Projective embedding of projective spaces

Alexander Kreuzer

Abstract

In this paper, embeddings $\phi: M \to P$ from a linear space (M,\mathfrak{M}) in a projective space (P,\mathfrak{L}) are studied. We give examples for dim $M > \dim P$ and show under which conditions equality holds.

More precisely, we introduce properties (**G**) (for a line $L \in \mathfrak{L}$ and for a plane $E \subset M$ it holds that $|L \cap \phi(M)| \neq 1$) and (**E**) $(\phi(E) = \overline{\phi(E)} \cap \phi(M))$, whereby $\overline{\phi(E)}$ denotes the by $\phi(E)$ generated subspace of P). If (**G**) and (**E**) are satisfied then dim $M = \dim P$. Moreover we give examples of embeddings of m-dimensional projective spaces in n-dimensional projective spaces with m > n that map any n + 1 independent points onto n + 1 independent points. This implies that for a proper subspace T of M it holds $\phi(T) = \overline{\phi(T)} \cap \phi(M)$ if and only if dim $T \leq n - 1$, in particular (**E**) holds for $n \geq 3$. (cf. 4.1)

1 Introduction

An embedding $\phi: M \to P$ of a linear space (M,\mathfrak{M}) in a linear space (P,\mathfrak{L}) is an injective mapping that maps collinear points onto collinear points and noncollinear points onto noncollinear points. There are lots of papers concerning the embedding of linear spaces in projective spaces (cf. [3, Chap.6]). Important results are that every locally projective space (M,\mathfrak{M}) of dim $M \geq 4$ (cf. [7, 10, 17, 19]) and every locally projective space (M,\mathfrak{M}) of dim M = 3 satisfying the Bundle Theorem (cf. [8, 15]) is embeddable in a projective space (P,\mathfrak{L}) . Due to the construction of the projective space the mentioned Embedding Theorems have the useful property that for every subspace T of (M,\mathfrak{M}) there exists exactly one subspace U of (P,\mathfrak{L}) with $\phi(T) = U \cap \phi(M)$. This property is equivalent to the two properties (G), (E);

Received by the editors August 97.

Communicated by Albrecht Beutelspacher.

1991 Mathematics Subject Classification. 51E.

Key words and phrases. Projective spaces, Embeddings.

A. Kreuzer

A linear space satisfying (\mathbf{G}) , (\mathbf{E}) is called *locally complete* (cf. 2.4). For locally complete embeddings the dimension of M and P coincide (cf. 2.5). There are also projective embeddings of linear spaces which are not locally complete, but have the property that the dimension and order of M and P are equal (cf. [13, 14]). But there exist also embeddings which do not preserve the dimension. If $\phi(M)$ generates P, one obtaines $\dim M \geq \dim P$ (cf. 2.3), hence we have to consider only the case $\dim M > \dim P$. For example one can embed every linear space in a projective plane E by a free construction of E. (Then of course, E is not a Desarguesian plane.) Kalhoff constructed in [9] the embedding of any finite partial planes in a translation plane, and hence in a projective plane of Lenz class V.

In this paper we are interested in embeddings in Desarguesian projective planes and spaces. There are some papers which give a characterisation of embeddings of projective spaces in Desarguesian projective spaces. For a field K and the (m+1)-dimensional vector space (K^{m+1}, K) over K, let PG(m, K) denote the mdimensional projective space over K with the 1-dimensional vector subspaces as points and the 2-dimensional vector subspaces as lines. M. Limbos [16] has shown for finite projective spaces that every embedding of PG(m, K) in PG(n, L) with m > n is a product of the trivial embedding of PG(m, K) in PG(m, L) for a field extension L of K, and a projection of PG(m,L) in the subspace PG(n,L). In [16] a geometric construction of embeddings is given and the proof that every embedding can be obtained by this construction. H. Havlicek [6] and C.A. Faure, A. Froelicher [4, 5] give a similar characterisation for the infinite case, but without a construction. For an arbitrary field K an example of an embedding of PG(m, K) in PG(m-1, L)for a field extension L of K is given by A. Brezuleanu, D.-C. Rădulescu [1, (5.8)]. For a finite field K, J. Brown gives in [2] an analytic example of an embedding $\phi: \mathrm{PG}(m,K) \to \mathrm{PG}(2,L)$ for a field extension L of K. This examples does not satisfy (E).

In this paper we answer the question, if there exists an embedding $\phi: P \to P'$ of a Pappian projective space (P, \mathfrak{L}) in a Pappian projective space (P', \mathfrak{L}') which does not preserve dimension, but satisfy property (\mathbf{E}) . We show the corresponding statements for higher dimensions. We show that for $\dim P' = n$ there are embeddings which map any n+1 independent points of P onto n+1 independent points of P'. It follows that the image of an (n-1)-dimensional subspace T of P generates an (n-1)-dimensional subspace $\overline{\phi(T)}$ of P' with $\phi(T) = \overline{\phi(T)} \cap \phi(P)$. We remark that there exist also embeddings of projective spaces in projective planes satisfying property (\mathbf{G}) .

2 Locally Complete Embeddings

A linear space (P, \mathfrak{L}, I) will be defined as a set P of elements, called points, a distinct set \mathfrak{L} of elements, called lines, and an incidence relation I such that any two distinct points are incident with exactly one line and every line is incident with at least two points. Usually one identifies a line $L \in \mathfrak{L}$ with the set of points incident with L, hence the lines of $(P, \mathfrak{L}, I) = (P, \mathfrak{L})$ are subsets of P.

A subspace is a subset $U \subset P$ such that for all distinct points $x, y \in U$ the unique line incident with x, y is contained in U. Let \mathfrak{U} denote the set of all subspaces. For

every subset $X \subset P$ we define the following *closure operator*:

The closure of X is a subspace containing X. For $U \in \mathfrak{U}$ we call $\dim U := \inf\{|X| -1 : X \subset U \text{ and } \overline{X} = U\}$ the dimension of U. A subspace of dimension two is a plane. A subset $X \subset P$ is independent if $x \notin \overline{X \setminus \{x\}}$ for every $x \in X$, and is a basis of a subspace U if X is independent and $\overline{X} = U$.

For two linear spaces (M,\mathfrak{M}) and (P,\mathfrak{L}) , an injective mapping

$$\phi: M \to P, \ x \mapsto \phi(x)$$
 (2)

is called an *embedding*, if ϕ maps collinear points onto collinear points and non-collinear points onto noncollinear points, i.e., $\{\phi(G):G\in\mathfrak{M}\}=\{L\cap\phi(M):L\in\mathfrak{L}\}$ and $|L\cap\phi(M)|\geq 2\}$. Hence $\{\phi(M),\{\phi(G):G\in\mathfrak{M}\}\}$ is the restriction of (P,\mathfrak{L}) to $\phi(M)$. Clearly:

Lemma 2.1 If ϕ is an embedding of (M, \mathfrak{M}) in (P, \mathfrak{L}) , and ψ is an embedding of (P, \mathfrak{L}) in (P', \mathfrak{L}') , then $\psi \circ \phi$ is an embedding of (M, \mathfrak{M}) in (P', \mathfrak{L}') .

Let $Y \mapsto \overline{Y}$ denote the closure of (P, \mathfrak{L}) and $X \mapsto \langle X \rangle$ the closure of (M, \mathfrak{M}) . By [12, (1.1)]:

Lemma 2.2 If ϕ is an embedding of (M,\mathfrak{M}) in (P,\mathfrak{L}) , and U a subspace of (P,\mathfrak{L}) and $X \subset M$, then:

- 1. $\phi^{-1}(U \cap \phi(M))$ is a subspace of M.
- 2. $\phi(\langle X \rangle) \subset \overline{\phi(X)}$ and $\overline{\phi(\langle X \rangle)} = \overline{\phi(X)}$.
- 3. If $\phi(X)$ is independent in P, then X is independent in M.

Lemma 2.3 If $\phi: M \to P$ is an embedding of a linear space (M, \mathfrak{M}) in a linear space (P, \mathfrak{L}) satisfying $\overline{\phi(M)} = P$, then $\dim M \geq \dim P$.

Proof. Let $X \subset M$ be a subset generating M, i.e. $\langle X \rangle = M$. Then $P = \overline{\phi(M)} = \overline{\phi(\langle X \rangle)} = \overline{\phi(X)}$ by 2.2. Therefore $\phi(X)$ is a generating set of P with $|X| = |\phi(X)|$, hence dim $P \leq \dim M$.

We call an embedding ϕ of (M, \mathfrak{M}) in (P, \mathfrak{L}) locally complete, if for every nonempty subspace T of M, there is exactly one subspace U of P with $\phi(T) = U \cap \phi(M)$.

By [12, (1.5)] we have:

Lemma 2.4 For an embedding ϕ of (M, \mathfrak{M}) in (P, \mathfrak{L}) the following statements are equivalent:

1. ϕ is locally complete.

2. For every subspace T of (M,\mathfrak{M}) and for every subspace U of (P,\mathfrak{L}) with $\phi(M) \cap U \neq \emptyset$ we have

$$U = \overline{U \cap \phi(M)}$$
 and $\phi(T) = \overline{\phi(T)} \cap \phi(M)$

- 3. The following properties (G), (E) are satisfied.
 - (G) For every line $L \in \mathfrak{L}$, $|L \cap \phi(M)| \neq 1$
 - **(E)** For every plane E of M, $\phi(E) = \overline{\phi(E)} \cap \phi(M)$

A linear space (P, \mathfrak{L}) satisfies the exchange condition if

for
$$S \subset P$$
 and $x, y \in P$ with $x \in \overline{S \cup \{y\}} \setminus \overline{S}$ it follows that $y \in \overline{S \cup \{x\}}$. (3)

Lemma 2.5 If ϕ is a locally complete embedding of a linear space (M, \mathfrak{M}) in a linear space (P, \mathfrak{L}) satisfying the exchange condition, then $\dim M = \dim P$.

Proof. Since ϕ is locally complete, $P = \overline{P \cap \phi(M)} = \overline{\phi(M)}$, hence, by Lemma 2.3, $\dim P \leq \dim M$. Now let $x \in \phi(M)$. Since (P, \mathfrak{L}) is an exchange space, there is a basis C of P containing x (cf. [11, §8]. By Lemma 2.4, (**G**) holds. Moreover for every $y \in C \setminus \{x\}$, there exists a $y' \in (\overline{x,y} \cap \phi(M)) \setminus \{x\}$. Hence we obtain a basis $C' \subset \phi(M)$ of P with |C| = |C'|. Let $T := \langle \phi^{-1}(C') \rangle$ denote the subspace of M generated by $\phi^{-1}(C')$, i.e. $C' \subset \phi(T)$ and $P = \overline{C'} = \overline{\phi(T)}$. We get $\phi(T) = \overline{\phi(T)} \cap \phi(M) = P \cap \phi(M) = \phi(M)$, hence M = T is generated by $\phi^{-1}(C')$ and $\dim M \leq \dim P$.

The Lemma 2.5 applies in particular, if (P, \mathfrak{L}) is a projective space.

Theorem 2.6 Let $(P, \mathfrak{L}), (M, \mathfrak{M})$ be linear spaces satisfying the exchange condition and dim $M > \dim P$. If $\phi : M \to P$ is an embedding satisfying (\mathbf{G}) , then there exist subspaces $M' \subset M, P' \subset P$ with dim $M' > \dim P' = 2$ such that $\phi|_{M'} : M' \to P'$ is an embedding satisfying (\mathbf{G}) .

Proof. By Lemma 2.5 (**E**) is not satisfied, since dim $M > \dim P$. Hence there exists a plane $E \subset M$ with $\phi(E) \neq \left(\overline{\phi(E)} \cap \phi(M)\right)$. Therefore $M' := \phi^{-1}(\overline{\phi(E)} \cap \phi(M))$ is a subspace with $E \subset M'$ and $E \neq M'$, i.e. dim M' > 2. Since E is a plane, also $P' := \overline{\phi(E)} = \overline{\phi(M')}$ is a plane, and the restriction of ϕ to M' is an embedding. For a line $L \subset P'$ we have $L \cap \phi(M) = L \cap \phi(M')$. Hence if $x \in L \cap \phi(M')$ we have $G := \phi^{-1}(L \cap \phi(M')) \in \mathfrak{M}$, since ϕ satisfies (**G**).

Theorem 2.7 Let $(P, \mathfrak{L}) = PG(m, K)$ and $(P', \mathfrak{L}') = PG(n, L)$ be projective spaces and $\phi: P \to P'$ an embedding, then K is isomorphic to a subfield of L.

Proof. Let E be a plane of P. Then $\phi(E) \simeq \operatorname{PG}(2,K)$ is a subplane of the Desarguesian projective plane $\overline{\phi(E)} \simeq \operatorname{PG}(2,L)$, hence K is isomorphic to a subfield of L (cf. [18, (8.2)], [6, (3.6.1)]).

3 A mapping of a vector space in a vector space over a field extension

In this section let $n, s \in \mathbb{N}$ be integers with $n \geq 2$, let K be a commutative field, and L = K(t) an extension field of K with a transcendental or algebraic element t of degree at least $2^{s(n+1)}$ over K. We consider the two left vector spaces (K^{n+s+1}, K) and (L^{n+1}, L) . For $i \in \{0, 1, ..., n \text{ let } \mathfrak{x}_i \in K^{n+s+1}, \text{ more precisely } \}$

$$\mathfrak{x}_i = (x_{i,0}, x_{i,1}, \dots, x_{i,n+s}) \tag{4}$$

with elements $x_{i,k} \in K$. We denote the rows of the matrix

$$\mathbf{X} := \begin{pmatrix} \mathfrak{x}_0 \\ \vdots \\ \mathfrak{x}_n \end{pmatrix} = \begin{pmatrix} x_{0,0} & \dots & x_{0,n+s} \\ \vdots & \vdots & \vdots \\ x_{n,0} & \dots & x_{n,n+s} \end{pmatrix} = \begin{pmatrix} \mathfrak{a}_0^T, & \dots, \mathfrak{a}_{n+s}^T \end{pmatrix}, \tag{5}$$

where
$$\mathbf{a}_k^T = \begin{pmatrix} x_{0,k} \\ \vdots \\ x_{n,k} \end{pmatrix}$$
 for $k = 0, 1, \dots, n + s$. (6)

Since the column rank and the row rank of X are equal, we have:

Lemma 3.1 The following statements are equivalent:

- 1. The vectors $\mathfrak{x}_0, \mathfrak{x}_1, \ldots, \mathfrak{x}_n$ are linearly independent in (K^{n+s+1}, K) .
- 2. The matrix $\mathbf{X} = (\mathbf{a}_0^T, \mathbf{a}_1^T, \dots, \mathbf{a}_{n+s}^T)$ has rank n+1.
- 3. There exist distinct integers $i_0, i_1, \ldots, i_n \in \{0, 1, \ldots, n + s\}$ such that $\mathfrak{a}_{i_0}, \mathfrak{a}_{i_1}, \ldots, \mathfrak{a}_{i_n}$ are linearly independent in (K^{n+1}, K) .

Now we consider arbitrary vectors $\mathfrak{a}_0, \mathfrak{a}_1, \dots, \mathfrak{a}_{n+s} \in K^{n+1} \subset L^{n+1}$ and define

$$\mathfrak{b}_{i}^{T} := \mathfrak{a}_{i}^{T} + \sum_{j_{i}=1}^{s} t^{2^{(j_{i}-1)(n+1)+i}} \mathfrak{a}_{n+j_{i}}^{T} \in L^{n+1} \quad \text{for} \quad i = 0, 1, \dots, n.$$
 (7)

For example, for s=2 we obtain: $\mathfrak{b}_i^T:=\mathfrak{a}_i^T+t^{2^i}\mathfrak{a}_{n+1}^T+t^{2^{(n+1)+i}}\mathfrak{a}_{n+2}^T.$

Lemma 3.2 $\det(\mathfrak{b}_0^T, \mathfrak{b}_1^T, \dots, \mathfrak{b}_n^T) \neq 0$ if and only if $\operatorname{rank}(\mathfrak{a}_0^T, \mathfrak{a}_1^T, \dots, \mathfrak{a}_{n+s}^T) = n+1$.

Proof. (i). First we introduce some notation to get a shorter representation. For $i \in \{0, ..., n\}$ and $j_i \in \{0, ..., s\}$ we define

$$\lambda_{i,j_i} := \left\{ \begin{array}{ll} 0 & if \quad j_i = 0 \\ 2(j_i - 1)(n+1) + i \quad if \quad j_i \neq 0 \end{array} \right. \text{ and } \mathfrak{a}_{i,j_i}^T := \left\{ \begin{array}{ll} \mathfrak{a}_i^T & if \quad j_i = 0 \\ \mathfrak{a}_{n+j_i}^T & if \quad j_i \neq 0 \end{array} \right.,$$

so
$$\mathfrak{b}_i^T := t^0 \mathfrak{a}_i^T + \sum_{j_i=1}^s t^{2^{(j_i-1)(n+1)+i}} \mathfrak{a}_{n+j_i}^T = \sum_{j_i=0}^s t^{\lambda_{i,j_i}} \mathfrak{a}_{i,j_i}^T.$$
 (8)

(ii). We recall that we can write every integer $k \in \{1, 2, ..., 2^{s(n+1)} - 1\}$ as a sum of elements of $\{2^r : r = 0, 1, ..., s(n+1) - 1\} = \{2^{(j_i-1)(n+1)+i} : j_i = 1, 2, ..., s, i = 0, 1, ..., n\} = \{\lambda_{i,j_i} : j_i = 1, 2, ..., s, i = 0, 1, ..., n\}$ in a unique way. Hence we have for $j_i, k_i \in \{0, 1, ..., s\}$

$$\sum_{i=0}^{n} \lambda_{i,j_i} = \sum_{i=0}^{n} \lambda_{i,k_i} \quad \text{if and only if} \quad j_i = k_i \quad \text{for all} \quad i \in \{0,\dots,n\}$$
 (9)

and
$$\prod_{i=0}^{n} t^{\lambda_{i,j_i}} = \prod_{i=0}^{n} t^{\lambda_{i,k_i}}$$
 if and only if $j_i = k_i$ for all $i \in \{0,\dots,n\}$. (10)

(iii).By (i) we get

$$d := \det(\mathfrak{b}_0^T, \dots, \mathfrak{b}_n^T) = \det\left(\sum_{j_0=0}^s t^{\lambda_{0,j_0}} \mathfrak{a}_{0,j_0}^T, \dots, \sum_{j_n=0}^s t^{\lambda_{n,j_n}} \mathfrak{a}_{n,j_n}^T\right) =$$

$$= \sum_{j_0,\dots,j_n=0}^s \left(t^{\lambda_{0,j_0}} \cdot \dots \cdot t^{\lambda_{n,j_n}}\right) \det\left(\mathfrak{a}_{0,j_0}^T, \dots, \mathfrak{a}_{n,j_n}^T\right) = \sum_{k \le m} t^k \det \mathbf{A}_k$$
(11)

with $k = \sum \lambda_{0,j_0}, + \cdots + \lambda_{n,j_n}, \ m = 2^{s(n+1)} - 1$ and $\mathbf{A}_k = (\mathbf{\mathfrak{a}}_{i_0}^T, \mathbf{\mathfrak{a}}_{i_1}^T, \dots, \mathbf{\mathfrak{a}}_{i_n}^T)$ with not necessarily distinct integers $i_j \in \{0, 1, \dots, n+s\}, j = 0, 1, \dots, n$.

(vi). Since $t \in L \setminus K$ has at least degree $m+1=2^{s(n+1)}$ over K, we have $d = \sum_{k=0}^{m} t^k \det \mathbf{A}_k = 0$ if and only if $\det \mathbf{A}_k = 0$ for every $k \in \{0, 1, \dots, 2^{s(n+1)} - 1\}$. This means in particular that for distinct elements $i_0, i_1, \dots, i_n \in \{0, 1, \dots, n+s\}$ the vectors $\mathbf{a}_{i_0}^T, \mathbf{a}_{i_1}^T, \dots, \mathbf{a}_{i_n}^T$ are linearly dependent. By Lemma 3.1 it follows that $\operatorname{rank}(\mathbf{a}_0^T, \mathbf{a}_1^T, \dots, \mathbf{a}_{n+s}^T) < n+1$.

On the other hand, if $d \neq 0$, then there exist integers $i_0, i_1, \ldots, i_n \in \{0, 1, \ldots, n+s\}$ with $\det(\mathfrak{a}_{i_0}^T, \mathfrak{a}_{i_1}^T, \ldots, \mathfrak{a}_{i_n}^T) \neq 0$, hence i_0, i_1, \ldots, i_n are distinct and $\mathfrak{a}_{i_0}^T, \mathfrak{a}_{i_1}^T, \ldots, \mathfrak{a}_{i_n}^T$ are linearly independent. By Lemma 3.1 we get $\operatorname{rank}(\mathfrak{a}_0^T, \mathfrak{a}_1^T, \ldots, \mathfrak{a}_{n+s}^T) = n+1$.

Now we define the map

$$f: K^{n+s+1} \to L^{n+1}, \quad \mathfrak{x} = (x_0, \dots, x_{n+s+1}) \mapsto \mathfrak{x}' = (x'_0, \dots, x'_n)$$

by $x'_i = x_i + \sum_{j=1}^s t^{2^{(j-1)(n+1)+i}} x_{n+j}, \quad \text{for} \quad i = 0, 1, \dots, n.$ (12)

Lemma 3.3 1. $f(K\mathfrak{x}) = Kf(\mathfrak{x}) \subset Lf(\mathfrak{x})$.

- 2. The vectors $\mathfrak{x}_0, \ldots, \mathfrak{x}_n$ are linearly independent in (K^{n+s+1}, K) if and only if $f(\mathfrak{x}_0), \ldots, f(\mathfrak{x}_n)$ are linearly independent in (L^{n+1}, L) .
- 3. In particular for three vectors $\mathfrak{x}_0, \mathfrak{x}_1, \mathfrak{x}_2 \in K^{n+s+1}$, $\operatorname{rank}(\mathfrak{x}_0, \mathfrak{x}_1, \mathfrak{x}_2) = 3$ if and only if $\operatorname{rank}(f(\mathfrak{x}_0), f(\mathfrak{x}_1), f(\mathfrak{x}_2)) = 3$.

Proof. 1. By definition $f(\lambda \mathfrak{x}) = \lambda f(\mathfrak{x})$ for $\lambda \in K$. Clearly $Kf(\mathfrak{x}) \subset Lf(\mathfrak{x})$.

2. For $\mathfrak{x}_0, \ldots, \mathfrak{x}_n \in K^{n+s+1}$ with $\mathfrak{x}_i = (x_{i,0}, x_{i,1}, \ldots, x_{i,n+s})$, we consider the matrix

$$\mathbf{X}' := \begin{pmatrix} f(\mathfrak{x}_0) \\ \vdots \\ f(\mathfrak{x}_n) \end{pmatrix}$$

$$= \begin{pmatrix} x_{0,0} + \sum_{j=1}^s t^{2^{(j-1)(n+1)}} x_{0,n+j} & \dots & x_{0,n} + \sum_{j=1}^s t^{2^{(j-1)(n+1)+n}} x_{0,n+j} \\ \vdots & \vdots & & \vdots \\ x_{n,0} + \sum_{j=1}^s t^{2^{(j-1)(n+1)}} x_{n,n+j} & \dots & x_{n,n} + \sum_{j=1}^s t^{2^{(j-1)(n+1)+n}} x_{n,n+j} \end{pmatrix}$$

$$= \left(\mathfrak{a}_0^T + \sum_{j=1}^s t^{2^{(j-1)(n+1)}} \mathfrak{a}_{n+j}^T, \dots, \mathfrak{a}_n^T + \sum_{j=1}^s t^{2^{(j-1)(n+1)+n}} \mathfrak{a}_{n+j}^T \right)$$

$$= \left(\mathfrak{b}_0^T, \dots, \mathfrak{b}_n^T\right).$$

Hence by Lemma 3.2 we have $\det(\mathbf{X}') = \det(\mathfrak{b}_0^T, \mathfrak{b}_1^T, \dots, \mathfrak{b}_n^T) \neq 0$ iff $\operatorname{rank}(\mathfrak{a}_0^T, \mathfrak{a}_1^T, \dots, \mathfrak{a}_{n+s}^T) = n+1$, i.e. by Lemma 3.1, iff $\mathfrak{x}_0, \dots, \mathfrak{x}_n$ are linearly independent.

Since $n \geq 2$, 3. is a consequence of 2.

4 Embeddings satisfying (E)

Using the map f introduced in the preceding section, we now construct projective embeddings.

Let (P, \mathfrak{L}) be a Pappian projective space with $\dim P = n + s$ for $n, s \in \mathbb{N}$ with $n \geq 2$. Then we can represent $(P, \mathfrak{L}) = \operatorname{PG}(n + s, K)$ by an (n + s + 1)-dimensional vector space (K^{n+s+1}, K) over a commutative field K. Let us denote by $(P', \mathfrak{L}') := \operatorname{PG}(n, L)$ the n-dimensional projective space with the underlying vector space (L^{n+1}, L) where L is the field extension of K introduced in the preceding section. We recall that three points $a = K\mathfrak{a}, b = K\mathfrak{b}, c = K\mathfrak{c}$ are noncollinear if and only if $\operatorname{rank}(\mathfrak{a}, \mathfrak{b}, \mathfrak{c}) = 3$ for vectors $\mathfrak{a}, \mathfrak{b}, \mathfrak{c} \in K^{n+s+1}$.

- **Theorem 4.1** 1. For every $n, s \in \mathbb{N}$ with $n \geq 2$ and every Pappian projective space (P, \mathfrak{L}) of dimension n + s, there exists an embedding $\phi : P \to P'$ in an n-dimensional projective Pappian space (P', \mathfrak{L}') such that any n + 1 points $x_0, \ldots, x_n \in P$ are independent in (P, \mathfrak{L}) if and only if $\phi(x_0), \ldots, \phi(x_n)$ are independent in (P', \mathfrak{L}') .
 - 2. For a proper subspace T of P it holds that $\phi(T) = \overline{\phi(T)} \cap \phi(P)$ if and only if $\dim T \leq n-1$
 - 3. For $n \geq 3$, ϕ satisfies (**E**).

Proof. 1. Using the map f of Lemma 3.3, we define

$$\phi: P \to P', \ x = K\mathfrak{x} \mapsto \phi(x) := Lf(\mathfrak{x})$$
 (13)

By Lemma 3.3(1), ϕ is well defined, and by Lemma 3.3(3), ϕ maps collinear points onto collinear point and noncollinear points onto noncollinear points, hence ϕ is

A. Kreuzer

an embedding. Since $x_0 = K\mathfrak{x}_0, \ldots, x_n = K\mathfrak{x}_n$ are independent iff $\mathfrak{x}_0, \ldots, \mathfrak{x}_n$ are linearly independent, and $\phi(x_0) = Lf(\mathfrak{x}_0), \ldots, \phi(x_n) = Lf(\mathfrak{x}_n)$ are independent iff $f(\mathfrak{x}_0), \ldots, f(\mathfrak{x}_0)$ are linearly independent, one obtain by Lemma 3.3(2) that $x_0, \ldots, x_n \in P$ are independent iff $\phi(x_0), \ldots, \phi(x_n)$ are independent.

2. For $r \leq n-1$, let T be an r-dimensional subspace of (P, \mathfrak{L}) with a basis a_0, \ldots, a_r . Assume that $\phi(T) \neq \overline{\phi(T)} \cap \phi(P)$. Then there exists a point $b \in P$ with $\phi(b) \in (\overline{\phi(T)} \setminus \phi(T))$, i.e. $b \notin T$ and a_0, \ldots, a_r, b are independent in (P, \mathfrak{L}) . Since $\phi(b) \in \overline{\phi(T)} = \overline{\phi(a_0), \ldots, \phi(a_r)}$ (cf. Lemma 2.2(2)), it follows that $\phi(a_0), \ldots, \phi(a_r), \phi(b)$ are dependent in $(P'\mathfrak{L}')$.

Since $r+2 \leq n+1$, by 1., the points $\phi(a_0), \ldots, \phi(a_r), \phi(b)$ are independent since a_0, \ldots, a_r, b are independent, a contradiction to the assumption $\phi(T) \neq \overline{\phi(T)} \cap \phi(P)$. Hence $\phi(T) = \overline{\phi(T)} \cap \phi(P)$ for dim $T \leq n-1$. For every proper subspace T of P with dim $T \geq n$, there are n+1 independent points $a_0, \ldots, a_n \in T$. By 1. $\phi(a_0), \ldots, \phi(a_n)$ are independent in P', hence $P' = \overline{\phi(a_0), \ldots, \phi(a_n)} \subset \overline{\phi(T)}$ and $\phi(T) \neq \phi(P) = \overline{\phi(T)} \cap \phi(P) = P' \cup \phi(P)$, since T is a proper subspace of P.

3. By 2., (**E**) is satisfied for $n \geq 3$.

Corollary 4.2 For every $n, s \in \mathbb{N}$ with $n \geq 2$ and every finite projective space (P, \mathfrak{L}) of dimension n+s, there exists an embedding $\phi: P \to P'$ in an n-dimensional finite projective Desarguesian space (P', \mathfrak{L}') such that any n+1 points $x_0, \ldots, x_n \in P$ are independent in (P, \mathfrak{L}) if and only if $\phi(x_0), \ldots, \phi(x_n)$ are independent in (P', \mathfrak{L}') . For a proper subspace T of P it holds that $\phi(T) = \overline{\phi(T)} \cap \phi(P)$ if and only if $\dim T \leq n-1$, and for $n \geq 3$, ϕ satisfies (\mathbf{E}) .

Proof. If P is finite, then ord P is finite and $(P, \mathfrak{L}) = PG(n+s, K)$ for a commutative field K. There exists a finite field extension L = K(t) of finite degree t at least $2^{s(n+1)}$, hence L, and therefore also P' are finite and the assertion follows with 4.1.

If we set n = 2 we obtain:

Corollary 4.3 Every Pappian projective space is embeddable in a Pappian projective plane.

Proof. For a Pappian projective space (P, \mathfrak{L}) of finite dimension, Corollary 4.3 is a direct consequence of Theorem 4.1 with n=2. For dim $P=\infty$ we modify the construction of the last section, by taking a transcendental element t_b for every element b of a basis B of P. Then for $T=\{t_b:b\in B\}$ and L:=K(T) we get the result analogous to the proofs of Lemma 3.1 to 3.3.

Let (M, \mathfrak{M}) be a linear space. Two lines $G, L \in \mathfrak{L}$ are called *parallel* if G = L, or if G, L are contained in a common plane and $G \cap L = \emptyset$. For $x \in M \setminus L$ let

$$\pi(x, L) := |\{G \in \mathfrak{M} : x \in G \text{ and } G, L \text{ parallel }\}|$$

$$\tag{14}$$

denote the number of all parallel lines of L passing x. For $m \in \mathbb{N}$, (M, \mathfrak{M}) is called an [0, m]-space, if for each non-incident point-line pair (x, L) we have that $\pi(x, L) \in [0, m] = \{0, 1, \ldots, m\}$. Let $\pi(L) := \max\{\pi(y, L) : y \in M \setminus L\}$. If $|L| + \pi(L) - 1 \ge 3m + 1$ and dim $M \ge 3$, then by [14, Theorem (2.10)], ord $M := |L| + \pi(L) - 1$ is constant for every line $L \in \mathfrak{M}$. If ord $M \ge 3m + 2$ and dim $M \ge 3$, then by [14, Embedding Theorem (4.5)], (M, \mathfrak{M}) is embeddable in a projective space (P, \mathfrak{L}) with dim $M = \dim P$ and ord $M = \operatorname{ord} P$. Hence:

Corollary 4.4 Every finite [0, m]-space (M, \mathfrak{M}) with $\dim M \geq 3$ and $\operatorname{ord} M \geq 3m + 2$ is embeddable in a finite Pappian projective plane.

Proof. Since M is finite, also $\operatorname{ord} M = \operatorname{ord} P$ and $\dim M = \dim P$ is finite and (M,\mathfrak{M}) is embeddable in a finite projective space (P,\mathfrak{L}) . Now by 4.2 for n=2, (P,\mathfrak{L}) is embeddable in a finite Pappian plane (P',\mathfrak{L}') and by 2.1 the assertion follows.

References

- [1] A. Brezuleanu and D.-C. Rădulescu. About full or injective lineations. *J. Geometry*, 23:45–60, 1984.
- [2] J.M.N. Brown. Partitioning the complement of a simplex in $PG(e, q^{d+1})$ into copies of PG(d, q). J. Geometry, 33:11–16, 1988.
- [3] F. Buekenhout (ed.). *Handbook of Incidence Geometry*. Elsevier Science B. V., Amsterdam, 1995.
- [4] C.-A. Faure and A. Froelicher. Morphisms of projective geometries and of corresponding lattices. *Geom. Dedicata*, 47:25–40, 1993.
- [5] C.-A. Faure and A. Froelicher. Morphisms of projective geometries and semilinear maps. *Geom Dedicata*, 53:237–262, 1994.
- [6] H. Havlicek. A generalisation of Brauner's Theorem on linear mappings. *Mitt. Math. Sem. Univ. Giessen*, 215:27–41, 1994.
- [7] A. Herzer. Projektiv darstellbare stark planare Geometrien vom Rang 4. *Geom. Dedicata*, 5:467–484, 1976.
- [8] J. Kahn. Locally projective-planar lattices which satisfy the bundle theorem. *Math. Z.*, 175:219–247, 1980.
- [9] F. Kalhoff. On projective embeddings of partial planes and rank three matroids. Beiträge zur Geometrie und Algebra (TUM-Bericht M 9414, TU München), 27:1–12, 1994.
- [10] W. M. Kantor. Dimension and embedding theorems for geometric lattices. *J. Combin. Theory Ser. A*, 17:173–195, 1974.
- [11] H. Karzel, K. Sörensen, and D. Windelberg. *Einführung in die Geometrie*. UTB Vandenhoeck, Göttingen, 1973.
- [12] A. Kreuzer. Zur Einbettung von Inzidenzräumen und angeordneten Räumen. J. Geometry, 35:132 – 151, 1989.
- [13] A. Kreuzer. Projektive Einbettung nicht lokal projektiver Räume. Geom. Dedicata, 53:163–186, 1994.

A. Kreuzer

[14] A. Kreuzer. Projective embedding of [0,m]-spaces. J. Combin. Theory A, 70:66–81, 1995.

- [15] A. Kreuzer. Locally projective spaces which satisfy the bundle theorem. *J. Geometry*, 56:87–98, 1996.
- [16] M. Limbos. A characterisation of the embeddings of PG(m, q) into $PG(n, q^r)$. J. Geometry, 16:50–55, 1981.
- [17] K. Sörensen. Projektive Einbettung angeordneter Räume. Beiträge zur Geometrie und Algebra (TUM-Bericht M 8612, TU München), 15:8–15, 1986.
- [18] F.W. Stevenson. *Projective Planes*. W.H. Freeman and Co., San Francisco, 1972.
- [19] O. Wyler. Incidence geometry. Duke Math. J., 20:601–610, 1953.

A. Kreuzer Mathematisches Seminar Universität Hamburg Bundesstr. 55 D-20146 Hamburg

e-mail: kreuzer@math.uni-hamburg.de