Projective embedding of projective spaces

Alexander Kreuzer

Abstract

In this paper, embeddings ¢ : M — P from a linear space (M,9M) in a
projective space (P, £) are studied. We give examples for dim M > dim P and
show under which conditions equality holds.

More precisely, we introduce properties (G) (for a line L € £ and for a plane
E C M it holds that |L N ¢(M)| # 1) and (E) (¢(E) = ¢(E) N ¢(M),
whereby ¢(F) denotes the by ¢(FE) generated subspace of P). If (G) and (E)
are satisfied then dim M = dim P. Moreover we give examples of embeddings
of m-dimensional projective spaces in n-dimensional projective spaces with
m > n that map any n+ 1 independent points onto n+1 independent points.

This implies that for a proper subspace T' of M it holds ¢(T") = ¢(T) N ¢(M)
if and only if dim 7 < n — 1, in particular (E) holds for n > 3. (cf. 4.1)

1 Introduction

An embedding ¢ : M — P of a linear space (M,9) in a linear space (P, £) is an
injective mapping that maps collinear points onto collinear points and noncollinear
points onto noncollinear points. There are lots of papers concerning the embedding
of linear spaces in projective spaces (cf. [3, Chap.6]). Important results are that
every locally projective space (M, ) of dim M > 4 (cf. [7, 10, 17, 19]) and every
locally projective space (M,9) of dim M = 3 satisfying the Bundle Theorem (cf.
[8, 15]) is embeddable in a projective space (P, £). Due to the construction of the
projective space the mentioned Embedding Theorems have the useful property that
for every subspace T of (M, 90) there exists exactly one subspace U of (P, £) with
o(T) = Un¢(M). This property is equivalent to the two properties (G), (E);
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A linear space satisfying (G), (E) is called locally complete (cf. 2.4). For locally
complete embeddings the dimension of M and P coincide (cf. 2.5). There are also
projective embeddings of linear spaces which are not locally complete, but have the
property that the dimension and order of M and P are equal (cf. [13, 14]). But
there exist also embeddings which do not preserve the dimension. If ¢(M) generates
P, one obtaines dim M > dim P (cf. 2.3), hence we have to consider only the case
dim M > dim P. For example one can embed every linear space in a projective plane
E by a free construction of E. (Then of course, E is not a Desarguesian plane.)
Kalhoff constructed in [9] the embedding of any finite partial planes in a translation
plane, and hence in a projective plane of Lenz class V.

In this paper we are interested in embeddings in Desarguesian projective planes
and spaces. There are some papers which give a characterisation of embeddings
of projective spaces in Desarguesian projective spaces. For a field K and the
(m + 1)-dimensional vector space (K™, K) over K, let PG(m, K) denote the m-
dimensional projective space over K with the 1-dimensional vector subspaces as
points and the 2-dimensional vector subspaces as lines. M. Limbos [16] has shown
for finite projective spaces that every embedding of PG(m, K) in PG(n, L) with
m > n is a product of the trivial embedding of PG(m, K) in PG(m, L) for a field
extension L of K, and a projection of PG(m, L) in the subspace PG(n, L). In [16] a
geometric construction of embeddings is given and the proof that every embedding
can be obtained by this construction. H. Havlicek [6] and C.A. Faure, A. Froelicher
[4, 5] give a similar characterisation for the infinite case, but without a construction.
For an arbitrary field K an example of an embedding of PG(m, K) in PG(m —1, L)
for a field extension L of K is given by A. Brezuleanu, D.-C. Radulescu [1, (5.8)].
For a finite field K, J. Brown gives in [2] an analytic example of an embedding
¢ : PG(m,K) — PG(2,L) for a field extension L of K. This examples does not
satisty (E).

In this paper we answer the question, if there exists an embedding ¢ : P — P’ of a
Pappian projective space (P, £) in a Pappian projective space (P’, £') which does not
preserve dimension, but satisfy property (E). We show the corresponding statements
for higher dimensions. We show that for dim P’ = n there are embeddings which
map any n + 1 independent points of P onto n + 1 independent points of P’. It
follows that the image of an (n — 1)-dimensional subspace T of P generates an
(n — 1)-dimensional subspace ¢(T) of P’ with ¢(T) = ¢(T) N ¢(P). We remark
that there exist also embeddings of projective spaces in projective planes satisfying
property (G).

2 Locally Complete Embeddings

A linear space (P, £,1) will be defined as a set P of elements, called points, a distinct
set £ of elements, called lines, and an incidence relation I such that any two distinct
points are incident with exactly one line and every line is incident with at least two
points. Usually one identifies a line L € £ with the set of points incident with L,
hence the lines of (P, £,1) = (P, £) are subsets of P.

A subspace is a subset U C P such that for all distinct points x,y € U the unique
line incident with x,y is contained in U. Let 4 denote the set of all subspaces. For
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every subset X C P we define the following closure operator:

TIPP) - U X X = N U
Uel (1)
XcU

The closure of X is a subspace containing X. For U € iU we call dimU :=
inf{| X | =1 : X C U and X = U} the dimension of U. A subspace of dimen-
sion two is a plane. A subset X C P is independent if x ¢ X \ {z} for every x € X,
and is a basis of a subspace U if X is independent and X = U.

For two linear spaces (M,9) and (P, £), an injective mapping

¢:M— P, x— ¢(x) (2)

is called an embedding, if ¢ maps collinear points onto collinear points and non-
collinear points onto noncollinear points, i.e., {¢(G) : G € M} ={LNp(M): L € £
and |LN¢(M)| > 2}. Hence ((b(M), {6(G) : G € zm}) is the restriction of (P, £) to
¢(M). Clearly:

Lemma 2.1 If ¢ is an embedding of (M,9M) in (P, L), and ¢ is an embedding of
(P, L) in (P, L), then v o ¢ is an embedding of (M,IM) in (P, £').

Let Y — Y denote the closure of (P, £) and X — (X) the closure of (M,9M).
By [12, (1.1)]:

Lemma 2.2 If ¢ is an embedding of (M,9N) in (P, £), and U a subspace of (P, £)
and X C M, then:

1. YU N @G(M)) is a subspace of M.
2. ((X)) C ¢(X) and ¢({X)) = ¢(X).
3. If 9(X) is independent in P, then X is independent in M.

Lemma 2.3 If ¢ : M — P is an embedding of a linear space (M,IN) in a linear
space (P, £) satisfying (M) = P, then dim M > dim P.

Proof. Let X C M be a subset generating M, i.e. (X) =M. Then P = ¢(M) =
o((X)) = ¢(X) by 2.2. Therefore ¢p(X) is a generating set of P with | X| = |¢(X)]
hence dim P < dim M .

We call an embedding ¢ of (M, ) in (P, £) locally complete, if for every nonempty
subspace T' of M, there is exactly one subspace U of P with ¢(T") = U N ¢(M).
By [12, (1.5)] we have:

Lemma 2.4 For an embedding ¢ of (M,0M) in (P, £) the following statements are
equivalent:

1. ¢ is locally complete.
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2. For every subspace T of (M,9M) and for every subspace U of (P, £) with
d(M)NU # 0 we have

U=Tno(D) and  o(T) = &(T) N (M)

3. The following properties (G), (E) are satisfied.

(G) For every line L€ £, |[LNo(M)|#1

(E) For every plane E of M, ¢(E) = ¢(E)N ¢p(M)
A linear space (P, £) satisfies the exchange condition if

for S C Pand z,y € P withz € SU {y}\ S it follows that y € SU {z}. (3)

Lemma 2.5 If ¢ is a locally complete embedding of a linear space (M,9M) in a
linear space (P, £) satisfying the exchange condition, then dim M = dim P.

Proof. Since ¢ is locally complete, P = PN (M) = ¢(M), hence, by Lemma
2.3, dimP < dimM. Now let z € ¢(M). Since (P, £) is an exchange space,
there is a basis C' of P containing x (cf. [11, §8]. By Lemma 2.4, (G) holds.
Moreover for every y € C'\ {z}, there exists a y’ € (m N qﬁ(M)) \ {z}. Hence we
obtain a basis C' C ¢(M) of P with |C| = |C'|. Let T := (¢~1(C")) denote the
subspace of M generated by ¢~1(C"), i.e. C' C ¢(T) and P = C" = ¢(T). We get
&(T) =p(TYNG(M) = PN (M) = ¢(M), hence M = T is generated by ¢~ (C")
and dim M < dim P. ]

The Lemma 2.5 applies in particular, if (P, £) is a projective space.

Theorem 2.6 Let (P, £), (M,9N) be linear spaces satisfying the exchange condition
and dim M > dim P. If ¢ : M — P is an embedding satisfying (G), then there
exist subspaces M' C M, P" C P with dim M’ > dim P’ = 2 such that ¢|p - M' —
P’ is an embedding satisfying (G).

Proof. By Lemma 2.5 (E) is not satisfied, since dim M > dim P. Hence there exists
a plane £ C M with ¢(E) # (¢(E) N ¢(M)). Therefore M’ := ¢~ (¢(E) N ¢(M))
is a subspace with £ C M’ and F # M’, i.e. dim M’ > 2. Since FE is a plane, also
P’ = ¢(E) = ¢(M’) is a plane, and the restriction of ¢ to M’ is an embedding.
For a line L C P’ we have LN ¢(M) = L N ¢p(M'). Hence if x € LN p(M') we
have G := ¢ (L N ¢(M')) € M, since ¢ satisfies (G). Because G C M’, also ¢|
satisfies (G). ]

Theorem 2.7 Let (P,£) = PG(m, K) and (P, £') = PG(n, L) be projective spaces
and ¢ : P — P’ an embedding, then K is isomorphic to a subfield of L.

Proof. Let E be a plane of P. Then ¢(F) ~ PG(2,K) is a subplane of the
Desarguesian projective plane ¢(F) ~ PG(2, L), hence K is isomorphic to a subfield
of L (cf. [18, (8.2)], [6, (3.6.1)]). n
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3 A mapping of a vector space in a vector space over a field
extension

In this section let n, s € N be integers with n > 2, let K be a commutative field, and
L = K(t) an extension field of K with a transcendental or algebraic element ¢ of
degree at least 2°"*Y) over K. We consider the two left vector spaces (K"+! K)
and (L™ L). Fori € 0,1,...,nlet r; € K" more precisely

L= (331‘,07 Lidy--- 7xi,n+s> (4)

with elements z;;, € K. We denote the rows of the matrix

Yo L0,0 --- TOnts
X = = : : : = (Clg, ,Cl?;_,_s) ) (5>
In Tno - Tnnts
To,k
where a] = : for k=0,1,...,n+s. (6)
Tnk

Since the column rank and the row rank of X are equal, we have:

Lemma 3.1 The following statements are equivalent:
1. The vectors xo,x1, - - -, tn are linearly independent in (K" K).
2. The matriz X = (aj,af,...,al, ) has rankn + 1.

3. There exist distinct integers ig,i1,...,in, € {0,1,...,n + s} such that
Qig, Qi s - - -, Qg are linearly independent in (K" K).

Now we consider arbitrary vectors ag, ai, ..., s € K" C L**! and define
s ) A
b7 :—al + 512 ol eL™  for  i=0,1,...,n. (7)

: i (n+1)+i
For example, for s = 2 we obtain: b7 := af + ¢2 al , + 2 al,,.

Lemma 3.2 det(b{,b],...,b]) # 0 if and only if rank(ad,a{,...,al,,)=n+1.

Proof. (i). First we introduce some notation to get a shorter representation. For
i€{0,...,n} and j; € {0,...,s} we define

{0 if ji=0 T {a? if ji=0

and a; . = : . ,
az:—f—ji Zf Ji 7& 0

Aiji 1= o(js = 1)(n + 1) i if i 40 i.ji
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5 (4:i=1)(n+1)+

SO bl =%l + > e nﬂl Z thidiq ”Z (8)

Ji=1
(ii).We recall that we can write every integer k € {1,2,...,25+) — 1} as a sum
of elements of {2": = 0,1, ... (n+1)—1} = {2Um DD+ G =12 s Q=
0,1,...,n} ={ Ny 1 Ji = 1, 2 s, ©=20,1,...,n} in a unique way. Hence we

have for j;, k; € {0,1,...,s}
> Nij;=>_ Aig, ifandonlyif j; =4k foral i€{0,...,n} (9)

i=0 =0
and [] thidi = 11 tYow if and only if j; = k; for all i€ {0,...,n}. (10)
i=0 i=0

(iii).By (i) we get

d:= det(b?, ..., b7) = det( S gl

S
Ay oL _
(Y ol ) =

Jo=0 Jn=0
= > (oot )det(ad, . an, ) = Y thdetAy (11)
J05-++Jn=0 k<m
with k = S Aojo, ++ + Anjp, m = 20HD — 1 and Ay = (azwau"“’ I') with

not necessarily distinct integers i; € {0,1,...,n+s},j=0,1,...,n
(vi). Since t € L\ K has at least degree m + 1 = 25("*1) gver K, we have
d =7, thdetAy, = 0 if and only if detA;, = 0 for every k € {0,1,...,250+) — 1},

This means in particular that for distinct elements ig,1,...,4, € {0,1,...,n+ s}
the vectors aZO, a“, e aiT are linearly dependent. By Lemma 3.1 it follows that
rank(af, af,...,al ) <n+ 1.

On the other hand, if d # 0, then there exist integers ig, i1, ..., 4, € {0,1,...,n+s}
with det(a] ,al, ..., ai) # 0, hence g, i1, . .. , i, are distinct and al al, ... al are
linearly independent. By Lemma 3.1 we get rank(ao af el ) =n+1. [

Now we define the map

f P K _>Ln+17 r= (x07~~ xn-l—s-l—l) '—>X/: (33'0,,33;1)
(-1 (n+1)+4
by x—xz—l—ZQ Tny; , for i=0,1,...,n. (12)
7=1

Lemma 3.3 1. f(Ky) = Kf(x) C Lf(x).

2. The vectors o, . .,tn are linearly independent in (K™% K) if and only if
f(xo), .-, f(xa) are linearly independent in (L™, L).

3. In particular for three vectors ro,x1,t2 € K" rank(ro,11,12) = 3 if and

only if - rank(f(xo), f(x1), f(x2)) = 3.

Proof. 1. By definition f(Ar) = Af(x) for A € K. Clearly K f(r) C Lf(p).
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2. Forxo,...,tn € K" witht; = (250,21, ., Tints), Wwe consider the matrix
f(xo0)
X' = :
(&)
. oU-D(+) . oli=D(n+n
Too+ 25 2 Tontj - Tont i 2 Lot
L UL . oU-De+1)4n
Tno + ijl t2 Tpntj --- Topnt Zj:1 t2 Tnntj
5. 9(i-1)(n+1) 5. 9= (nt+1)+n
N <a°T+Zt2 LR ’aZJFZtQ a£+j>
=1 =1
— (bg, bT>
Hence by Lemma 3.2 we have det(X') = det(bl,bl,...;67) #£ 0 iff
rank(af,af,...,al,,) = n+1, i.e. by Lemma 3.1, iff xo,...,x, are linearly in-
dependent.
Since n > 2, 3. is a consequence of 2. [

4 Embeddings satisfying (E)

Using the map f introduced in the preceding section, we now construct projective
embeddings.

Let (P,£) be a Pappian projective space with dim P = n + s for n,s € N with
n > 2. Then we can represent (P, £) = PG(n+ s, K) by an (n + s + 1)-dimensional
vector space (K" K) over a commutative field K. Let us denote by (P', £) :=
PG(n, L) the n-dimensional projective space with the underlying vector space (L™, L)
where L is the field extension of K introduced in the preceding section. We re-
call that three points a = Ka,b = Kb,c = K¢ are noncollinear if and only if
rank(a, b, ¢) = 3 for vectors a, b, c € K"t

Theorem 4.1 1. For every n,s € N with n > 2 and every Pappian projective
space (P, £) of dimension n + s, there exists an embedding ¢ : P — P’ in
an n-dimensional projective Pappian space (P', £') such that any n + 1 points
xo,...,Tn € P are independent in (P, L) if and only if ¢(xo),...,¢(x,) are
independent in (P, £').

2. For a proper subspace T' of P it holds that ¢(T) = ¢(T) N ¢(P) if and only if
dimT <n -1

3. Forn >3, ¢ satisfies (E).
Proof. 1. Using the map f of Lemma 3.3, we define
¢:P— P, x=Kr— ¢():=Lf(r) (13)

By Lemma 3.3(1), ¢ is well defined, and by Lemma 3.3(3), ¢ maps collinear points
onto collinear point and noncollinear points onto noncollinear points, hence ¢ is
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an embedding. Since o = Kyg,...,x, = Kg, are independent iff ro,...,r, are
linearly independent, and ¢(zg) = Lf(xo),-..,#(xn) = Lf(x,) are independent iff
f(xo),- -, f(xo) are linearly independent, one obtain by Lemma 3.3(2) that o, . .., z,
€ P are independent iff ¢(xy), ..., ¢(z,) are independent.

2. For r < n—1, let T be an r-dimensional subspace of (P, £) with a ba-
sis ag,...,a,. Assume that ¢(T') # ¢(T) N ¢(P). Then there exists a point
b € P with ¢(b) € ((b(T) \ qﬁ(T)), ie. b & T and ag,...,a,,b are independent

in (P, £). Since ¢(b) € ¢(T) = ¢(ap), ..., ¢(a,) (cf. Lemma 2.2(2)), it follows that
¢(ap), ..., d(ar), p(b) are dependent in (P'L).
Since r +2 < n + 1, by 1., the points ¢(ay), ..., ¢(a,), d(b) are independent since
ao, - . ., ar, b are independent, a contradiction to the assumption ¢(7") # ¢(T)No(P).
Hence ¢(T) = ¢(T) N ¢(P) for dimT < n — 1. For every proper subspace T of
P with dimT" > n, there are n + 1 independent points aq,...,a, € T. By 1.
®(ao), - .- ¢(a,) are independent in P’, hence P’ = ¢(ao),...,¢(a,) C ¢(T) and
H(T) # ¢(P) = ¢(T) N ¢(P) = P' U ¢(P), since T is a proper subspace of P.

3. By 2., (E) is satisfied for n > 3. ]

Corollary 4.2 For everyn,s € N withn > 2 and every finite projective space (P, £)
of dimension n+ s, there exists an embedding ¢ : P — P’ in an n-dimensional finite
projective Desarquesian space (P', L) such that any n+ 1 points x, ..., x, € P are
independent in (P, £) if and only if ¢(xo), ..., ¢(x,) are independent in (P, £').
For a proper subspace T of P it holds that ¢(T) = ¢(T) N ¢(P) if and only if
dimT <n—1, and for n > 3, ¢ satisfies (E).

Proof. If P is finite, then ord P is finite and (P, £) = PG(n+s, K) for a commutative
field K. There exists a finite field extension L = K (t) of finite degree ¢ at least 25(*+1),
hence L, and therefore also P’ are finite and the assertion follows with 4.1. [ |

If we set n = 2 we obtain:

Corollary 4.3 FEvery Pappian projective space is embeddable in a Pappian projec-
tive plane.

Proof. For a Pappian projective space (P, £) of finite dimension, Corollary 4.3
is a direct consequence of Theorem 4.1 with n = 2. For dim P = oo we modify
the construction of the last section, by taking a transcendental element ¢, for every
element b of a basis B of P. Then for T'= {t;, : b € B} and L := K(T') we get the
result analogous to the proofs of Lemma 3.1 to 3.3. [

Let (M,9) be a linear space. Two lines G, L € £ are called parallel if G = L,
or if G, L are contained in a common plane and GNL =0 . For x € M \ L let

m(x, L) :=|{GeM: 2z G and G,L parallel }| (14)

denote the number of all parallel lines of L passing z. For m € N, (M,9M) is
called an [0, m]-space, if for each non-incident point-line pair (z, L) we have that
w(x,L) € [0,m] = {0,1,...,m}. Let n(L) := max{n(y,L) : y € M\ L}. If
|L| + 7(L) — 1 > 3m+ 1 and dim M > 3, then by [14, Theorem (2.10)], ordM :=
|L| + (L) — 1 is constant for every line L € M. If ordM > 3m + 2 and dim M > 3,
then by [14, Embedding Theorem (4.5)], (M, 91) is embeddable in a projective space
(P, £) with dim M = dim P and ordM = ordP. Hence:
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Corollary 4.4 Every finite [0,m|-space (M,9M) with dimM > 3 and
ordM > 3m + 2 is embeddable in a finite Pappian projective plane.

Proof. Since M is finite, also ordM = ordP and dim M = dim P is finite and
(M,90) is embeddable in a finite projective space (P, £). Now by 4.2 for n = 2,
(P, £) is embeddable in a finite Pappian plane (P’,£') and by 2.1 the assertion
follows. [
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