the $q^{2}-q$
maximal singular subspaces on S that is not contained in H meets B in a point that is not in H. This gives $q^{2}-q$ points of B in $S^{\perp} \backslash H$. For distinct hyperplanes S of T, the sets $\left(S^{\perp} \cap Q\right) \backslash H$ are disjoint, since $T^{\perp} \cap Q=T \subseteq H$. Since there are q^{n-1} hyperplanes S of H with $P \notin S$, it follows that $|B \backslash H| \geq q^{n-1}\left(q^{2}-q\right)$. Hence $|H \cap B| \leq|B|-q^{n-1}\left(q^{2}-q\right)=q^{n}+\delta$.

Lemma 2.4 (a) $|B|=q^{n+1}+q^{n-1}$.
(b) If $P \in B$, then $\left|P^{\perp} \cap B\right|=q^{n-1}$.
(c) If P and R are distinct points of B and if $\langle P, R\rangle$ is a secant line of Q, then $P^{\perp} \cap R^{\perp} \cap B=\emptyset$.

Proof. Consider a point $P \in B$. Then $\left|P^{\perp} \cap B\right| \leq \delta$ and hence there exists a point $R \in B$ with $R \notin P^{\perp}$. Then $l:=\langle P, R\rangle$ is a secant line of Q and the ($2 n-1$)-space $l^{\perp}=P^{\perp} \cap R^{\perp}$ lies in $q+1$ hyperplanes, which are X^{\perp} with $X \in l$. If $X \in l \cap Q$, that is $X=P$ or $X=R$, then $\left|X^{\perp} \cap B\right| \leq \delta$ by Lemma 2.2. Otherwise $X \in l \backslash Q$ and then $\left|X^{\perp} \cap B\right| \leq q^{n-1}+\delta$ by Lemma 2.3. Since the $q+1$ hyperplanes X^{\perp} with $X \in l$ cover the whole space, it follows that

$$
|B| \leq 2 \delta+(q-1)\left(q^{n}+\delta\right)
$$

with equality only if $l^{\perp} \cap B=\emptyset$ and $\left|P^{\perp} \cap B\right|=\left|R^{\perp} \cap B\right|=\delta$.
Since $|B|=q^{n+1}+\delta$, we obtain $q^{n} \leq \delta q$. Hence $\delta=q^{n-1}$ and we obtain equality. This proves all parts.

Lemma 2.5 $B=\left(U^{\perp} \backslash U\right) \cap Q$ for a singular subspace U of dimension $n-2$.
Proof. Consider $P \in B$. Then $\left|P^{\perp} \cap B\right|=q^{n-1}$ by Lemma 2.4 (a). If X and Y are distinct points of $P^{\perp} \cap B$, then P is a point of B in $X^{\perp} \cap Y^{\perp}$ and therefore Lemma 2.4 (c) shows that $\langle X, Y\rangle$ is a singular line. Hence, $P^{\perp} \cap B$ spans a singular subspace S. As $\left|P^{\perp} \cap B\right|=q^{n-1}$, we have $\operatorname{dim}(S) \geq n-1$, so S is a maximal singular subspace.

Consider any point $R \in B$ that is not in P^{\perp}. Then $P^{\perp} \cap R^{\perp} \cap B=\emptyset$ by Lemma 2.4 (c). Hence, the hyperplane $R^{\perp} \cap S$ of S contains no point of B. As $\left|P^{\perp} \cap B\right|=q^{n-1}$ and $P^{\perp} \cap B \subseteq S$, this gives $P^{\perp} \cap B=S \backslash\left(S \cap R^{\perp}\right)$.

Since this holds for all points R of $B \backslash P^{\perp}$, it follows that S has a hyperplane U with $U=R^{\perp} \cap S$ for all $R \in B \backslash P^{\perp}$. Hence $U \subseteq X^{\perp}$ for all points $X \in B$. As $|B|=\left(q^{2}+1\right) q^{n-1}$ and $U \cap B=\emptyset$, this implies that $B=\left(U^{\perp} \backslash U\right) \cap Q$.

References

[1] J. W. P. Hirschfeld and J. A. Thas. General Galois Geometries. Oxford Science Publications, Oxford, 1991.
[2] W. M. Kantor. Ovoids and translation planes. Canad. J. Math., 34:1195-1207, 1982.
[3] S. E. Payne and J. A. Thas. Finite Generalized Quadrangles, volume 110 of Research Notes in Mathematics. Pitman, Boston, 1984.
[4] E. E. Shult. Nonexistence of ovoids in $\Omega^{+}(10,3)$. J. Combin. Theory Ser. A, 51:250-257, 1989.
[5] J. A. Thas. Ovoids and spreads of finite classical polar spaces. Geom. Dedicata, 10:135-144, 1981.

Klaus Metsch
Mathematisches Institut
Arndtstr. 2
D-35392 Giessen
e-mail: Klaus.Metsch@math.uni-giessen.de

[^0]: Received by the editors August 1997.
 Communicated by James Hirschfeld.
 1991 Mathematics Subject Classification. 51E20,51E21.
 Key words and phrases. Ovoid, quadric, polar space.

