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1 Introduction

An ovoid of a polar space is a set of points with the property that every maximal
subspace contains exactly one point of it. The existence of ovoids in polar spaces
was studied extensively, see for example [5, 2, 3, 4] and the overview in [1, Appendix
VI]. Clearly, if a polar space contains an ovoid O, then |O] is the minimum size of
a set of points that meets every maximal subspace of that polar space.

By Q@ (2n + 1,q) we denote the elliptic quadric of PG(2n + 1,¢). An ovoid of
Q™ (2n+1, q) has ¢"*' +1 points [1]. However, Thas [5] has shown that Q= (2n+1, q)
has no ovoids for n > 2. We will improve this result by showing that ¢"*! + ¢"!
is the minimum cardinality of a set of points that meets every maximal subspace of
@~ (2n 4+ 1,q). More precisely, we prove the following theorem.

Theorem 1.1 Let B be a set of points of Q = Q~(2n+1, q) such that every mazimal
subspace of Q has a point in B. Let L be the related polarity of PG(2n+1,q). Then
|B| > ¢"" + ¢" ! with equality if and only if B = (UX\U)NQ for a subspace U of
dimension n — 2 with U C Q).

If U is a subspace of @ of dimension n — 2, then the set B := (U+\ U)NQ
meets all maximal subspaces of ). For, if S is a maximal subspace of @), then
dim(SNU*) = 1+ dim(SNU) and thus SN U # .

Notice that the quotient space UL /U is a 3-space and that @ induces a Q= (3, q)
on this 3-space (that is the set {(U, P) | P € (U*\U)NQ}isa Q(3,q) of U+/U).
Thus B := (U+\ U) N Q has cardinality (¢> + 1)¢" L.
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2 Proof of the theorem

In this section @) denotes the elliptic quadric @~ (2n+1,¢), n > 1, and L denotes the
related polarity of PG(2n+1, ¢q). A subspace of PG(2n+ 1, ¢) contained in @ will be
called singular. In order to prove the theorem, we suppose that B is a minimal set
of points of Q that meets all maximal singular subspaces and that |B| < ¢" ™' +¢" .
We show in a series of lemmas that equality holds and that B = (U+\ U)NQ for a
singular subspace U of dimension n — 2. Put ¢ := |B| — ¢"*!, so

|B| =q¢"™ +6 with §<q" .

Lemma 2.1 Suppose that T is a maximal singular subspace that meets B in exactly
one point P. Then |P+N B| < § and there exists a hyperplane S of T with P ¢ S
such that every mazimal singular subspace on S meets B in exactly one point.

Proof. Consider a hyperplane S of T. Then @ induces an Q~(3,¢) on S*/S and
hence S lies in |Q7(3,¢)| = ¢*> + 1 maximal singular subspaces. If P ¢ S, then ¢* of
these maximal singular subspaces do not contain P and hence S+ contains ¢? points
of B that do not lie in P*. Since T has ¢"~! hyperplanes S with P ¢ S, and since
distinet choices of S yield distinct points of B, it follows that |[B\ P+| > ¢" 1. ¢*> =
¢" . Hence [P+ N B| < 6.

For some of the hyperplanes S of T with P ¢ S, we must have that each maximal
singular subspace on S contains a unique point in B, since otherwise we could
improve the above bound to | B\ P*| > ¢"~ ! - (¢* + 1), which is not possible, since
Bl < (¢*+1)¢" ' and P € BN P+, n

Lemma 2.2 If P € B, then |P+ N B| <.

Proof. By the minimality of B, some maximal singular subspace on P meets B
only in P. Apply the previous lemma. [

By Q(2n, q) we denote the parabolic quadric of PG(2n, ¢). Recall that Q(2n, q)
has (14 ¢)(14 ¢?)...(1+ ¢") maximal subspaces and each point of Q(2n, q) lies in
(1+q)(1+¢*...(1+¢"?) of them ([1]). Hence, a set of points of Q(2n,q) that
meets all maximal singular subspaces of Q(2n,q) has at least ¢" 4+ 1 points with
equality if it is an ovoid.

Lemma 2.3 If R is a point with R ¢ Q, then |RT N B| < ¢" + 6.

Proof. Put H := R*. Then QN H is an Q(2n,q) and thus H contains maximal
singular subspaces. Therefore B N H # ().

Let P be a point of BN H. Then @ induces on (P+ N H)/P an Q(2n — 2,q)
and B’ = {(P,X) | X € PN HN B, X # P} is a set of points of this Q(2n — 2, q)
with |B’| < |[BN P+ <6 < ¢ L. Since a set of points of Q(2n — 2, ¢) that meets all
maximal subspaces of Q(2n — 2, q) has at least 1+ ¢"~! points, it follows that the
Q(2n — 2,q) has a maximal singular subspace that contains no 'point’ of B’. This
shows that P lies on a maximal singular subspace T" of H that meets B only in P.

Consider a hyperplane S of T with P ¢ S. Then S lies in ¢>+ 1 maximal singular
subspaces and ¢ + 1 of these are contained in H. Since SN B = (), each of the ¢*> — ¢
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maximal singular subspaces on .S that is not contained in H meets B in a point that
is not in H. This gives ¢ — ¢ points of B in S+ \ H. For distinct hyperplanes S
of T, the sets (St N Q) \ H are disjoint, since T+ N Q = T C H. Since there are
q" ! hyperplanes S of H with P ¢ S, it follows that |B\ H| > ¢"'(¢*> — ¢q). Hence
|[HNB| < |Bl—q¢"Y(¢*—q)=q¢" +90. n

Lemma 2.4 (a) |B| =q¢"™' +q¢" .
(b) If P € B, then |P-NB| =q¢"!.

(¢) If P and R are distinct points of B and if (P, R) is a secant line of Q, then
PrNR-NB=0.

Proof. Consider a point P € B. Then |Pl N B| < 6 and hence there exists a point
R € B with R ¢ P*. Then [ := (P, R) is a secant line of Q and the (2n — 1)-space
I+ = PY N Rt lies in ¢ + 1 hyperplanes, which are X+ with X € I. If X € [N Q,
that is X = P or X = R, then | X+ N B| < § by Lemma 2.2. Otherwise X €[\ Q
and then | X+ N B| < ¢" ! +6 by Lemma 2.3. Since the ¢ + 1 hyperplanes X+ with
X €1 cover the whole space, it follows that

IB] < 26+ (g — 1)(" +9).

with equality only if [+ N B =0 and [P+ N B|=|Rt N B|=4.
Since | B| = ¢"™ + 6, we obtain ¢" < §q. Hence § = ¢"~! and we obtain equality.
This proves all parts. u

Lemma 2.5 B = (UL \U)NQ for a singular subspace U of dimension n — 2.

Proof. Consider P € B. Then |Pt N B| = ¢"! by Lemma 2.4 (a). If X and Y
are distinct points of P+ N B, then P is a point of B in X+ N Y" and therefore
Lemma 2.4 (c) shows that (X,Y) is a singular line. Hence, P+ N B spans a singular
subspace S. As |PTNB| = ¢" !, we have dim(S) > n—1, so S is a maximal singular
subspace.

Consider any point R € B that is not in P*. Then PrNR* N B = ) by
Lemma 2.4 (c). Hence, the hyperplane R+ NS of S contains no point of B. As
|P-N B|=¢"!and P* N B C S, this gives PN B =5\ (SN R*).

Since this holds for all points R of B\ P+, it follows that S has a hyperplane
U with U = Rt NS for all R € B\ P+. Hence U C X for all points X € B. As
|B| = (¢* + 1)¢" ! and U N B = ), this implies that B = (U+\ U) N Q. n
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