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Abstract. This paper is devoted to the existence and (in)stability of nonconstant

steady-states in a system of a semilinear parabolic equation coupled to an ODE, which

is a simplified version of a receptor-ligand model of pattern formation. In the neigh-

borhood of a constant steady-state, we construct spatially heterogeneous steady-states

by applying the bifurcation theory. We also study the structure of the spectrum of

the linearized operator and show that bifurcating steady-states are unstable against

high wave number disturbances. In addition, we consider the global behavior of the

bifurcating branches of nonconstant steady-states. These are quite di¤erent from

classical reaction-di¤usion systems where all species di¤use.

1. Introduction

In this paper we continue the study of a di¤usion-ODE model with Turing

instability and hysteresis started in [4]. In the seminal paper [16] in 1952,

Turing proposed the idea of Di¤usion-Driven Instability (DDI, for short),

which asserts that in a system of two reacting chemicals, di¤erent di¤usion

rates may lead to a destabilization of a spatially uniform stationary state under

spatially heterogeneous disturbance, thereby leading to a spontaneous forma-

tion of a nontrivial spatial structure, i.e., pattern. Since then many mathe-

matical models based on DDI have been proposed to explain pattern formation

in the natural world. However, not all patterns are formed as a result of

DDI. There are phenomena which involve interactions among di¤usive

substances and non-di¤usive substances. For instance, [12] proposed a model

system consisting of free receptors, bound receptors, biochemical and degra-

dative enzyme. Free and bound receptors are located on the cell surface and

hence do not di¤use, while the biochemical and the enzyme both di¤use. This

model contains spatially dependent coe‰cients. Later, [5] and [6] generalized
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the receptor-based model to models with constant coe‰cients, which produce

patterns as a result of the existence of hysteresis in the quasi-stationary states.

Recently in [4], we considered systems of reaction-di¤usion equations coupled

with ordinary di¤erential equations, similar to the models proposed in [5],

which exhibit DDI and hysteresis. We proved the existence and stability of

stable far from equilibrium steady-states with jump discontinuity. On the other

hand, instability of all continuous steady-states in such systems has been shown

in [7].

In this paper we study the following system proposed in [4]:

qu

qt
¼ �u� uvþm1

u2

1þ ku2
for x A ð0; lÞ; t > 0; ð1:1Þ

qv

qt
¼ D

q2v

qx2
� m3v� uvþm2

u2

1þ ku2
for x A ð0; lÞ; t > 0; ð1:2Þ

qv

qx
ðt; 0Þ ¼ qv

qx
ðt; lÞ ¼ 0 for x ¼ 0; l; t > 0; ð1:3Þ

ðuð0; xÞ; vð0; xÞÞ ¼ ðu0ðxÞ; v0ðxÞÞ A C 0ðIÞ � ðC 2ðIÞ \ CðIÞÞ; ð1:4Þ

with positive initial data. This is a quasi-steady state approximation of the

system

quf

qt
¼ �n1uf � buf vþ y1

u2f

1þ ku2f
þ aub;

d
qub

qt
¼ �n2ub þ buf v� aub;

qv

qt
¼ D

q2v

qx2
� n3v� buf vþ y2

u2f

1þ ku2f
þ aub

8>>>>>>>><
>>>>>>>>:

where uf and ub denote the density of free receptors and bound receptors,

respectively; v is the concentration of ligand which is di¤usive. Equations

(1.1)–(1.4) are obtained formally by letting d # 0 and appropriate scaling of the

independent and dependent variables.

In order to understand the global-in-time behavior of solutions of the

initial-boundary value problem (1.1)–(1.4) it is crucial to know not only the

stability of discontinuous steady-states but also how unstable the steady-states

in the neighborhood of the constant solution are.

To explain the novelty in the model dynamics, let us recall the Turing

scenario: Starting from an almost uniform initial state, DDI augments the

amplitude of the disturbance of specific wave numbers and the solution is

forced to leave the neighborhood of the constant steady state, eventually being

attracted by a stable steady state with, presumably, the same wave numbers.
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Numerical simulations suggest that the final Turing pattern usually does not

depend on the initial data. Rather, the initial disturbance seems to only

trigger the emergence of pattern. We are still far from the complete under-

standing of the phenomenon.

The purpose of this paper is to investigate the existence of nonconstant

(continuous) steady states in a neighborhood of the constant steady state

(Theorem 3.6) and their degree of instability (Lemma 3.3 and Proposition 3.9).

Unlike the reaction-di¤usion systems with all di¤using species, the constant

steady state of (1.1)–(1.4) which undergoes DDI is unstable against any dis-

turbances of su‰ciently large wave number. This is quite a contrast to the

standard case where only disturbances of finitely many wave numbers can cause

the instability.

Moreover, we consider the global structure of the set of continuous steady

states of (1.1)–(1.4) by taking advantage of the fact that finding such steady

states is reduced to finding solutions of the boundary value problem (3.24) for

a single equation. It is to be emphasized that, for some range of the param-

eter k, the branch Cn ¼ fðv;DÞ j v 0ðxÞ has exactly n� 1 zeros in ð0; lÞg does

not continue to the neighborhood of D ¼ 0 and hence it does not contain

solutions which exhibit a concentration phenomenon such as boundary layer

(Theorem 4.2).

This paper is organized as follows: Section 2 provides conditions for the

existence of positive constant steady states in our model system (2.1)–(2.3). In

section 3, we perform the bifurcation analysis near the constant steady states.

In section 4, we focus on the stationary boundary value problem for a single

equation. Particular attention is given to the construction of the monotone

increasing steady states and their dependence on the di¤usion coe‰cient and

the initial data.

2. Constant steady-states

Consider the system of equations

qu

qt
¼ f ðu; vÞ for x A ð0; lÞ; t > 0; ð2:1Þ

qv

qt
¼ D

q2v

qx2
þ gðu; vÞ for x A ð0; lÞ; t > 0; ð2:2Þ

qv

qx
ð0; tÞ ¼ qv

qx
ðl; tÞ ¼ 0 for t > 0; ð2:3Þ

where

f ðu; vÞ ¼ �u� uvþm1
u2

1þ ku2
; ð2:4Þ
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and

gðu; vÞ ¼ �m3v� uvþm2
u2

1þ ku2
: ð2:5Þ

and k, m1, m2, m3 and D are positive constants.

To start with, we search for a constant steady states of system (2.1)–(2.3).

Note that f ðu; vÞ ¼ 0 is equivalent to the conditions u ¼ 0 or

�1� vþ m1u

1þ ku2
¼ 0: ð2:6Þ

Lemma 2.1. For arbitrary positive parameters m1, m2, k and m3, the trivial

solution ðu; vÞ ¼ ð0; 0Þ is a spatially homogeneous steady-state of (2.1)–(2.3).

Proof. If u ¼ 0 then the equation gðu; vÞ ¼ 0 reduces to �m3v ¼ 0, i.e.,

v ¼ 0. Hence ð0; 0Þ is a unique solution of f ðu; vÞ ¼ gðu; vÞ ¼ 0 with the

property u ¼ 0.

In what follows, we therefore assume that u0 0, hence, the stationary

equation gðu; vÞ ¼ 0 implies

v ¼ m2

m3 þ u

u2

1þ ku2
: ð2:7Þ

Putting (2.6) and (2.7) together yields

m1u

1þ ku2
� 1 ¼ m2

m3 þ u

u2

1þ ku2
: ð2:8Þ

Positive solutions of (2.8) satisfy the cubic equation ðku2 þ 1Þðuþ m3Þ þm2u
2 �

m1uðuþ m3Þ ¼ 0, that is,

ku3 þ ðm3k þm2 �m1Þu2 þ ð1� m3m1Þuþ m3 ¼ 0: ð2:9Þ

When k is small, the limiting equation

ðm2 �m1Þu2 þ ð1� m3m1Þuþ m3 ¼ 0 ð2:10Þ

plays an essential role. If m2 0m1 then this quadratic equation has two roots

b1 and b2:

b1 ¼
m3m1 � 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm3m1 � 1Þ2 � 4m3ðm2 �m1Þ

q
2ðm2 �m1Þ

;

b2 ¼
m3m1 � 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm3m1 � 1Þ2 � 4m3ðm2 �m1Þ

q
2ðm2 �m1Þ

;

ð2:11Þ
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which are real if and only if ðm3m1 þ 1Þ2 b 4m3m2. Note that if ðm3m1 þ 1Þ2 <
4m3m2 and m2 �m1 b 0 then the left-hand side of (2.10) is positive for

all u A R, and hence the left-hand side of (2.9) is positive for all ub 0

whenever k > 0. This means that (2.9) has no positive roots for any k > 0

if ðm3m1 þ 1Þ2 < 4m3m2 and m2 �m1 b 0. Assume that ðm3m1 þ 1Þ2 b 4m3m2

and m2 0m1. Then, we have the following cases:

( i ) b2 < 0 < b1 if m2 < m1;

( ii ) b1 a b2 < 0 if m2 > m1 and m3m1 < 1;

(iii) 0 < b1 a b2 if m2 > m1 and m3m1 > 1.

On the other hand, if m2 ¼ m1 and m3m1 > 1, then (2.10) has a unique root

b0 > 0:

b0 ¼
m3

m3m1 � 1
: ð2:12Þ

The following proposition refines the result in Lemma 3.5 of [4].

Proposition 2.2. (A) Let m2 bm1 be satisfied. If m3m1 a 1 or

ðm3m1 þ 1Þ2 < 4m3m2, then equation (2.9) has no positive roots for any

k > 0.

(B) If m2 < m1, then for k > 0 su‰ciently small (2.9) has three roots

a1 < 0 < a2 < a3 such that

a1 ¼ b1 þ
ðb1 þ m3Þb2

1

m3m1 � 1þ 2ðm1 �m2Þb1
k þOðk2Þ;

a2 ¼ b2 þ
ðb2 þ m3Þb2

2

m3m1 � 1þ 2ðm1 �m2Þb2
k þOðk2Þ; and

a3 ¼
m1 �m2

k
þ m3m2 � 1

m1 �m2
þOðkÞ as k # 0:

(C) If m2 ¼ m1 and m3m1 > 1, then for k > 0 su‰ciently small (2.9) has

three roots a1 < 0 < a2 < a3 such that

a1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3m1 � 1

p
ffiffiffi
k

p � m2
3m1

2ðm3m1 � 1Þ þOð
ffiffiffi
k

p
Þ;

a2 ¼ b0 þ
m4
3m1

ðm3m1 � 1Þ4
k þOðk2Þ;

a3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m3m1 � 1

p
ffiffiffi
k

p � m2
3m1

2ðm3m1 � 1Þ þOð
ffiffiffi
k

p
Þ as k # 0:

(D) If m2 > m1, m3m1 > 1 and ðm3m1 þ 1Þ2 b 4m3m2, then for k > 0 suf-

ficiently small (2.9) has three roots a1 < 0 < a2 < a3 such that
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a1 ¼ �m2 �m1

k
� m3m1 � 2

m2 �m1
þOðkÞ;

a2 ¼ b1 þ
ðb1 þ m3Þb2

1

m3m1 � 1þ 2ðm1 �m2Þb1
k þOðk2Þ;

a3 ¼ b2 þ
ðb2 þ m3Þb2

2

m3m1 � 1þ 2ðm1 �m2Þb2
k þOðk2Þ as k # 0:

Proof. Let QðuÞ denote the left-hand side of (2.9). Then its discriminant

DQ is given by

DQ ¼ ðm3k þm2 �m1Þ2ð1� m3m1Þ2 � 4kð1� m3m1Þ3 � 4ðm3k þm2 �m1Þ3m3

� 27k2m2
3 þ 18kðm3k þm2 �m1Þð1� m3m1Þm3: ð2:13Þ

It is well-known that (i) if DQ > 0, then (2.9) has three distinct real roots, (ii) if

DQ ¼ 0, then (2.9) has either one real triple root or one real simple root and

one real double root, and (iii) if DQ < 0, then (2.9) has only one real root.

Since Qð0Þ > 0 and QðuÞ ! �y as u ! �y, there is at least one negative

root, i.e., a1 < 0. Assume that DQ b 0. We note that the other two roots

a2 a a3 are of the same sign because of Qð0Þ > 0. If Q 0ð0Þa 0, then

Q 0ðuÞ ¼ 0 has a negative root and a positive root; hence 0 < a2 a a3. If

Q 0ð0Þ > 0 and Q 00ð0Þb 0, then Q 0ðuÞ does not vanish for u > 0, and hence

a2 a a3 < 0. Finally, if Q 0ð0Þ > 0 and Q 00ð0Þ < 0, then Q 0ðuÞ ¼ 0 has two

positive roots, implying 0 < a2 a a3. Notice also that Q 0ð0Þ < 0 if and only if

m3m1 > 1. We therefore conclude that (2.9) has positive roots if and only

if either (a) DQ b 0 and m3m1 b 1 or (b) DQ b 0, m3m1 < 1 and m3k þm2 �m1

< 0. Case (b) occurs only when m1 > m2.

Let us regard the discriminant as a function of k A ð�y;þyÞ and

denote it by DQðkÞ. Notice that DQðkÞ ! �y as k ! þy. If DQð0Þ ¼
ðm2 �m1Þ2fð1� m3m1Þ2 � 4ðm2 �m1Þm3g > 0 then there exists a positive num-

ber k � such that DQðkÞ > 0 for all 0 < k < k � and DQðk �Þ ¼ 0. It is easy to

see that DQð0Þ > 0 if and only if one of the following (1) and (2) is satisfied:

(1) m1 > m2 or (2) m2 > m1 and ð1þ m3m1Þ2 > 4m3m2. Therefore, QðuÞ ¼ 0

has two positive roots a2 < a3 if one of the following conditions 1�Þ–3�Þ is

satisfied:

1�Þ m1 < m2, m3m1 b 1, ð1þ m3m1Þ2 > 4m3m1 and 0 < k < k �,

2�Þ m1 > m2, m3m1 b 1 and 0 < k < k �,

3�Þ m1 > m2 and 0 < k < minfk �; ðm1 �m2Þ=m3g.
When k > 0 is close to 0, we can construct two roots near b1, b2 or b0

by the standard perturbation arguments. Moreover, by putting u ¼ fðkÞ=k
with fð0Þ0 0 in the case m2 0m1 and u ¼ cðkÞ=

ffiffiffi
k

p
with cð0Þ0 0 in the case
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m2 ¼ m1, we find easily the leading terms of fðkÞ and cðkÞ as k # 0. We omit

the detail.

Proposition 2.3. Let a1, a2, a3 be three roots of equation (2.9). Put

k1 ¼
m3m1 � 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm3m1 � 2Þ2 þ 8m3ðm1 �m2Þ

q
4m3

;

k2 ¼
m3m1 � 2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm3m1 � 2Þ2 þ 8m3ðm1 �m2Þ

q
4m3

:

( i ) If m2 < m1, then k1 < 0 < k2 and (2.9) has three real roots such that

a1 < 0 < a2 < 1=
ffiffiffi
k

p
< a3 for 0 < k < k2

2 .

( ii ) If m2 ¼ m1 and m3m1 > 2, then (2.9) has three real roots such that

a1 < 0 < a2 < 1=
ffiffiffi
k

p
< a3 for 0 < k < ðm3m1 � 2Þ=ð2m3Þ.

(iii) Let m2 > m1 and m3 > m�, where

m� ¼ 2

m2
ð2m2 �m1 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2 �m1Þm1

p
Þ:

Then 0 < k1 < k2, and (2.9) has three real roots such that a1 < 0 <

a2 < 1=
ffiffiffi
k

p
< a3 for k1 <

ffiffiffi
k

p
< k2.

Proof. The assertions are verified by finding conditions for Qð1=
ffiffiffi
k

p
Þ to

be negative. Indeed, since

Qð1=
ffiffiffi
k

p
Þ ¼ 1

k
ðm2 �m1 þ ð2� m3m1Þ

ffiffiffi
k

p
þ 2m3kÞ;

we have only to examine the sign of the quadratic function 2m3x
2 �

ðm3m1 � 2Þxþm2 �m1. Since the reasoning is elementary we omit the detail.

In what follows we assume one of the conditions stated in (B), (C) and

(D) of Proposition 2.2 and in (i), (ii) and (iii) of Proposition 2.3. Then we

have two positive roots 0 < a2 < a3 of equation (2.9) and define u ¼ a2 and

u ¼ a3. Hence, putting

v ¼ m2u
2

ðm3 þ uÞð1þ ku2Þ ; v ¼ m2u
2

ðm3 þ uÞð1þ ku2Þ ; ð2:14Þ

we conclude that system (2.1)–(2.3) has a spatially homogeneous steady state

ð0; 0Þ and exactly two positive homogeneous steady states ðu; vÞ, ðu; vÞ when one

of the conditions (B), (C), (D) of Proposition 2.2 and (i), (ii), (iii) of Proposition

2.3 is satisfied.

The existence of spatially homogeneous states is illustrated in Figure 1.
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3. Bifurcation analysis

In this section we formulate the stationary problem for (2.1)–(2.3)

f ðu; vÞ ¼ 0;

D
d 2v

dx2
þ gðu; vÞ ¼ 0;

dv

dx
ð0Þ ¼ dv

dx
ðlÞ ¼ 0

8>>>>><
>>>>>:

ð3:1Þ

in an abstract setting and apply the classical theorem on bifurcation from

simple eigenvalues (see Proposition 3.5 below). Then we proceed to studying

the spectral properties of the linearized operator around the bifurcating solu-

tions by applying the theorem on perturbation of K-simple eigenvalues (see

Definition 3.7 and Lemma 3.8, and references [2], [9], [13]).

3.1. Spectrum of linearized operator around constant solutions. Let C0ð½0; l �Þ
denote the Banach space of all continuous functions on the interval ½0; l �
equipped with the maximum norm: kuky ¼ max0axal juðxÞj. Let C2

Nð½0; l �Þ
denote the space of all twice continuously di¤erentiable functions vðxÞ on

½0; l � satisfying homogeneous Neumann boundary conditions: v 0ð0Þ ¼ v 0ðlÞ
¼ 0. Let

X ¼ C0ð½0; l �Þ � C2
Nð½0; l �Þ and Y ¼ C0ð½0; l �Þ � C0ð½0; l �Þ:

These are Banach spaces with respective norms

kðu; vÞkX ¼ kuky þ kvky þ kv 0ky þ kv 00ky and kðu; vÞkY ¼ kuky þ kvky:

Fig. 1. Plot of the nullclines of f ðu; vÞ ¼ 0 and gðu; vÞ ¼ 0.
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We sometimes denote a point ðu; vÞ A X by U . Let U be an open set of X

defined by

U ¼ fU ¼ ðu; vÞ A X j uðxÞ þ 1 > 0 for all 0a xa lg:

We define a mapping F ðU ;DÞ from U� ð0;þyÞ into Y by

FðU ;DÞ ¼ ð f ðu; vÞ;Dv 00 þ gðu; vÞÞ for U ¼ ðu; vÞ: ð3:2Þ

Since f ðu; vÞ and gðu; vÞ are real analytic, we can prove that F is an analytic

mapping from U� ð0;þyÞ into Y and that the Fréchet (partial) derivative

with respect to U ¼ ðu; vÞ of F at ðU�;D�Þ, U� ¼ ðu�; v�Þ, is given by

qUFðU�;D�Þ ¼
f ?
u f ?

v

g?
u D�d

2=dx2 þ g?
v

� �
; ð3:3Þ

where

f ?
u ¼ fuðu�; v�Þ; f ?

v ¼ fvðu�; v�Þ; g?
u ¼ guðu�; v�Þ; g?

v ¼ gvðu�; v�Þ:

Recall that

fuðu; vÞ ¼ �1� vþ 2m1u

ð1þ ku2Þ2
; fvðu; vÞ ¼ �u;

guðu; vÞ ¼ �vþ 2m2u

ð1þ ku2Þ2
; gvðu; vÞ ¼ �m3 � u:

8>>><
>>>:

ð3:4Þ

The Jacobi matrix J at U� of the kinetic system is given by

J ¼ f ?
u f ?

v

g?
u g?

v

� �
ð3:5Þ

and plays an important role in what follows.

For j ¼ 0; 1; 2; . . . , let

lj ¼
pj

l

� �2
: ð3:6Þ

Then lj is an eigenvalue of �d 2=dx2 under homogeneous Neumann boundary

conditions, and cosðpjx=lÞ is an eigenfunction belonging to lj. Moreover,

fcosðpjx=lÞgyj¼0 form a basis of L2ð0; lÞ.

Lemma 3.1. Suppose that U� ¼ ðu�; v�Þ is a constant steady-state of (2.1)–

(2.3). Let L� denote the linearized operator qUF ðU�;D�Þ : X ! Y. Then the

spectrum of L� consists of the eigenvalues fljgyj¼0 [ fmjg
y
j¼0, with Re lj aRe mj ,

of finite multiplicity and the point l ¼ fuðu�; v�Þ which is an eigenvalue of infinite
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multiplicity if fvðu�; v�Þguðu�; v�Þ ¼ 0 or is in the continuous spectrum if

fvðu�; v�Þguðu�; v�Þ0 0. Furthermore,

lj ¼ �D�lj � ð f ?
u � tr JÞ þOð1=ljÞ;

mj ¼ f ?
u þOð1=ljÞ

as j ! y.

For the definition of point spectrum and continuous spectrum, see [3],

VII.5.1, p. 580.

Proof. For l A C and ðs; tÞ A Y we consider the nonhomogeneous

problem

f ?
u fþ f ?

v c ¼ lfþ s; ð3:7Þ

D�c
00 þ g?

ufþ g?
vc ¼ lcþ t; ð3:8Þ

c 0ð0Þ ¼ c 0ðlÞ ¼ 0: ð3:9Þ

If l0 f ?
u , then from (3.7) we have

f ¼ s� f ?
v c

f ?
u � l

; ð3:10Þ

and hence (3.8) reduces to

D�c
00 þ ð f ?

u � lÞðg?
v � lÞ � f ?

v g
?
u

f ?
u � l

c ¼ t� g?
us

f ?
u � l

: ð3:11Þ

This nonhomogeneous Sturm-Liouville problem has a unique solution if and

only if

ð f ?
u � lÞðg?

v � lÞ � f ?
v g

?
u

ð f ?
u � lÞD�

B fljgyj¼0: ð3:12Þ

Moreover, if (3.12) holds, then the unique solution c of (3.11) satisfies the

estimate kcky þ kc 0ky þ kc 00ky aCðksky þ ktkyÞ for some constant C > 0

independent of ðs; tÞ. Then, (3.10) determines f uniquely and kfky a

C1ðksky þ ktkyÞ for an appropriate positive constant C1. Hence, L� � l

has a bounded inverse ðL� � lÞ�1 if (3.12) is satisfied.

Assume now that (3.12) is violated, i.e., l satisfies the characteristic

equation

l2 � ðtr J �D�ljÞlþ det J �D�lj f
?
u ¼ 0 ð3:13Þ
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for some jb 0. This equation has two roots lj and mj :

lj ¼
1

2
ftr J �D�lj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtr J �D�ljÞ2 � 4ðdet J �D�lj f ?

u Þ
q

g;

mj ¼
1

2
ftr J �D�lj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtr J �D�ljÞ2 � 4ðdet J �D�lj f ?

u Þ
q

g:

8>><
>>: ð3:14Þ

It is straightforward to check that lj and mj are indeed eigenvalues of L� and

ðfj;�;cj;�Þ ¼ � f ?
v

f ?
u � lj

cos
pjx

l
; cos

pjx

l

� �
and

ðfj;þ;cj;þÞ ¼ � f ?
v

f ?
u � mj

cos
pjx

l
; cos

pjx

l

 ! ð3:15Þ

are eigenvectors belonging to lj and mj, respectively.

We now prove that l ¼ f ?
u is in the spectrum of L�. We distinguish the

two cases (i) f ?
v g

?
u ¼ 0 and (ii) f ?

v g
?
u 0 0.

First we treat the case (i). Suppose f ?
v ¼ 0. Then, (3.7) with s ¼ 0 is

satisfied for any c. If in addition, g?
u 0 0, then (3.8) with t ¼ 0 determines f

uniquely for each c A C2
Nð½0; l �Þ. If g?

u ¼ 0, then we find that (3.8) with t ¼ 0

is satisfied for any f A C0ð½0; l �Þ and c ¼ 0. Therefore, (3.7)–(3.9) with

s ¼ t ¼ 0 has a nontrivial solution of the form ðf; 0Þ, so that l ¼ f ?
u is an

eigenvalue of L� of infinite multiplicity. Let us turn to the case f ?
v 0 0.

Then g?
u ¼ 0, and hence (3.7) with s ¼ 0 implies c ¼ 0. Thus, (3.8) with t ¼ 0

reduces to g?
uf ¼ 0. Since g?

u ¼ 0, f is arbitrary. Therefore, kerðL� � f ?
u Þ �

fðf; 0Þ j f A C0ð½0; l �Þg, showing dim kerðL� � f ?
u Þ ¼ y.

Second, we turn to handle the case (ii). It is easy to check that

L� � f ?
u is injective. Let R denote the range of L� � f ?

u . We prove that

R ¼ C2
Nð½0; l �Þ � C 0ð½0; l �Þ. To this end, we consider the nonhomogeneous

problem (3.7)–(3.9) with l ¼ f ?
u . From (3.7) it follows that c ¼ s=f ?

v A
C0ð½0; l �Þ. But, for (3.8) to have a solution c A C2

Nð½0; l �Þ, it is necessary

that s A C 2
Nð½0; l �Þ. Hence, R � C2

Nð½0; l �Þ � C 0ð½0; l �Þ. Conversely, if ðs; tÞ A
C2

Nð½0; l �Þ �C0ð½0; l �Þ, then f¼ ½tþf f ?
u s� ðD�s

00 þ g?
v sÞg=f ?

u �=g?
u and c¼ s=f ?

v

satisfy (3.7)–(3.9) with l ¼ f ?
u . We thus obtain R ¼ C2

Nð½0; l �Þ � C 0ð½0; l �Þ,
which is a proper subset of C0ð½0; l �Þ � C0ð½0; l �Þ. Finally, we observe that

C2
Nð½0; l �Þ is dense in C0ð½0; l �Þ. This seems to be a standard fact, but for

completeness, we sketch a proof: Approximate s A C0ð½0; l �Þ by the solution ue
of the bundary value problem e2u 00 � uþ s ¼ 0 in ð0; lÞ and u 0ð0Þ ¼ u 0ðlÞ ¼ 0,

where e is a positive number. Since ue is expressed by using the Green’s

function, it is straghtforward to verify that ueðxÞ converges to sðxÞ uniformly as

e # 0 (for details, see the proof of Lemma 2.9 in [14]). Therefore, R is dense in
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C0ð½0; l �Þ � C0ð½0; l �Þ, and we conclude that l ¼ f ?
u is in the continuous

spectrum.

The asymptotic behavior of lj and mj as j ! y is easily obtained from the

formula (3.14).

To know the distribution of eigenvalues we need the following

Lemma 3.2. (a) If U� ¼ ð0; 0Þ, then f ?
u < 0, tr J < 0 and det J > 0.

(b) Assume that one of the conditions (B), (C), (D) of Proposition 2.2

or (i), (ii), (iii) of Proposition 2.3 is satisfied. Let U� ¼ ðu; vÞ. Then

f ?
u > 0 and det J < 0.

(c) Suppose that one of the conditions (B), (C), (D) of Proposition 2.2 is

satisfied. Let U� ¼ ðu; vÞ. Then f ?
u > 0 and det J > 0. Moreover,

if m2
1 < m2, then tr J < 0, provided that k > 0 is su‰ciently small.

(d) Assume that one of the conditions (i), (ii), (iii) of Proposition 2.3 is

satisfied. Let U� ¼ ðu; vÞ. Then f ?
u < 0, tr J < 0 and det J > 0.

Proof. For U� ¼ ð0; 0Þ the assertion is obvious.

Letting QðuÞ be the left hand side of (2.9) as in Section 2, we first prove

that

det J ¼ � f ?
v

1þ ku2�
Q 0ðu�Þ: ð3:16Þ

To show this we observe that vðuÞ ¼ m1u=ð1þ ku2Þ � 1 satisfies f ðu; vðuÞÞ ¼ 0,

hence fuðu; vðuÞÞ þ fvðu; vðuÞÞv 0ðuÞ ¼ 0. Therefore, for U� ¼ ðu�; v�Þ0 ð0; 0Þ,
we have

v 0ðu�Þ ¼ � fuðu�; vðu�ÞÞ
fvðu�; vðu�ÞÞ

¼ � f ?
u

f ?
v

: ð3:17Þ

On the other hand, it is straightforward to see that gðu; vðuÞÞ ¼ QðuÞ=ð1þ ku2Þ.
Hence,

guðu; vðuÞÞ þ gvðu; vðuÞÞv 0ðuÞ ¼ Q 0ðuÞ=ð1þ ku2Þ � 2kuQðuÞ=ð1þ ku2Þ2:

By virtue of Qðu�Þ ¼ 0 and (3.17), we obtain

g?
u � g?

v f
?
u =f

?
v ¼ Q 0ðu�Þ=ð1þ ku2�Þ;

which results in (3.16).

From (3.4) and (2.6) it follows that

f ?
u ¼ � m1u�

1þ ku2�
þ 2m1u�

ð1þ ku2�Þ
2
¼ m1u�

ð1þ ku2�Þ
2
ð1� ku2�Þ:
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Hence, f ?
u > 0 if u� < 1=

ffiffiffi
k

p
and f ?

u < 0 if u� > 1=
ffiffiffi
k

p
. Since g?

v < 0, we

conclude that tr J < 0 if u� > 1=
ffiffiffi
k

p
.

Notice that 0 < u < 1=
ffiffiffi
k

p
in all cases stated in Propositions 2.2 and 2.3.

Hence, fuðu; vÞ > 0. Moreover, Q 0ðuÞ < 0 because it is the intermediate root of

QðuÞ ¼ 0. Consequently det J < 0 for U� ¼ ðu; vÞ by (3.16). Therefore, (b) is

proved.

Assertion (c) is the same as Lemma 3.9 of [4]. Hence we have proved all

assertions of the lemma.

Lemma 3.3. Let U� ¼ ðu�; v�Þ be a constant steady-state of (2.1)–(2.3) and

let L� denote the linearized operator qUFðU�;D�Þ. For j ¼ 1; 2; 3; . . . , define

Dj ¼
det J

f ?
u lj

if f ?
u 0 0:

( I ) If U� ¼ ð0; 0Þ, then the spectrum of L� is contained in the left half

plane fl A C jRe l < 0g for all D� > 0.

( II ) If U� ¼ ðu; vÞ, then Dj is negative for all j ¼ 1; 2; 3; . . . . Moreover,

lj < 0 < mj for all j ¼ 0; 1; 2; . . . .

(III) If U� ¼ ðu; vÞ such that u > 1=
ffiffiffi
k

p
, then Dj is negative for all j ¼

1; 2; 3; . . . . Moreover, the spectrum of L� is contained in the left-

half plane for all D� > 0.

(IV) If U� ¼ ðu; vÞ such that 0 < u < 1=
ffiffiffi
k

p
, then Dj is positive for all

jb 1. If D� > D1 then ln < 0 < mn for all nb 0. If D� ¼ Dj for

some jb 1, then Re ln aRe mn < 0 for 1a na j � 1, lj < 0 ¼ mj ,

and ln < 0 < mn for nb j þ 1. If Djþ1 < D� < Dj, then Re ln a

Re mn < 0 for 1a na j, while ln < 0 < mn for any nb j þ 1.

Proof. First, we observe that Re ln aRe mn < 0 if and only if

tr J �D�ln < 0 and det J �D� f
?
u ln > 0:

Moreover, if det J �D� f
?
u ln < 0, then ln < 0 < mn. Combining these obser-

vations with Lemma 3.2, we can prove all assertions easily and we omit the

detail.

Definition 3.4. Let U� ¼ ðu�; v�Þ be a constant steady-state of (2.1)–

(2.3). Define the stability index IndSðU�;D�Þ of ðU�;D�Þ by

IndSðU�;D�Þ ¼afmn jRe mn < 0g;

where aA stands for the number of distinct elements of a countable set A.

If U� ¼ ðu; vÞ with 0 < u < 1=
ffiffiffi
k

p
, then IndSðU�;D�Þ ¼ j if Djþ1 < D� <

Dj . This formula is valid for jb 0 if we understand D0 ¼ þy. We observe
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that U� is linearly stable against disturbances of wave numbera IndSðU�;D�Þ,
but disturbance of wave number > IndSðU�;D�Þ grows.

3.2. Bifurcation. If U� ¼ ðu�; v�Þ is a constant solution of (3.1), then

FðU�;DÞ ¼ 0 for all D > 0:

If qUFðU�;D�Þ is an isomorphism from X to Y , then by the implicit function

theorem we see that F �1ð0Þ \V0 ¼ fðU�;DÞ j ðU�;DÞ A V0g where V0 is a

neighborhood of ðU�;D�Þ in X �R. Therefore, for ðU�;D�Þ to be a bifur-

cation point it is necessary that L� ¼ qUF ðU�;D�Þ does not have a bounded

inverse. The following proposition is a restatement of Theorems 1.7 and 1.18

of [1] in our notation.

Proposition 3.5 (Bifurcation from a Simple Eigenvalue). Let X, Y,

V and F be as above. For D� > 0, let L� denote the Fréchet derivative

qUFðU�;D�Þ and L1 ¼ qUqDFðU�;D�Þ. Assume that the following conditions

hold:

(1) kerðL�Þ is one-dimensional, spanned by F0;

(2) rangeðL�Þ has co-dimension 1; i.e. dim½Y=rangeðL�Þ� ¼ 1;

(3) L1F0 B rangeðL�Þ.
Let Z be any closed subspace of X such that X ¼ spanfF0glZ (i.e. any

U A X can be uniquely written as U ¼ aF0 þ V, a A R, V A Z). Then there

is a d > 0, a neighborhood V of ðU�;D�Þ in X �R and a smooth curve

ðC ;DÞ : ð�d; dÞ ! Z �R such that Cð0Þ ¼ 0, Dð0Þ ¼ D� and F �1ð0Þ \V ¼
fðU� þ sðF0 þCðsÞÞ;DðsÞÞ j jsj < dg [ fðU�;DÞ j ðU�;DÞ A Vg.

Let us now condsider when L� satisfies the assumptions of Proposition

3.5. By Lemma 3.3, we see that L� is not invertible only when U� ¼ ðu; vÞ
with 0 < u < 1=

ffiffiffi
k

p
and D� ¼ Dj for some jb 1. From Lemma 3.1 it follows

that ker qUF ðU�;DjÞ is spanned by F0 ¼ ðfj;þ;cj;þÞ (see (3.15)). To find

range qUF ðU�;D�Þ, we consider the nonhomogeneous problem (3.7)–(3.9) with

D� ¼ Dj and l ¼ mj ¼ 0. Then (3.11) reduces to

f ?
u Djc

00 þ det Jc ¼ f ?
u t� g?

us: ð3:18Þ

Since f ?
u Djc

00
j;þ þ det Jcj;þ ¼ 0, this equation has a solution if and only ifð l

0

ð f ?
u t� g?

usÞcj;þ dx ¼ 0: ð3:19Þ

If (3.18) has a solution c, then (3.10) gives us f and we obtain a solution of

(3.7)–(3.9) with D� ¼ Dj, l ¼ mj ¼ 0. Therefore, ðs; tÞ A range qUF ðU�;DjÞ if

and only if (3.19) is satisfied.
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Let us expand s ¼
Py

n¼0 sn cosðpnx=lÞ and t ¼
Py

n¼0 tn cosðpnx=lÞ. Since

cj;þ ¼ cosðpjx=lÞ, (3.19) is equivalent to the condition

f ?
u tj � g?

usj ¼ 0:

Hence, codim range qUF ðU�;DjÞ ¼ 1.

Note that

qUqDFðU�;DjÞ ¼
0 0

0 d 2=dx2

� �
:

Hence, qUqDFðU�;DjÞF0 ¼ ð0;c 00
j;þÞ. Then

ð l
0

ð f ?
u c

00
j;þ � g?

u � 0Þcj;þ dx ¼ �f ?
u lj

ð l
0

cos2
pjx

l
dx0 0:

This means that condition (3) of Proposition 3.5 is satisfied.

Consequently, we have a one-parameter family of non-constant solutions

of FðU ;DÞ ¼ 0:

Theorem 3.6. Let U ¼ ðu; vÞ be a constant steady state of (2.1)–(2.3) such

that 0 < u < 1=
ffiffiffi
k

p
. For each positive integer j, there exists a d > 0 such that

(3.1) has a one-parameter family of nonconstant solutions fðUðsÞ;Dj þDðsÞÞgjsj<d

of the form

uðx; sÞ ¼ uþ sðfj;þðxÞ þ fðx; sÞÞ;

vðx; sÞ ¼ vþ sðcj;þðxÞ þ cðx; sÞÞÞ;

fðx; 0Þ1 0; cðx; 0Þ1 0; Dð0Þ ¼ 0:

Moreover, in a small neighborhood of ðU ;DjÞ in X �R, there is no solutions

other than fðUðsÞ;Dj þDðsÞÞgjsj<d [ fðU ;DÞgjD�Dj j<d0
, where d0 > 0.

3.3. Behavior of critical eigenvalue. For simplicity, let LD denote the

linearized operator qUFðU ;DÞ and LðsÞ denote qUFðU þ sðF0 þCðsÞÞ;
Dj þDðsÞÞ. Obviously Lð0Þ ¼ LDj

has 0 as an eigenvalue. Recall that LD

has mjðDÞ as an eigenvalue such that mjðDjÞ ¼ 0, where we write mjðDÞ in order

to emphasize the dependence on D. From Lemma 3.3 (IV) it follows that

mjðDÞ < 0 if D < Dj, mjðDjÞ ¼ 0, and mjðDÞ > 0 if D > Dj. This means that U

becomes more unstable as D increases over Dj.

In this subsection we study the behavior of the eigenvalue mðsÞ of LðsÞ
such that mð0Þ ¼ 0. To be rigorous, we recall the notion of a K-simple

eigenvalue and its perturbation theory ([2]):
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Definition 3.7. Let X , Y be Banach spaces. Let L, K be bounded

linear operators from X into Y . We say that m A R is a K-simple eigenvalue of

L if

( i ) dim kerðL� mKÞ ¼ codim rangeðL� mKÞ ¼ 1,

(ii) if kerðL� mKÞ is spanned by x0, then Kx0 B rangeðL� mKÞ:

In this terminology, we have seen above that LDj
has 0 as an L1-simple

eigenvalue, which makes ðU ;DjÞ a bifurcation point. Moreover, 0 is also

an i-simple eigenvalue of LDj
, where i is the inclusion mapping X � Y .

Indeed, by (3.15) we see that the left-hand side of (3.19) with ðs; tÞ ¼ F0 ¼
ð�f �

v =f
�
u ; 1Þcj;þ is equal to

f ?
u þ f ?

v g
?
u

f ?
u

� �ð l
0

cos2
pjx

l
dx:

Note that ð f ?
u Þ

2 þ f ?
v g

?
u ¼ f ?

u tr J � det J < 0 since f ?
u > 0, tr J < 0 and

det J > 0. Therefore, (3.19) does not hold, yielding F0 B range LDj
.

Therefore, by Corollay 1.13 of [2] we obtain an i-simple eigenvalue gðDÞ of
LD near D ¼ Dj and an i-simple eigenvalue mðsÞ of LðsÞ near s ¼ 0. Due to

the uniqueness, we see that gðDÞ1 mjðDÞ. Now we apply Theorem 1.16 of [2]

and obtain

lim
s!0;mðsÞ00

�sD 0ðsÞm 0
j ðDjÞ

mðsÞ ¼ 1: ð3:20Þ

From (3.13) we have

2mjðDÞm 0
j ðDÞ þ ljmjðDÞ � ðtr J �DljÞm 0

j ðDÞ � lj f
?
u ¼ 0:

Hence mjðDjÞ ¼ 0 implies

m 0
j ðDjÞ ¼ �lj f

?
u =ðtr J �DjljÞ > 0:

Therefore, we obtain the following

Lemma 3.8. Let mðsÞ be the i-simple eigenvalue of LðsÞ. Then mðsÞ < 0 if

sD 0ðsÞ > 0, while mðsÞ > 0 if sD 0ðsÞ < 0.

To compute DðsÞ we take a shorter way.

Define a function u ¼ pðvÞ by

pðvÞ ¼
m1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 � 4kð1þ vÞ2
q
2kð1þ vÞ ð3:21Þ

for 0a va vM , where

vM ¼ m1

2
ffiffiffi
k

p � 1: ð3:22Þ
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Put

hðvÞ ¼ gðpðvÞ; vÞ for v A ð0; vMÞ: ð3:23Þ

Since u ¼ pðvÞ solves (2.6) for each v A ½0; vM �, we see that if v solves the

boundary value problem

Dv 00 þ hðvÞ ¼ 0 for 0 < x < l;

v 0ð0Þ ¼ v 0ðlÞ ¼ 0:

�
ð3:24Þ

then ðpðvÞ; vÞ is a solution of (3.1), as long as 0a vðxÞ < vM is satisfied for

0a xa l. We also note that ðu; vÞ is a solution of (3.1) in a small neigh-

borhood of ðu; vÞ if and only if v is a solution of (3.24) and u ¼ pðvÞ.
We expand v and D around v and Dj as follows:

vðxÞ ¼ vþ sv1ðxÞ þ s2v2ðxÞ þ s3v3ðxÞ þ � � � ;

DðsÞ ¼ Dj þ sd1 þ s2d2 þ s3d3 þ � � � :

We substitute these expressions in (3.24) and equate each coe‰cient of sm to

zero (m ¼ 0; 1; 2; . . .), obtaining

d1v
00
1 þ h 0ðvÞv1 ¼ 0;

Djv
00
2 þ d1v

00
1 þ h 0ðvÞv2 þ

1

2
h 00v21 ¼ 0;

Djv
00
3 þ d1v

00
2 þ d2v

00
1 þ h 0ðvÞv3 þ h 00ðvÞv1v2 þ

1

6
h 000ðvÞv31 ¼ 0;

� � � � � � � � � � � � � � � � � � � � � � � � � � �

8>>>>>>><
>>>>>>>:

ð3:25Þ

The first equation is satisfied if we take v1 ¼ cj;þðxÞ ¼ cosðpjx=lÞ. Let

L0 ¼ Djd
2=dx2 þ h 0ðvÞ. Then the second equation reads

L0v2 þ d1v
00
1 þ 1

2
h 00ðvÞv21 ¼ 0: ð3:26Þ

This is solvable if and only ifð l
0

d1v
00
1 þ 1

2
h 00ðvÞv21

� �
cj;þ dx ¼ 0: ð3:27Þ

Since v 001 ¼ �ljcj;þ, we have

�ljd1

ð l
0

cos2
pjx

l
dxþ 1

2
h 00ðvÞ

ð l
0

cos3
pjx

l
dx ¼ 0;

which yields

d1 ¼ 0: ð3:28Þ
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Then (3.26) reduces to L0v2 þ 2�1h 00ðvÞv21 ¼ 0. In view of

v21 ¼ cos2ðpjx=lÞ ¼ 1

2
1þ cos

2pjx

l

� �
;

we find that v2ðxÞ is of the following form:

v2ðxÞ ¼ x2 þ h2 cos
2pjx

l
; ðx2; h2 A RÞ:

Substituting this in the equation, we obtain

�l2jDjh2 cos
2pjx

l
þ h 0ðvÞ x2 þ h2 cos

2pjx

l

� �
þ h 00ðvÞ

4
1þ cos

2pjx

l

� �
¼ 0:

Hence,

x2 ¼ � h 00ðvÞ
4h 0ðvÞ ; h2 ¼ � h 00ðvÞ

4f�Djl2j þ h 0ðvÞg :

Here, we observe that (i) di¤erentiation of f ðpðvÞ; vÞ ¼ 0 with respect to

v yields p 0ðvÞ ¼ � fvðpðvÞ; vÞ=fuðpðvÞ; vÞ and (ii) h 0ðvÞ ¼ guðpðvÞ; vÞp 0ðvÞ þ
gvðpðvÞ; vÞ. Therefore,

h 0ðvÞ ¼ fuðpðvÞ; vÞgvðpðvÞ; vÞ � fvðpðvÞ; vÞguðpðvÞ; vÞ
fuðpðvÞ; vÞ

:

Hence,

h 0ðvÞ ¼ det J

f ?
u

: ð3:29Þ

From this and Djlj ¼ det J=f ?
u we see that h 0ðvÞ �Djl2j ¼ �3 det J=f ?

u ¼
�3h 0ðvÞ < 0 and h2 is well-defined. We now have a formula for v2:

v2ðxÞ ¼ � h 00ðvÞ
4h 0ðvÞ þ

h 00ðvÞ
12h 0ðvÞ cos

2pjx

l
: ð3:30Þ

Now the third equation of (3.25) becomes

L0v3 þ d2v
00
1 þ h 00ðvÞv1v2 þ

1

6
h 000ðvÞv31 ¼ 0:

The solvability condition for this equation is as follows:

d2

ð l
0

v 001 v1 dxþ h 00ðvÞ
ð l
0

v21v2 dxþ h 000ðvÞ
6

ð l
0

v41 dx ¼ 0: ð3:31Þ
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We observeð l
0

v 001 v1 dx ¼ � l

2
lj;

ð l
0

v21v2 dx ¼ x2
2
þ h2

4

� �
l;

ð l
0

v41 dx ¼ 3

8
l:

Also, from (3.30) it follows that

2x2 þ h2 ¼ � 5h 00ðvÞ
12h 0ðvÞ :

Therefore, substituting these together in (3.31), we obtain

d2 ¼
1

24lj
ð3h 000ðvÞ � 5h 00ðvÞ2Þ: ð3:32Þ

We conclude this section with the following

Proposition 3.9. Let the assumptions of Proposition 2.2 be satisfied

and let the steady state U ¼ ðu; vÞ of (2.1)–(2.3) satisfy 0 < u < 1=
ffiffiffi
k

p
. Let

fðUðsÞ;DðsÞÞgjsj<d be the branch of nonconstant solutions bifurcating from

ðU ;DjÞ. Denote qUFðUðsÞ;DðsÞÞ by LðsÞ and let mðsÞ be the i-simple eigen-

value of LðsÞ such that mð0Þ ¼ 0. Then, mðsÞ > 0 if 3h 000ðvÞ < 5h 00ðvÞ2, while

mðsÞ < 0 if 3h 000ðvÞ > 5h 00ðvÞ2.

Proof. Since sD 0ðsÞ ¼ sðd1 þ 2sd2 þOðs2ÞÞ ¼ 2s2d2 þOðs3Þ, we have

sD 0ðsÞ > 0 if d2 > 0, whereas sD 0ðsÞ < 0 if d2 < 0, providede that jsj is su‰-

ciently small. Combining this observation with Lemma 3.8 and (3.32), we

obtain the assertion of the proposition.

4. Boundary value problem for a single equation

In this section we describe the classical method to construct all solutions of

the boundary value problem for a single equation obtained from the system

of two stationary algebra-di¤erential equations. Recall that hðvÞ is defined as

a Hölder continuous function on the interval 0a va vM by (3.23), and it is

smooth on the interval 0a v < vM . By a solution of (3.24) we mean a pair

ðv;DÞ A C2
Nð½0; l �Þ � ð0;yÞ for which (3.24) is satisfied and 0a vðxÞ < vM for

x A ½0; l �.
To begin with, we remark that any nonconstant solution of (3.24) is

obtained once we have all of (strictly) monotone increasing solutions. Indeed,

first assume that ðv1ðxÞ;DÞ is a monotone decreasing solution. Then

ðv1ðl � xÞ;DÞ is a monotone increasing solution. Therefore, there exists a

monotone increasing solution ðv0ðxÞ;DÞ such that v0ðxÞ ¼ v1ðl � xÞ. Hence

v1ðxÞ ¼ v0ðl � xÞ. Next, we assume that ðv2ðxÞ;DÞ is a solution of (3.24) for

which there is an x1 A ð0; lÞ such taht v 02ðx1Þ ¼ 0. Then there exist x0 and x1
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such that 0a x0 < x1 < x2 a l, v 02ðx0Þ ¼ v 02ðx2Þ ¼ 0, x 0
2ðxÞ0 0 for x A ðx0; x1Þ [

ðx1; x2Þ. Suppose that v 002 ðx1Þ ¼ 0. Then hðv2ðx1ÞÞ ¼ 0, which implies that

v2ðx1Þ ¼ v or v2ðx1Þ ¼ v. Since v 02ðx1Þ ¼ 0, the uniqueness of solution of the

initial value problem for v 00 ¼ �hðvÞ=D yields that v2ðxÞ1 v or v2ðxÞ1 v,

which is not possible. Hence, v 002 ðx1Þ0 0. We consider the case v 002 ðx1Þ > 0.

Then v 02ðxÞ < 0 for x A ðx0; x1Þ and v 02ðxÞ > 0 for x A ðx1; x2Þ. Let us

put wðtÞ ¼ v2ðx1 þ tÞ for x0 � x1 a ta x2 � x1. Then w 00ðtÞ ¼ v 002 ðx1 þ tÞ ¼
�hðv2ðx1 þ tÞÞ=D ¼ �hðwðtÞÞ=D, and wð0Þ ¼ v2ðx1Þ, w 0ð0Þ ¼ v 02ðx1Þ ¼ 0.

Notice also that zðtÞ ¼ wð�tÞ satisfies z 00ðtÞ ¼ �hðzðtÞÞ=D, zð0Þ ¼ v2ðx1Þ and

z 0ð0Þ ¼ 0. The uniqueness of solution of the initial value problem implies

that wðtÞ1 zðtÞ on ½0;minfx2 � x1; x1 � x0g�. We know that w 0ðx2 � x1Þ ¼
z 0ðx1 � x0Þ ¼ 0, w 0ðtÞ > 0 for 0 < t < x2 � x1 and z 0ðtÞ > 0 for 0 < t < x1 � x0.

Hence, we must have x2 � x1 ¼ x1 � x0. Therefore, we find that v2ðx1 � tÞ ¼
v2ðx1 þ tÞ for t A ½0; x1 � x0�. If x2 < l, then there is an x3 such that x2 <

x3 a l, v 02ðxÞ < 0 for x A ðx2; x3Þ and v 02ðx3Þ ¼ 0. By the same reasoning as

above we find that v2ðx2 � tÞ ¼ v2ðx2 þ tÞ for t A ½0; x3 � x2� and x2 � x1 ¼
x3 � x2. Repeating this process, we conclude that l ¼ nðx2 � x1Þ for some

integer nb 2, and v2ðxÞ is a periodic function. Therefore, v2ðxÞ is monotone

on ½0; l=n�. We may assume that v 02ðxÞ > 0 on ð0; l=nÞ. We define VðxÞ ¼
v2ðnx=lÞ for 0a xa l=n. Then ðVðxÞ;Dl 2=n2Þ is a monotone increasing

solution of (3.24). In this way, we obtain any solution of (3.24) by making

use of a monotone increasing solution for some D > 0.

4.1. Monotone increasing solutions. Multiplying both sides of

Dv 00 þ hðvÞ ¼ 0 ð4:1Þ

by v 0, we obtain

Dv 0v 00 þ hðvÞv 0 ¼ 0:

Let us define

HðvÞ ¼
ð v
v

hðsÞds for 0a va vM : ð4:2Þ

Then

D

2
ðv 0Þ2 þHðvÞ

� �0
¼ 0;

so that, by virtue of v 0ð0Þ ¼ 0,

D

2
v 0ðxÞ2 þHðvðxÞÞ ¼ HðaÞ; where a ¼ vð0Þ:
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Therefore

v 0ðxÞ2 ¼ 2

D
ðHðaÞ �HðvðxÞÞÞ: ð4:3Þ

This is meaningful only if HðaÞbHðvðxÞÞ. If vðxÞ is monotone increasing,

then vðxÞb a for xb 0. Hence we require that HðaÞbHðvÞ for vb a.

Recall that

hðvÞ

> 0 if 0a v < v;

¼ 0 if v ¼ v;

< 0 if v < v < v;

¼ 0 if v ¼ v;

> 0 if v < va vM :

8>>>>><
>>>>>:

Therefore, HðvÞ achieves a local maximum at v ¼ v, is monotone decreasing

in the interval v < v < v, is monotone increasing in the interval v < va vM .

Consequently the only possible choice for a is a A ½v; v�.
Since we are looking for monotone increasing solutions,

v 0ðxÞ ¼ 1ffiffiffiffi
D

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðHðaÞ �HðvðxÞÞÞ

p
: ð4:4Þ

By the boundary condition at x ¼ l, it holds HðaÞ ¼ HðvðlÞÞ. Let b ¼ vðlÞ.
Then it is required that there exists a bb a such that HðbÞ ¼ HðaÞ, which may

restrict the range of a. We shall discuss this later.

Now equation (4.4) can be integrated asð v
a

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðHðaÞ �HðwÞÞ

p ¼ xffiffiffiffi
D

p : ð4:5Þ

In particular, putting x ¼ l results in

ffiffiffiffi
D

p
¼ l

�ð bðaÞ
a

dwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðHðaÞ �HðwÞÞ

p ; ð4:6Þ

which defines a function D ¼ DðaÞ. Equation (4.5) defines v ¼ vðx; aÞ as the

inverse function and it is a monotone increasing solution of the boundary value

problem (3.24) for D ¼ DðaÞ.
Let us consider the domain of the functions DðaÞ and vðx; aÞ.
(A) HðvÞaHðvMÞ. In this case, for each a A ½v; v� there exists a unique

b ¼ bðaÞ such that HðbÞ ¼ HðaÞ. Hence, DðaÞ and vðx; aÞ are

defined for a A ½v; v�.
We may state this situation in terms of b as follows. There is

a unique v? A ðv; vM � such that Hðv?Þ ¼ HðvÞ and, for each b A ½v; v?�,
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the equation HðaÞ ¼ HðbÞ has a unique solution a ¼ aðbÞ A ½v; v�.
Hence, DðbÞ and vðx; bÞ are defined for b A ½v; v?�. We show the case

more clearly in Figure 2 and Figure 3, where kc ¼ 0:021.

(B) HðvÞ > HðvMÞ. In this case there is a unique vm A ðv; vÞ such that

HðvmÞ ¼ HðvMÞ and the equation HðbÞ ¼ HðaÞ has a unique solution

b ¼ bðaÞ A ½v; vM � if a A ½vm; v�. Hence, DðaÞ and vðx; aÞ are defined

for a A ðvm; v�. This case is described by Figure 4.

We explore the cases using numerical calculations for parameter values

m1 ¼ 2:00, m2 ¼ 5:05 and m3 ¼ 6:90. It holds

(1) if k ¼ 0:02, then u ¼ 0:64, v ¼ 0:27, u ¼ 3:29, v ¼ 4:40, HðvÞ ¼ 14:92

and HðvMÞ ¼ 15:74. Therefore HðvÞ < HðvMÞ, and we obtain case (A);

(2) if k ¼ 0:03, then u ¼ 0:65, v ¼ 0:28, u ¼ 3:17, v ¼ 3:87, HðvÞ ¼ 11:91

and HðvMÞ ¼ 4:51. Thus HðvÞ > HðvMÞ, and we obtain case (B).

Fig. 2. Case (A) with HðvÞ < HðvMÞ,
k < kc.

Fig. 3. Case (A) with HðvÞ ¼ HðvMÞ,
k ¼ kc.

Fig. 4. Case (B) with HðvÞ > HðvMÞ, k > kc.
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Hence, both Case (A) and Case (B) can be observed under suitable

parameter values.

For simplicity we put

am ¼ v if HðvÞaHðvMÞ;
vm if HðvÞ > HðvMÞ:

�
We define

C1;þ ¼ fðvðx; aÞ;DðaÞÞ j am < aa vg;

C1;� ¼ fðvðl � x; aÞ;DðaÞÞ j am < aa vg;

C1 ¼ C1;þ [ C1;�:

These are the branches of monotone increasing solutions, monotone decreasing

solutions and monotone solutions, respectively.

4.2. Boundary layer in monotone solutions. In this subsection we consider the

asymptotic behavior of monotone increasing solutions ðvðx; aÞ;DðaÞÞ as a ! v

and as a ! am, where am is a critical value defined above.

Theorem 4.1. As a " v, (i) vðx; aÞ ! v uniformly on ½0; l � and (ii) DðaÞ !
D1 ¼ h 0ðvÞ=ðp=lÞ2.

Theorem 4.2. It holds that

1) if HðvÞaHðvMÞ, then vðx; aÞ develops a boundary layer at x ¼ l, as

a # v, namely,

1a) vðx; aÞ ! v locally uniformly in ½0; lÞ, whereas vðl; aÞ ! bðvÞ;
1b) DðaÞ ! 0;

2) if HðvÞ > HðvMÞ, then there exists a unique vm A ðv; vÞ such that

HðvmÞ ¼ HðvMÞ and as a # vm,

2a) vðx; aÞ ! vðx; vmÞ uniformly on ½0; l �;
2b) DðaÞ ! Dc, where Dc is a positive number;

Remark. In Case 2), the limit vðx; vMÞ is twice continuously di¤erentiable

on ½0; l � and satisfies vðl; vMÞ ¼ vM and v 0ðl; vMÞ ¼ 0; hence it is a solution of

(3.24). However, the linearized operator L ¼ Dd 2=dx2 þ h 0ðvmðxÞÞ is singular

in the sense that Lf B C 0ð½0; l �Þ if f A C2ð½0; l �Þ satisfies, e.g., fðlÞ0 0.

In order to prove these theorems we make use of the following

Lemma 4.3. Assume that the function gðuÞ is continuously di¤erentiable

in the closed interval ½0;U0� and the derivative g 0ðuÞ is Hölder continuous with

exponent g there. Put

GðuÞ ¼
ð u
0

gðtÞdt:
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Suppose that there exist two constants um, uM such that 0 < um < uM < U0

and the following (i)–(iv) are satisfied: (i) gð0Þ ¼ gðumÞ ¼ 0; (ii) g 0ð0Þ < 0,

g 0ðumÞ > 0; (iii) gðuÞ < 0 for 0 < u < um whereas gðuÞ > 0 if um < uaU0; and

(iv) GðuMÞ ¼ 0. For 0 < a < um, um < b < uM we define

I0ðaÞ ¼
ð um
a

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðGðaÞ � GðvÞÞ

p ; I1ðbÞ ¼
ð b
um

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðGðbÞ � GðvÞÞ

p :

Then, (a) I0ðaÞ, I1ðbÞ are continuously di¤erentiable in 0 < a < um, um < b < uM,

respectively; (b) as a " um, I0ðaÞ ! p=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g 0ðumÞ

p
Þ, and as b # um, I1ðbÞ !

p=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g 0ðumÞ

p
Þ; (c) for any d A ð0; umÞ

ð d
a

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðGðaÞ � GðvÞÞ

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
jg 0ð0Þj

p log
1

a
þOð1Þ;

ð um
d

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðGðaÞ � GðvÞÞ

p ¼ Oð1Þ as a # 0;

(d) Assume furthermore g 0ðuMÞ > 0. Then I1ðbÞ remains bounded as b " uM.

Proof. The proof is elementary, see for instance [8].

Proof (of Theorem 4.1). (i) By the properties of HðvÞ, we know that

min
vavavM

HðvÞ ¼ HðvÞ:

Recall that the monotone increasing solution satisfies

dv

dx
ðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðHðaÞ �HðvðxÞÞÞ

D

r
:

This solution is well-defined as long as EðvÞ ¼ HðaÞ �HðvÞ is nonnegative.

As a " v, bðaÞ ! v; therefore, aa vðxÞa bðaÞ implies assertion (i).

(ii) Define IðaÞ ¼
Ð b
a
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½HðaÞ �HðvÞ�

p
dv, then we have DðaÞ ¼

l2=I 2ðaÞ.
We define functions I0ðaÞ and I1ðbÞ by

I0ðaÞ ¼
ðv
a

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½HðaÞ �HðvÞ�

p for v < a < v;

I1ðbÞ ¼
ð b
v

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½HðbÞ �HðvÞ�

p for v < b < vM :

Then we have IðaÞ ¼ I0ðaÞ þ I1ðbðaÞÞ.
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Since HðaÞ ¼ HðbÞ, we have hðaÞ ¼ hðbÞb 0ðaÞ. We see that hðaÞ < 0 for

a < v, and hðbÞ > 0 for b > v. Therefore dbðaÞ=da < 0. Hence, as a " v, we

obtain bðaÞ # v.

Notice that (i) hðvÞ ¼ hðvÞ ¼ 0, (ii) h 0ðvÞ < 0, h 0ðvÞ > 0, (iii) hðvÞ < 0 for

v < v < v, hðvÞ > 0 for v < v < vM and (iv) HðvÞ ¼ 0. Hence, we see that I0ðaÞ
and I1ðbÞ satisfy the conditions of Lemma 4.3. Therefore, by Lemma 4.3 (b),

we have

I0ðaÞ !
p

2
ffiffiffiffiffiffiffiffiffiffi
h 0ðvÞ

p as a " v and I1ðbÞ !
p

2
ffiffiffiffiffiffiffiffiffiffi
h 0ðvÞ

p as b # v:

Consequently, IðaÞ ! p=
ffiffiffiffiffiffiffiffiffiffi
h 0ðvÞ

p
, which means that DðaÞ ! h 0ðvÞ=ðp=lÞ2.

Proof (of Theorem 4.2). First we prove assertion 1). In the case

HðvÞ < HðvMÞ, hðvÞ is twice continuously di¤erentiable in the closed interval

½0; bðvÞ�; hence we can apply Lemma 4.3 to I0ðaÞ and I1ðbÞ. By (c) of Lemma

4.3, IðaÞ ¼ I0ðaÞ þ I1ðbðaÞÞ ! þy as a # v. Hence DðaÞ ! 0 as a # v because

of (4.6).

Let k be any positive number satisfying v < vþ k < v. Let xkðaÞ A ð0; lÞ
be the unique point such that vðxkðaÞ; aÞ ¼ vþ k. Then Lemma 4.3 (c)

implies

xkðaÞ
l

¼
ð vþk

a

dvffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðHðaÞ �HðvÞÞ

p �
IðaÞ ! 1

as a # v. Note that vðx; aÞ is monotone increasing in x, and hence we have

aa vðx; aÞa vþ k for 0a xa xkðaÞ. Since xkðaÞ ! l, we may conclude that

vðx; aÞ ! v uniformly on ½0; l � d� as a # v for any d > 0. On the other hand,

vðl; aÞ ¼ bðaÞ " bðvÞ as a # v.

On the other hand, when HðvÞ ¼ HðvMÞ, we have bðvÞ ¼ vM and hðvÞ
is not di¤erentiable at v ¼ vM . However, we can prove that I1ðbÞ remains

bounded as b " vM . Indeed, HðvÞ is convex in ½v; vM � since h 0ðvÞ > 0 in the

interval ½v; vMÞ. Therefore HðvÞbHðbÞðv� vÞ=ðb� vÞ for v A ½v; b�, where v <

ba vM . Hence, HðbÞ �HðvÞbHðbÞðb� vÞ=ðb� vÞ for v A ½v; b�, from which

it follows that

I1ðbÞa
ffiffiffiffiffiffiffiffiffiffiffi
b� v

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2HðbÞ

p ð b
v

dvffiffiffiffiffiffiffiffiffiffiffi
b� v

p ¼
ffiffiffi
2

p
ðb� vÞffiffiffiffiffiffiffiffiffiffiffi
HðbÞ

p :

This verifies the assertion. Once we know the boundedness of I1ðbðaÞÞ as

a # v, we can argue in exactly the same way as in the case HðvÞ < HðvMÞ and

obtain the conclusion also in this case.

Next we prove assertion 2). We have just proved that I1ðbÞ remains

bounded as b " vM . Hence it is su‰cient to verify that I0ðaÞ remains bounded
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as a # vm. If h 0ðvmÞb 0, then we can use the convexity of HðvÞ in the interval

½vm; v� as in the arguments above.

If h 0ðvmÞ < 0, we divide the integration interval ½vm; v� into ½vm; vI � and

½vI ; v�, where h 0ðvI Þ ¼ 0. We use the convexity of HðvÞ in the interval ½vI ; v�
and obtain HðvÞaHðvI Þðv� vÞ=ðvI � vÞ, and hence HðaÞ �HðvÞbHðvI Þ �
HðvÞbHðvI Þðv� vI Þ=ðv� vI Þ on ½vI ; v�. On the interval ½vm; vI �, the con-

cavity of HðvÞ implies HðvÞa hðaÞðv� aÞ þHðaÞ, so that HðaÞ �HðvÞb
�hðaÞðv� aÞ. Using these estimates, we can easily derive a uniform bound

on I0ðaÞ as a # vm. We omit the detail.

Therefore, in Case (A) (i.e., HðvÞaHðvMÞ), the solution develops a

boundary-layer. On the other hand, in Case (B), no layer appears in the

monotone solutions, and DðaÞ is bounded away from 0.

4.3. Global behavior of bifurcating branches. Let S be the set of all non-

constant solutions of the boundary value problem for the single equation (3.24)

and Cj denote the connected component of S, the closure in C 0ð½0; l �Þ �
ð0;þyÞ, which contains the bifurcation point ðv;DjÞ. By the well-known

result of Rabinowitz [10] (see also [9] and Appendix of [15]), we see that if Cj

is compact then it contains another bifurcation point ðv;DkÞ for some k0 j.

The following lemma, however, rules out this possibility, and implies that Cj is

not compact in D� ð0;þyÞ where D ¼ fv A C 2ð½0; l �Þ j �1 < vðxÞ < vM for all

x A ½0; l �g.

Lemma 4.4. If m0 n then Cm \ Cn ¼ q.

Proof. To prove this, we define the mode of a nonconstant solution vðxÞ
of (3.24). We say that a solution vðxÞ is of mode n if v 0ðxÞ has n� 1 zeros in

the open interval ð0; lÞ. Therefore, if vðxÞ is monotone increasing (or decreas-

ing), then the mode of vðxÞ is one.

We claim that any nonconstant solution ðvðxÞ;DÞ on Cm is of mode m.

Clearly, near the bifurcation point ðv;DmÞ, solutions on Cmnfðv;DÞ jD > 0g are

of mode m. Assume for contradiction that Cm contains a solution ðwðxÞ;DÞ of
mode n0m. Then by continuity of v 0ðxÞ with respect to D, the derivative

~vv 0ðxÞ of some solution ð~vv; ~DDÞ A Cm must have a double zero. But, this implies

that ~vv 0ðxÞ1 0 since

D
d 2~vv 0

dx2
þ h 0ð~vvÞ~vv 0 ¼ 0: ð4:7Þ

It is important to point out that the argument above works only in the case

�1 < ~vv < vM for all x A ½0; l � since the uniqueness of the solution of the initial

value problem is used to conclude ~vv1 0. The function hðvÞ is not di¤erenti-
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able at v ¼ vM , though it is Hölder continuous there. However, if ~vvðxMÞ ¼ vM
for some xM A ½0; l �, then xM is a maximum point of ~vvðxÞ, and hence

~vv 0ðxMÞ ¼ 0. If in addition xM is a double zero of ~vv 0ðxÞ, then ~vv 00ðxMÞ ¼ 0.

Therefore, hð~vvðxMÞÞ ¼ 0. On the other hand,

hð~vvðxMÞÞ ¼ hð~vvMÞ ¼ gðpðvMÞ; vMÞ > 0

since the point ðpðvMÞ; vMÞ is in the region where gðu; vÞ > 0. This excludes

the possibility that ~vv 0 has a double zero at x ¼ xM .

Therefore, ð~vv; ~DDÞ must be a bifurcation point. But this leads to a contra-

diction because there exist two sequences of solutions fðwnðxÞ;DnÞgyn¼1 and

fðvmðxÞ;DmÞgym¼1 such that ðwnðxÞ;DnÞ ! ðv; ~DDÞ as n ! y, ðvmðxÞ;DmÞ ! ðv; ~DDÞ
as m ! y, wnðxÞ is of mode n whereas vmðxÞ is of mode m. Since ðv; ~DDÞ is a

simple bifurcation point, the solution set near ðv; ~DDÞ consists of two curves: one

is the trivial branch fðv;DÞ jD > 0g and the other is a branch of nonconstant

solutions of some definite mode (see Theorem 3.6).

Now that Cj is not compact in D� ð0;þyÞ, we would like to know in

what way the branch Cj approaches the boundary. First, we consider the case

where D is su‰ciently large.

Proposition 4.5. Assume that condition ðDÞ of Proposition 2.2 is satisfied

and k is so small that tr J < 0 is satisfied (see Lemma 3.2). Then there exists

a positive constant D?, depending only on the function hðvÞ and l, such that the

boundary value problem (3.24) has only constant solutions if D > D?.

Proof. It is convenient to put g ¼ 1=D, so that our equation becomes

v 00 þ ghðvÞ ¼ 0:

First, we prove that vðxÞ needs to be close to a constant when g is small.

Since we know that v is a priori bounded, i.e.,

0a vðxÞa vM for x A ½0; l �;

hðvÞ is also bounded by a positive constant M independent of g:

jhðvðxÞÞjaM for x A ½0; l �:

Put

c ¼ 1

l

ð l
0

vðxÞdx
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and choose an xc A ½0; l � such that vðxcÞ ¼ c. Therefore, from the expression

vðxÞ ¼ c� g

ð x
xc

ðx� tÞhðvðtÞÞdtþ
ð xc
0

ðxc � tÞhðvðtÞÞdt
� �

it follows that

jvðxÞ � cja g

ð x
0

ðx� tÞM dtþ g

ð xc
0

ðxc � tÞM dt ¼ gM

2
x2 þ gMx2

c

2
a gMl2:

This in particular yields that max vðxÞ �min vðxÞa 2gMl 2. Using this fact we

can verify that either vðxÞ1 v or it satisfies the inequality

v� 2gMl 2 a vðxÞa vþ 2gMl2 ð4:8Þ

for x A ½0; l �. For the proof we observe that if vðxmÞ ¼ min vðxÞ, then

v 00ðxmÞb 0, so that hðvðxmÞÞa 0. Hence, va vðxmÞa v. Now if max vðxÞ >
vþ 2Ml2, then vðxÞ > v for all x A ½0; l �, which is impossible. Therefore,

max vðxÞa vþ 2gMl 2. Next, assume that v < min v < v� 2gMl 2. Then

max vðxÞ < v, so that hðmax vðxÞÞ < 0. This contradicts the fact that

v 00ðxMÞa 0 for xM such that vðxMÞ ¼ max vðxÞ. Consequently we have either

vðxÞ1 v or inequality (4.8).

Now we decompose v into

vðxÞ ¼ cþ jðxÞ; where c ¼ 1

l

ð l
0

vðxÞdx;
ð l
0

jðxÞdx ¼ 0:

Then

j 00 þ ghðcþ jÞ ¼ 0;

which yields

j 00 þ gðhðcÞ þ h 0ðcþ yjÞjÞ ¼ 0;

where y ¼ yðxÞ satisfies 0 < y < 1. Multiply both sides with j and then

integrate the resulting equation over the interval ½0; l �. We obtain

�
ð l
0

ðj 0Þ2 þ g

ð l
0

h 0ðcþ yjÞj2 dx ¼ 0:

We fix a d0 > 0 such that vþ d0 < vM , and assume that 2gMl2 a d0.

Then, thanks to (4.8), we have

jh 0ðcþ yjðxÞÞjaM1 for x A ½0; l �;
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provided that 2gMl 2 a d0, where M1 is a positive constant depending only

on d0. Thus we obtain

ð l
0

ðj 0Þ2dxa gM1

ð l
0

j2 dx:

Recalling the Poincaré type inequality

ð l
0

w2 dxa
1

l1

ð l
0

ðw 0Þ2dxþ 1

l

ð l
0

wðxÞdx
� �2

with l1 ¼ ðp=lÞ2;

we find that ð l
0

ðj 0Þ2dxa gM1 �
1

l1

ð l
0

ðj 0Þ2dx;

showing that j 0 1 0 if gM1=l1 < 1. In other words, vðxÞ1 v if D >

M1=l1.

Therefore, Cn cannot extend to the neighborhood of D ¼ þy, so

that the projection of the branch Cn on R forms either (i) an interval

fD j 0 < DaDMg or (ii) an interval fD j d? aDaDMg, where DM , d? are

positive constants. Combined with Theorem 4.2, this observation yields the

following

Proposition 4.6. Let ProjR Cn denote the projection of Cn on R.

(i) If HðvÞaHðvMÞ, then ProjR Cn ¼ ð0;DM � for some DM > 0. (ii) If

HðvÞ > HðvMÞ, then ProjR Cn ¼ ½d?;DM � for some DM > d? > 0.

Remark. Let us consider the case HðvÞ > HðvMÞ and the branch of

monotone increasing solutions C1;þ ¼ fðvð�; aÞ;DðaÞÞ j vm < aa vg where vm < v

satisfies HðvmÞ ¼ HðvMÞ. The arguments at the beginning of Subsection 4.1

yield that the initial value problem for Dv 00 þ hðvÞ ¼ 0 subject to vð0Þ ¼ a < vm
and v 0ð0Þ ¼ 0 has a unique strictly increasing solution vðx; aÞ which satisfies

vðx; aÞ ¼ vM for some x > 0, but v 0ðx; aÞ > 0. Thus, the boundary value

problem (3.24) has no solution satisfying vð0Þ < vm. The branch C1;þ, there-

fore, cannot continue beyond the singular solution ðvðx; vmÞ;DðvmÞÞ mentioned

in Remark immediately after Theorem 4.2. Consequently, C1;þ is a curve

connecting the bifurcation point ðv;D1Þ with ðvð�; vmÞ;DðvmÞÞ A ðqDÞ � ð0;yÞ.

5. Appendix

Here we give some explicit formulas for p�ðvÞ, hðvÞ and their derivatives.
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p�ðvÞ ¼
m1 �

ffiffiffiffiffiffiffiffiffiffi
EðvÞ

p
2kð1þ vÞ ; where EðvÞ ¼ m2

1 � 4kð1þ vÞ2;

hðvÞ ¼ �m3vþ
m2

m1
þ m2

m1
� 1

� �
v

� �
p�ðvÞ;

h 0ðvÞ ¼ �m3 þ
m2 �m1

m1
þm2 þ ðm2 �m1Þv

ð1þ vÞ
ffiffiffiffiffiffiffiffiffiffi
EðvÞ

p
 !

p�ðvÞ;

h 00ðvÞ ¼ 2p�ðvÞ �
ðm2 �m1ÞEðvÞ þ kðm2 þ ðm2 �m1ÞvÞðp�ðvÞ

ffiffiffiffiffiffiffiffiffiffi
EðvÞ

p
þ 2ð1þ vÞÞ

ð1þ vÞEðvÞ
ffiffiffiffiffiffiffiffiffiffi
EðvÞ

p :
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