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Abstract

We prove that the characteristic flow of a K-contact form has at least n+1
closed leaves on a closed 2n+1-dimensional manifold. We also show that the
first Betti number of a closed sasakian manifold with finitely many closed
characteristics is zero.

1 Preliminaries

A contact form on a 2n+1-dimensional manifold M is a 1-form α such that the
identity

α ∧ (dα)n 6= 0

hold everywhere on M . Given such a 1-form α, there is always a unique vector field

ξ satisfying α(ξ) = 1 and iξdα = 0. The vector field ξ is called the characteristic
vector field of the contact manifold (M, α) and the corresponding 1-dimensional
foliation is called a contact flow.

The 2n-dimensional distribution D(x) = {v ∈ TxM/α(x)(v) = 0} is called the

contact distribution. It carries a 1-1 tensor field J such that J2 = −I2n, where I2n is
the identity 2n by 2n matrix. The tensor field J extends to all of TM by requiring
Jξ = 0.

Also, the contact manifold (M, α) carries a nonunique riemannian metric g
adapted to α and J in the sense that the following identities are satisfied

dα(X, Y ) = g(X, JY )
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and
α(X) = g(ξ, X)

for any vector field X and Y on M . Such a metric g is called a contact metric. When
the vector field ξ is Killing relative to the contact metric g, the triple (M, α, g) is

called a K-contact manifold. If in addition, the identity

(∇XJ)Y = g(X, Y )ξ − α(Y )X (1)

is satisfied, then the contact metric structure is called sasakian. We refer to [3] for
details on contact metric structures.

A flow on a manifold M is said to be almost regular ([16]) if each point on M

belongs to a flow box pierced by the flow at most a finite number of times. As an
easy consequence of a theorem of Wadsley ([17]), any almost regular contact flow on
a compact manifold is riemannian. Therefore, by Proposition 1 in [12], any almost
regular compact contact manifold is K-contact.

The existence of at least 2 closed characteristics has been proven for circle invari-
ant contact forms in [1]. Using a result of Weinstein ([18]) about critical manifolds
of a circle invariant function, we will provide sharper lower bounds for the number
of closed characteristics for the class of contact flows mentioned above.

The kth Betti numbers of a compact sasakian 2n + 1-dimensional manifold are
zero or even for odd k smaller or equal to n ([4]). In particular, the first Betti
number of such a manifold is zero or even ([15]) and Theorem 2 of this paper

presents a sufficient dynamical condition for a closed sasakian manifold to be simply
connected. We point out that the interplay between first Betti numbers and leaf
closures of K-contact flows has been previously reported in [9].

2 Critical manifolds of circle invariant functions

Let M be a compact manifold with an effective circle action on it. In general, the

quotient Σ of M by the circle action is not a manifold in the ordinary sense, it is a
V-manifold ([18]) in the sense of Satake ([13]).

Definition 1 The Lusternik-Schnirelman category of a space M , cat(M), is the

minimum number of contractible open sets that can cover M .

Definition 2 The cuplength of a space M , denoted cuplength(M), is the maximum

number m of positive degree cohomology classes [ω1], [ω2],...,[ωm] such that ω1∧ω2∧
... ∧ ωm 6= 0 on M .

By the Lusternik-Schnirelman theory ([14]), one has

cat(M) ≥ cuplength(M) + 1. (2)

We refer to the work of Weinstein in [18] for the proof of the the following proposition:

Proposition 1 (Weinstein) Let M be a compact manifold with an effective circle

action and let Σ be the corresponding quotient V-manifold. Then any circle invariant
function has at least cat(Σ) critical circles.
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3 Circle invariant contact forms

Let M be a 2n+1 dimensional manifold with a circle invariant contact form α. If Z
denotes the infinitesimal generator of the circle action, then it is shown in [1] that

critical circles of the circle invariant function α(Z) are closed characteristics of α.
For completeness, we briefly present the proof of this fact.

Let us denote by S the function −α(Z) = −iZα. Then, taking into account that
the vector field Z leaves α invariant, we observes that

dS = −diZα = −LZα + iZdα = iZdα.

Hence, a point p ∈ M is critical if and only if Z and ξ are proportional at p. This
implies in turn that the Z and ξ orbits through p are the same since Z and ξ
commute.

When the restriction of α to each orbit of the circle action is nonsingular, a

sharper lower bound to the number of those closed characteristics can be obtained.
This is the case, as we shall see later, when α is a K-contact form.

Theorem 1 Let M be a 2n+1 dimensional compact manifold with a circle invariant
contact form α. If Z is the infinitesimal generator of the circle action and α(Z) 6= 0

everywhere on M , then α has at least n+1 closed characteristics.

Proof. As already mentionned above, critical circles of the circle invariant function
S = α(Z) are closed characteristics of α ([1]). Let β = 1

α(Z)
α. Then β is also a

contact form. Since

dβ = (− 1

(α(Z))2
)diZα ∧ α +

1

α(Z)
dα (3)

and LZα = 0, we see that

iZdβ = − Zα(Z)

(α(Z))2
α +

1

α(Z)
(diZα + iZdα) = 0, (4)

that is, Z is the characteristic vector field of β. As a consequence, the quotient
V-manifold Σ of M by the circle action generated by Z carries a symplectic form
and since (dβ)n 6= 0, one sees that cuplength(Σ) ≥ n. Now, by Proposition 1 and

inequality (2), the function S = α(Z) has at least n + 1 critical circles, which are
also closed characteristics of α.

Suppose now that M is a 2n+1-dimensional K-contact manifold with K-contact
form α, characteristic vector field ξ and K-contact metric g. Since M is compact, its

isometry group I(M) is a compact Lie group by a classical theorem of Myers and
Steenrod ([8]). Let ϕt denote the real 1-parameter group of isometries generated by
ξ. The closure of ϕt in I(M) is a torus group, hence one can find arbitrary close to
ξ, a periodic Killing vector field Z which commutes with ξ and such that α(Z) 6= 0

everywhere on M . A straightforward calculation shows that Z leaves α invariant.
This shows also that K-contact forms satisfies the hypotheses of Theorem 1 and we
have the following corollary:
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Corollary 1 Let M be a compact K-contact 2n + 1-dimensional manifold. Then
the characteristic flow has at least n + 1 closed leaves.

Examples of K-contact flows with exactly n + 1 closed characteristics are known on
the 2n + 1-dimensional sphere ([10]). We ask ourselves the question: If a closed K-

contact 2n+1-dimensional manifold M has a finite number of closed characteristics,
is the first Betti number of M necessarily zero? The affirmative answer to this
question in dimension 3 follows trivially from Corollary 2 in [9] which says that a
3-dimensional closed K-contact manifold with nonzero first Betti number has all

its characteristics closed. Using the material in the next section, we will prove the
following theorem:

Theorem 2 Let M be a closed sasakian manifold with a finite number of closed
characteristics. Then the first Betti number of M is zero.

4 Morse theory on sasakian manifolds

In this section, we will apply elementary Morse theory to the function that generates
closed leaves of sasakian flows. We begin the section with some terminology, refering
to [5] for more details on Morse theory.

A connected submanifold N ⊂ M is called a nondegenerate critical manifold of

a function f on M if the following conditions are satisfied:

(i). Each point p ∈ N is a critical point of f .

(ii). The hessian of f , Hessf , is nondegenerate in directions normal to N .

The normal bundle νN of a nondegenerate critical manifold N is decomposed into

a positive and negative part

νN = ν+N ⊕ ν−N

where ν+
p N and ν−p N are the positive and negative eigenspaces of the hessian of f ,

Hessf . The fiber dimension of ν−N , denoted by λN , is referred to as the index of
N relative to f . A function f all of whose critical manifolds are nondegenerate is
said to be a clean function ([6]). Let θ− denote the orientation bundle of ν−N and

Pt(M ; R) =
∑

tkdimHk(M ; R)

the Poincaré series of M . If one defines the Morse series ([5]) of f relative to the

coefficient field R by

Mt(f) =
∑

tλNPt(N ; θ− ⊗R) (5)

where the sum runs over all critical manifolds of f , then the Morse inequalities hold:

Mt(f) ≥ Pt(M ; R). (6)

The inequalities (6) implies thatMt(f) majorizes Pt(M ; R) coefficient by coefficient.
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Let M be a closed sasakian manifold with characteristic vector field ξ. We choose
a vector field Z as in Theorem 1 so that closed characteristics are critical manifolds

of the function

S = α(Z).

As in [11], let Fξ denote the set of periodic points of the chararcteristic vector field
ξ. Fξ is a union of closed characteristics and each connected component of Fξ is a

totally geodesic odd dimensional closed submanifold of M ( [11]). In fact, one can
easily show that each connected component of Fξ is a regular sasakian submanifold
of M .

We now proceed to compute the hessian HessS of S = α(Z) in directions per-

pendicular to a connected component N of Fξ. Let p ∈ N and v, w be two tangent
vectors perpendicular to N at p. We extend v and w into local vector fields V
and W by parallel translation along geodesics emanating from p. In particular, the
identities (∇V )(p) = 0 = (∇W )(p) are valid and will be used repeatedely as well as

the identity ∇Xξ = −JX valid on any K-contact manifold ([3]) and the fact that Z
is a Killing vector field commuting with ξ.

HessS(p)(v, w) = (V (Wg(ξ, Z)))(p) (7)

= (V (−g(JW, Z) + g(ξ,∇WZ)))(p) (8)

= (−g(∇V JW, Z)− g(JW,∇VZ)− V g(∇ξZ, W ))(p) (9)

= (−g(∇V JW, Z)− g(JW,∇VZ) + V g(JZ, W ))(p) (10)

= (−g(∇V JW, Z)− g(JW,∇VZ) + g(∇V JZ, W ) (11)

+g(JZ,∇VW ))(p) (12)

= (−g((∇V J)W, Z)− g(J∇VW, Z)− g(JW,∇VZ) (13)

+g((∇V J)Z, W ) + g(J∇VZ, W ))(p) (14)

= (−2g(V, W )α(Z) + α(W )g(V, Z) (15)

−2g(JW,∇VZ) + g(V, Z)α(W ))(p) by identity (1) (16)

= −2g(v, w)(α(Z))(p)− 2g(Jw,∇vZ) evaluating at p (17)

Let α(Z)(p) = k and put Z = kξ + δ where δ is a Killing vector field vanishing
all along N . Then points at which δ is zero lie on periodic orbits of ξ and one has
the identity:

∇vZ = −kJv +∇vδ. (18)

Lemma 1 (i). The tangent vector ∇vδ is nonzero and perpendicular to N .

(ii). The hessian HessS of α(Z) along N is given by

HessS(p)(v, w) = −2g(Jw,∇vδ)

and is nondegenerate in directions perpendicular to N .

Proof. Our proof of the first part of assertion (i) was inspired from the work of
Kobayashi ([7]). If ∇vδ were zero, then, since δ(p) = 0, the vector field δ would
be zero along the geodesic γ tangent to v at p, hence every orbit that intersects γ
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would be closed, contradicting the fact that v is perpendicular to N . Let η be an
arbitrary vector field tangent to N in a neighborhood of p. Then

g(∇vδ, η) = g(∇vZ, η)− kg(∇vξ, η)

= −g(v,∇ηZ) + kg(Jv, η) = 0.

The first and second terms in the last identity are zero because N is totally geodesic

and Jv is perpendicular to N . This proves that ∇vδ is perpendicular to N and
completes the proof of assertion (i). Now combining identity (17) with identiry
(18), we see that

HessS(p)(v, w) = −2g(Jw,∇vδ)

and it is nondegenerate in directions perpendicular to N since ∇vδ is nonzero for
every v in those directions. This completes the proof of Lemma 1.

Proposition 2 The function S = α(Z) is clean and each of its critical manifolds
has even index.

Proof. By Lemma 1, each critical submanifold of α(Z) is nondegenerate. It re-

mains to prove the assertion about even index. To that end, let v be any direction
perpendicular to N at p. Then, using identity (17),

HessS(p)(Jv, Jv) = −2g(Jv, Jv)α(Z)− 2g(J2v,∇JvZ)

= −2g(v, v)α(Z) + 2g(v,∇JvZ)

= −2g(v, v)α(Z)− 2g(Jv,∇vZ) = HessS(p)(v, v).

This clearly establishes the fact that if HessS is negative definite in the direction v,
it is also negative definite in the direction Jv, hence the indices are all even.

5 Proof of Theorem 2

Suppose now that M is a sasakian closed manifold with a finite number of closed
characteristics. Since, by Proposition 2, α(Z) is a clean function all of whose critical
manifolds have even indices, α(Z) has a unique local maximum corresponding to a
single component of the critical set ([6], page 501). Since M is compact, the unique

local maximum is actually a global one and α(Z) has also a unique global minimum
corresponding to a single component of the critical set. In other words, α(Z) has
a unique critical circle with index 0. Let us denote that circle by N0. The Morse
series (5) can be written

Mt(α(Z)) = Pt(N0; θ
− ⊗R) +

∑
tλNPt(N ; θ− ⊗R)

where λN are even integers each of which is at least equal to 2. But since ν−N0 = N0,
one has

Pt(N0; θ
− ⊗R) = Pt(N0; R) = 1 + t.

Hence, the Morse inequalities (6) become

1 + t + o(t2) ≥ 1 + t dimH1(M ; R) + t2dimH2(M ; R) + ...
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and we derive the inequality

1 ≥ dimH1(M ; R).

But since Tachibana ([15]) has shown that the first Betti number of a compact

sasakian manifold is zero or even, we conclude that under the conditions of Theorem
2, the dimension of H1(M ; R) is zero.
Acknowledgement The author thanks the referee for his comment.
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