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1 Introduction

If A is a finite dimensional Hopf algebra and
∫
⊆ A is the space of integrals in A, it

is well known that dim(
∫
) = 1. The proof given in [12] actually shows the existence

and uniqueness of integrals in A∗ and it relies on the structure of Hopf modules over
A, namely one has to prove that A∗ is a right A-Hopf module and then the result
follows from the fundamental theorem for Hopf modules (see [12] for details).

It is very natural to ask if the result remains true if A is not a Hopf algebra,
but a quasi-Hopf algebra (this question arose in [9], where the following version
of Maschke’s theorem for quasi-Hopf algebras was proved: A is semisimple if and
only if ε(

∫
) 6= 0). The answer is positive for some particular quasi-Hopf algebras,

for instance for Dijkgraaf-Pasquier-Roche’s quasi-Hopf algebras Dω(G) (where G is
a finite group and ω is a normalized 3-cocycle on G) and for their generalizations
Dω(H) introduced in [1] (where H is a finite dimensional cocommutative Hopf al-
gebra and ω : H⊗H⊗H → k is a normalized 3-cocycle in Sweedler’s cohomology).
But if one tries to generalize the proof given in [12] to quasi-Hopf algebras some
problems occur, for example it is not clear which could be the appropriate definition
for a Hopf module over a quasi-Hopf algebra.

The existence and uniqueness of integrals for finite dimensional Hopf algebras have
been reproved in [11], [8] by avoiding the use of Hopf modules. In this note we shall
prove the existence of integrals for finite dimensional quasi-Hopf algebras, by gener-
alizing the short and direct proof given by A. Van Daele in [11] for the Hopf algebra
case. It seems that the method in [11] does not yield a proof for the uniqueness
property.
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2 The existence of integrals

Throughout, k will be a fixed field and all algebras, linear spaces etc. will be over
k; unadorned ⊗ means ⊗k.

Definition 2.1. (see [3], [6]) Let A be a k−algebra, ∆ : A→ A⊗A, ε : A→ k two
algebra homomorphisms. A is called a quasi-bialgebra if there exists an invertible
element Φ ∈ A⊗ A⊗ A such that, for all elements a ∈ A, we have:

(2.1) (I ⊗∆)(∆(a)) = Φ((∆⊗ I)(∆(a))Φ−1,

(2.2) (ε⊗ I)(∆(a)) = a and (I ⊗ ε)(∆(a)) = a,

(2.3) (I ⊗ I ⊗∆)(Φ)(∆⊗ I ⊗ I)(Φ) = (1⊗Φ)(I ⊗∆⊗ I)(Φ)(Φ⊗ 1),

(2.4) (I ⊗ ε⊗ I)(Φ) = 1⊗ 1,

where I = idA. The map ∆ is called the coproduct or the comultiplication and ε the
counit.
A is called a quasi-Hopf algebra if, moreover, there exist an anti-automorphism S

of the algebra A and elements α and β of A such that, for all a ∈ A, we have:

(2.5)
∑
S(a1)αa2 = ε(a)α and

∑
a1βS(a2) = ε(a)β,

(2.6)
∑
X1βS(X2)αX3 = 1 and

∑
S(x1)αx2βS(x3) = 1,

where Φ =
∑
X1 ⊗X2 ⊗X3, Φ−1 =

∑
x1 ⊗ x2 ⊗ x3 (formal notation) and we used

the Σ-notation : ∆(a) =
∑
a1 ⊗ a2. In this case, S is called the antipode of A.

Let us note that every Hopf algebra with bijective antipode is a quasi-Hopf
algebra with Φ = 1⊗ 1⊗ 1 and α = β = 1.

We note the following two consequences of the definitions of S, α, β: ε(α)ε(β) = 1,
ε ◦ S = ε. Moreover, (2.3) and (2.4) imply (ε⊗ I ⊗ I)(Φ) = (I ⊗ I ⊗ ε)(Φ) = 1.

Definition 2.2. If A is a finite dimensional quasi-Hopf algebra, an element λ ∈ A
satisfying the condition aλ = ε(a)λ for all a ∈ A will be called a left integral for A.
The space of left integrals will be denoted by

∫
.

Proposition 2.3. If A is a finite dimensional quasi-Hopf algebra, then
∫
6= 0.

Proof : Let {e1, ..., en} be a basis in A and {e1, ..., en} the dual basis in A∗. For
any element b ∈ A we define the following element in A:

t(b) =
∑
〈ei, βS(αX3)S2(X2(ei)2)b〉X1(ei)1

where, if p ∈ A∗ and a ∈ A we denoted by 〈p, a〉 = p(a). We shall prove that

at(b) = ε(a)t(b)

for all a ∈ A. Indeed, if a ∈ A, we calculate:

ε(a)t(b) =
∑
〈ei, a1βS(a2)S(αX3)S2(X2(ei)2)b〉X1(ei)1

=
∑
〈ei, a1ej〉〈ej, βS(a2)S(αX3)S2(X2(ei)2)b〉X1(ei)1

=
∑
〈ej, βS(a2)S(αX3)S2(X2(a1)2(ej)2)b〉X1(a1)1(ej)1

=
∑
〈ej , βS(αX3a2)S

2(X2(a1)2(ej)2)b〉X1(a1)1(ej)1
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=
∑
〈ej , βS(α(a2)2X

3)S2((a2)1X
2(ej)2)b〉a1X

1(ej)1 (by (2.1))

=
∑
〈ej, βS(X3)S(S((a2)1)α(a2)2)S

2(X2(ej)2)b〉a1X
1(ej)1

=
∑
〈ej, βS(X3)S(α)S2(X2(ej)2)b〉aX1(ej)1 (by (2.5))

= at(b) q.e.d.

Put hj = t(ej) for all j = 1, ..., n. We shall prove that∑
〈ej, S(hjβ)〉 = ε(β)

and since ε(β) 6= 0 it follows that at least one of the elements hj is non zero, so∫ 6= 0.

Indeed, we have: ∑
〈ej , S(hjβ)〉 =

=
∑
〈ei, βS(αX3)S2(X2(ei)2)ej〉〈ej, S(X1(ei)1β)〉

=
∑
〈ei, βS(αX3)S2(X2(ei)2)S(X1(ei)1β)〉

=
∑
〈ei, βS(αX3)S(X1(ei)1βS((ei)2)S(X2))〉

=
∑

ε(ei)〈ei, βS(αX3)S(X1βS(X2))〉 (by (2.5))

=
∑

ε(ei)〈ei, βS(X1βS(X2)αX3)〉

=
∑

ε(ei)〈ei, β〉 (by (2.6))

= ε(β) q.e.d.

Remark 2.4. The proof of the proposition provides us with the k-linear map t :
A→ ∫

. If we denote the inclusion of
∫

into A by i :
∫ → A, then t ◦ i = id.

Remark 2.5. If we denote the space of right integrals of A by
∫
r, then the fact that

S is an algebra anti-automorphism entails that for a left integral λ, S(λ) is a right
integral, so we also have

∫
r 6= 0.

Remark 2.6. If H is a finite dimensional Hopf algebra, λ ∈ H∗ a left integral and
Λ ∈ H a right integral, then D. Radford proved that λ⊗Λ is a left and right integral
for the quantum double D(H), cf. [10], Th.4. Recently the quantum double has
been generalized for quasi-Hopf algebras, see [7], [4], [5], as follows: if A is a finite
dimensional quasi-Hopf algebra, then D(A) is a quasitriangular quasi-Hopf algebra
having A∗⊗A as underlying linear space and A is a sub quasi-Hopf algebra of D(A).
It would be interesting to find a relation between

∫
A and

∫
D(A) similar to Radford’s

result (such a relation was proved in [1] for the quasi-Hopf algebra Dω(H)).
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