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ABSTRACT. This paper is devoted to the existence and (in)stability of nonconstant
steady-states in a system of a semilinear parabolic equation coupled to an ODE, which
is a simplified version of a receptor-ligand model of pattern formation. In the neigh-
borhood of a constant steady-state, we construct spatially heterogeneous steady-states
by applying the bifurcation theory. We also study the structure of the spectrum of
the linearized operator and show that bifurcating steady-states are unstable against
high wave number disturbances. In addition, we consider the global behavior of the
bifurcating branches of nonconstant steady-states. These are quite different from
classical reaction-diffusion systems where all species diffuse.

1. Introduction

In this paper we continue the study of a diffusion-ODE model with Turing
instability and hysteresis started in [4]. In the seminal paper [16] in 1952,
Turing proposed the idea of Diffusion-Driven Instability (DDI, for short),
which asserts that in a system of two reacting chemicals, different diffusion
rates may lead to a destabilization of a spatially uniform stationary state under
spatially heterogeneous disturbance, thereby leading to a spontaneous forma-
tion of a nontrivial spatial structure, i.e., pattern. Since then many mathe-
matical models based on DDI have been proposed to explain pattern formation
in the natural world. However, not all patterns are formed as a result of
DDI. There are phenomena which involve interactions among diffusive
substances and non-diffusive substances. For instance, [12] proposed a model
system consisting of free receptors, bound receptors, biochemical and degra-
dative enzyme. Free and bound receptors are located on the cell surface and
hence do not diffuse, while the biochemical and the enzyme both diffuse. This
model contains spatially dependent coefficients. Later, [5] and [6] generalized
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the receptor-based model to models with constant coefficients, which produce
patterns as a result of the existence of hysteresis in the quasi-stationary states.
Recently in [4], we considered systems of reaction-diffusion equations coupled
with ordinary differential equations, similar to the models proposed in [5],
which exhibit DDI and hysteresis. We proved the existence and stability of
stable far from equilibrium steady-states with jump discontinuity. On the other
hand, instability of all continuous steady-states in such systems has been shown
in [7].
In this paper we study the following system proposed in [4]:

ou 2

u
Ef—u—uv—i—mlm for XE(O,[),t>0, (11)
o o 2

a_l;: EZ_MU_”U'HW# for x e (0,7), 1> 0, (1.2)
%(I,O):g—i(z‘,l):o for x=0,/,¢t>0, (1.3)
(u(0,.x),0(0,.x)) = (uo(x), vo(x)) € C°(T) x (C*(1) N C(I)), (1.4)

with positive initial data. This is a quasi-steady state approximation of the
system

2

Juy u;
—> = —vuyr — fusv+ 0 + ot
5 1y — Puy 11+Kuj% b,
(%lb
—— = —Vaup + Pusv — aup,
ot
ov 0% Mf
—=D——v3v—Pusv+0 + o,
ot oxz Puy 11 Ku} b

where u; and u;, denote the density of free receptors and bound receptors,
respectively; v is the concentration of ligand which is diffusive. Equations
(1.1)—(1.4) are obtained formally by letting 0 | 0 and appropriate scaling of the
independent and dependent variables.

In order to understand the global-in-time behavior of solutions of the
initial-boundary value problem (1.1)—(1.4) it is crucial to know not only the
stability of discontinuous steady-states but also how unstable the steady-states
in the neighborhood of the constant solution are.

To explain the novelty in the model dynamics, let us recall the Turing
scenario: Starting from an almost uniform initial state, DDI augments the
amplitude of the disturbance of specific wave numbers and the solution is
forced to leave the neighborhood of the constant steady state, eventually being
attracted by a stable steady state with, presumably, the same wave numbers.
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Numerical simulations suggest that the final Turing pattern usually does not
depend on the initial data. Rather, the initial disturbance seems to only
trigger the emergence of pattern. We are still far from the complete under-
standing of the phenomenon.

The purpose of this paper is to investigate the existence of nonconstant
(continuous) steady states in a neighborhood of the constant steady state
(Theorem 3.6) and their degree of instability (Lemma 3.3 and Proposition 3.9).
Unlike the reaction-diffusion systems with all diffusing species, the constant
steady state of (1.1)—(1.4) which undergoes DDI is unstable against any dis-
turbances of sufficiently large wave number. This is quite a contrast to the
standard case where only disturbances of finitely many wave numbers can cause
the instability.

Moreover, we consider the global structure of the set of continuous steady
states of (1.1)—(1.4) by taking advantage of the fact that finding such steady
states is reduced to finding solutions of the boundary value problem (3.24) for
a single equation. It is to be emphasized that, for some range of the param-
eter k, the branch %, = {(v,D)|v'(x) has exactly n— 1 zeros in (0,/)} does
not continue to the neighborhood of D =0 and hence it does not contain
solutions which exhibit a concentration phenomenon such as boundary layer
(Theorem 4.2).

This paper is organized as follows: Section 2 provides conditions for the
existence of positive constant steady states in our model system (2.1)—(2.3). In
section 3, we perform the bifurcation analysis near the constant steady states.
In section 4, we focus on the stationary boundary value problem for a single
equation. Particular attention is given to the construction of the monotone
increasing steady states and their dependence on the diffusion coefficient and
the initial data.

2. Constant steady-states

Consider the system of equations

%: (u,v) for x e (0,1), t >0, (2.1
@_Dai)+ (u,v) for xe (0,1),¢>0 (2.2)
é\l - axz g Y ) ) ) *
v v
E(O’ 1) = 6_x(l’ 1)=0 for ¢t >0, (2.3)
where
w2

f(u,U):—u—uv—f—mlm,
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and

2

el 235)

g(u,v) = —p30 — uv + My
and k, my, my, u3 and D are positive constants.
To start with, we search for a constant steady states of system (2.1)—(2.3).
Note that f(u,v) =0 is equivalent to the conditions u =0 or

vt =0. (2.6)

LemMma 2.1.  For arbitrary positive parameters my, my, k and us, the trivial
solution (u,v) = (0,0) is a spatially homogeneous steady-state of (2.1)—(2.3).

Proor. If u =0 then the equation g(u,v) =0 reduces to —uv =0, ie.,
v=0. Hence (0,0) is a unique solution of f(u,v)=g(u,v) =0 with the
property u = 0.

In what follows, we therefore assume that u # 0, hence, the stationary
equation g(u,v) = 0 implies

s u?

U:,u3+ul+ku2' 27)
Putting (2.6) and (2.7) together yields
2
miu 1 np u . (28)
1 + ku? Uy +u 1+ ku?

Positive solutions of (2.8) satisfy the cubic equation (ku® + 1)(u + u3) + myu® —
miu(u + ;) = 0, that is,

ku? + (psk 4+ my — m))u? + (1 — gymy)u + pz = 0. (2.9)
When k is small, the limiting equation
(my — my)u® + (1 — psmy)u+ 3 =0 (2.10)

plays an essential role. If my # m; then this quadratic equation has two roots
By and fy:

g — 11— \/(N3m1 —1)? = duy (my — my)
b 2(my — my)

Y

(2.11)

3 — 1+ \/(ﬂsml = 1)% = 4uy(my — my)
2(1/}’12 —ml)

=

)
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which are real if and only if (uymy + 1)? > 4uzm,. Note that if (uzm; + 1)* <
4usmy and my —my; >0 then the left-hand side of (2.10) is positive for
all ue R, and hence the left-hand side of (2.9) is positive for all u >0
whenever k > 0. This means that (2.9) has no positive roots for any k > 0
if (uymy + 1)2 < 4uymy and my —my > 0. Assume that (u3m; + 1)2 > dusmy
and mj # m;. Then, we have the following cases:

(1) P <O<pyif my <my;

(i) By <P <0 if my >my and pym < 1;

(i) 0< B, <P, if my>my and pym; > 1.

On the other hand, if m; = m; and pym; > 1, then (2.10) has a unique root

ﬁo > 0:
U

The following proposition refines the result in Lemma 3.5 of [4].

PropoSITION 2.2. (A) Let my>my be satisfied If pym <1 or
(pzmy + 1)2 < Auzmy, then equation (2.9) has no positive roots for any
k> 0.

(B) If my <my, then for k>0 sufficiently small (2.9) has three roots
o <0 <o <oz such that

_ (B1 + 13)B1 2
“=h +,u3ml —1+2(m —mz)ﬂ1k+0(k ),
2
o :ﬂz + (ﬂZ +,L(3)ﬂ2 k+ O(kz), and

wmy — 1+ 2(my —mp)p,

_ml—mz+,u3mz—l

o3 = + O(k) as k | 0.

k m; — mj

(C) If my=my and psmy > 1, then for k > 0 sufficiently small (2.9) has
three roots o < 0 < op < oz such that

/ —1 2
op = s . UL oWk),

Vk 2(puzmy — 1)
4
Oy = ﬂ() + Llé‘k + O(kz),
(ﬂ3m1 -1)
Viusm — 1 H3m
o3 = — + 0(Vk as k| 0.
SR 2wm—n T OYN !

(D) If my > my, uymy > 1 and (uzmy + 1)* > 4uzmy, then for k > 0 suf-
ficiently small (2.9) has three roots o1 < 0 < oy < o3 such that
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_mz—ml _,u3ml—2

= k my — m + O(k)7
(B +N3)ﬁ12 2
=B + k+ O(k?),
% =p wmy — 1+ 2(my —my)f, (k%)
(B +ﬂ3)ﬁ§ 2
= k+ O(k k|O.
o3 ﬁZ +'u3m1 1 +2(I’}’11 — mz)ﬁg + ( ) as l

Proor. Let Q(u) denote the left-hand side of (2.9). Then its discriminant
4o is given by

Ag = (usk +my —my)* (1 = wym)? — 4k(1 — pym)* — 4(psk +my — m) iy
— 27k 43 4+ 18k ( sk + my — my) (1 — pymy) iy, (2.13)

It is well-known that (i) if 49 > 0, then (2.9) has three distinct real roots, (ii) if
Ag =0, then (2.9) has either one real triple root or one real simple root and
one real double root, and (iii) if 4p <0, then (2.9) has only one real root.
Since Q(0) >0 and Q(u) — —oo as u — —oo, there is at least one negative
root, ie., oy <0. Assume that 49 > 0. We note that the other two roots
op < o3 are of the same sign because of Q(0) >0. If Q'(0) <0, then
Q'(u) =0 has a negative root and a positive root; hence 0 < op < oz. If
Q'(0) >0 and Q”(0) >0, then Q'(u) does not vanish for u >0, and hence
oy < a3 <0. Finally, if Q'(0) >0 and Q"(0) <0, then Q'(u) =0 has two
positive roots, implying 0 < o < a3. Notice also that Q’(0) < 0 if and only if
tymy > 1. We therefore conclude that (2.9) has positive roots if and only
if either (a) 49 > 0 and p3m; =1 or (b) 49 =0, puzm; < 1 and 3k +my —my
< 0. Case (b) occurs only when m; > mj.

Let us regard the discriminant as a function of ke (—o0,400) and
denote it by Ag(k). Notice that Ag(k) = —co as k — +oo. If 49(0) =
(my — m)2{(1 = uymy)* — 4(my — my )z} > 0 then there exists a positive num-
ber k* such that Ap(k) >0 for all 0 < k < k* and Ag(k*) =0. It is easy to
see that 4p(0) > 0 if and only if one of the following (1) and (2) is satisfied:
(1) my >my or (2) my>my and (1 + usmy)* > dusmy.  Therefore, Q(u) =0
has two positive roots oy < a3 if one of the following conditions 1°)-3°) is
satisfied:

1°) my <my, pymy > 1, (14 ugmy)* > 4pzmy and 0 < k < k*,

2°) my >my, uymp =1 and 0 < k < k*,

3°) my >my and 0 < k < min{k*, (m; —m)/us}.

When k > 0 is close to 0, we can construct two roots near f3;, 5, or f,
by the standard perturbation arguments. Moreover, by putting u = ¢(k)/k
with ¢(0) # 0 in the case my # m; and u = y(k)/v'k with y(0) # 0 in the case
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my = my, we find easily the leading terms of ¢(k) and (k) as k£ | 0. We omit
the detail.

PROPOSITION 2.3. Let oy, 0, a3 be three roots of equation (2.9). Put

gy —2 - \/(ﬂsml —2)? 4 8u3(my — m»)
4us

K1

b

My =2+ \/(ﬂsml —2) + 8uz (1 — m»)

K2
4z

(1) If my < my, then k1 <0 < ks and (2.9) has three real roots such that
o <0<oc2<1/\//;<oc3 for 0<k<l€§.

(ii) If my=my and psmy > 2, then (2.9) has three real roots such that
<0< <1/Vk<as for 0<k< (uzm —2)/(2us).

(iii) Let my > my and p3 > p*, where

. 2
U :W(Zmz—ml—i—Z (my — my)my).

Then 0 < i) < 12, and (2.9) has three real roots such that o < 0 <
o0 < 1/\//;<oc3 for k1 < Vk < K.

ProOF. The assertions are verified by finding conditions for Q(1/vk) to
be negative. Indeed, since

0(1/VR) = ¢ (ma = + (2. ) VE + 245K),

we have only to examine the sign of the quadratic function 2u;x* —
(usmy — 2)x +my —m;. Since the reasoning is elementary we omit the detail.

In what follows we assume one of the conditions stated in (B), (C) and
(D) of Proposition 2.2 and in (i), (ii) and (iii) of Proposition 2.3. Then we
have two positive roots 0 < o < a3 of equation (2.9) and define u = o, and
i = o3. Hence, putting

ngz mzﬁz

Tlmro k) U Gk (2.14)

=

we conclude that system (2.1)—(2.3) has a spatially homogeneous steady state
(0,0) and exactly two positive homogeneous steady states (u,v), (i#,?) when one
of the conditions (B), (C), (D) of Proposition 2.2 and (i), (ii), (iii) of Proposition
2.3 is satisfied.

The existence of spatially homogeneous states is illustrated in Figure 1.
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35+ == =f=01
——g=0

Fig. 1. Plot of the nullclines of f(u,v) =0 and g(u,v) =0.

3. Bifurcation analysis

In this section we formulate the stationary problem for (2.1)—(2.3)

f(M,U) = 07
d*v
DWJFQ(%U) =0, (3.1)
dv dv
L) =50 =0

in an abstract setting and apply the classical theorem on bifurcation from
simple eigenvalues (see Proposition 3.5 below). Then we proceed to studying
the spectral properties of the linearized operator around the bifurcating solu-
tions by applying the theorem on perturbation of K-simple eigenvalues (see
Definition 3.7 and Lemma 3.8, and references [2], [9], [13]).

3.1. Spectrum of linearized operator around constant solutions. Let C°(]0,/])
denote the Banach space of all continuous functions on the interval [0,/]
equipped with the maximum norm: |[ju||,, = maxo<.</|u(x)|]. Let C%([0,/])
denote the space of all twice continuously differentiable functions v(x) on
[0,/] satisfying homogeneous Neumann boundary conditions: v'(0) = v'(/)
=0. Let

X =C%0,1)) x C:([0,7]))  and Y = C°([0,]) x C°([0,1]).

These are Banach spaces with respective norms

o 1Vl + 10"

1t 0) |y = [luall o +- [0 w and (@ 0)lly = llull, + (o]l
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We sometimes denote a point (u,v) € X by U. Let % be an open set of X
defined by

U={U = (u,v) e X |u(x)+1>0 for all 0 <x </}
We define a mapping F(U,D) from % x (0,400) into ¥ by
F(U,D) = (f(u,v), Dv" + g(u,v)) for U = (u,v). (3.2)

Since f(u,v) and g(u,v) are real analytic, we can prove that F is an analytic
mapping from % x (0,+c0) into Y and that the Fréchet (partial) derivative
with respect to U = (u,v) of F at (U.,D.), U, = (us,v.), is given by

(N A
aUF(U*vD*)<g* D*dZ/dx2+g; )

u

(3.3)

where

f; :fl;(”*av*)v fL* :fv(“*av*)a g; :gu(u*av*)a g;zgv(u*,v*).
Recall that

2miu

Slww) = —1— v+ " ) = —u
(1 + ku?) (3.4)
g(uv)__v+2m72u go(u,0) = —p3 — u ‘
o (ke SO0 TR
The Jacobi matrix J at U, of the kinetic system is given by
o=t 1) (3)
9u Yo
and plays an important role in what follows.
For j=0,1,2,..., let
nj 2
4= <l> . (3.6)

Then /; is an eigenvalue of —d?/dx* under homogeneous Neumann boundary
conditions, and cos(zjx/l) is an eigenfunction belonging to /.. Moreover,

{cos(njx/1)}2, form a basis of L*(0,1).

LemMA 3.1.  Suppose that U, = (u.,v,) is a constant steady-state of (2.1)—
(2.3). Let %, denote the linearized operator dyF(U,,D.): X — Y. Then the
spectrum of %, consists of the eigenvalues {/l_/}jio u{ ,uj};io, with Re 4; < Re w;,
of finite multiplicity and the point A = f,(u.,v.) which is an eigenvalue of infinite
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multiplicity if f,(u.,v.)gu(tt,v.) =0 or is in the continuous spectrum if
So(tts, v.)gu(us, vi) # 0. Furthermore,

b= =Dty = (1) =t J) + O(1/7),
W= 1+ 00/4)
as j — oo.

For the definition of point spectrum and continuous spectrum, see [3],
VIL5.1, p. 580.

Proor. For AeC€ and (6,7)€Y we consider the nonhomogeneous
problem

Lo+ IS =4+, (3.7)
D" +gib+ g0 =M+, (38)
¥'(0)=y'() =0. (3.9)

If 2 # ff, then from (3.7) we have

_o- LY
¢ = T2 (3.10)
and hence (3.8) reduces to

D*l/j//_’_(j;,:*ii)(g;i/l)7fv*g;w:1__ g:U (311)

S = fa =2

This nonhomogeneous Sturm-Liouville problem has a unique solution if and
only if

o =Agr = 4) = I
(S = 4D

Moreover, if (3.12) holds, then the unique solution ¥ of (3.11) satisfies the
estimate |||, + 'l + V"Il < C(lloll.. + llzll..) for some constant C >0
independent of (o,7). Then, (3.10) determines ¢ uniquely and |¢|,, <
Ci(lloll, + lz|l,) for an appropriate positive constant C;. Hence, %, — 41
has a bounded inverse (%, — )" if (3.12) is satisfied.

Assume now that (3.12) is violated, i.e., 4 satisfies the characteristic
equation

u g (4370 (3.12)

22— (tr J — D.£y)A+det J — D.Aiff =0 (3.13)
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for some j > 0. This equation has two roots 4; and g;:

i
=5t g~ Dty V(trJ = D.6)* — 4(det J — D412},
(3.14)

1
1y = E{trJ - D+ \/(trJ — D./))* —4(det J — D.4ifF)}.

It is straightforward to check that 4; and y; are indeed eigenvalues of %, and

1 X X
(¢ ;) = (— w7, cos T’COS e and

(3.15)

*

) X TjX
(§; W 1) = (— —L— cos jT,cos ]T>

u T H
are eigenvectors belonging to 4; and g;, respectively.

We now prove that A = £ is in the spectrum of %,. We distinguish the
two cases (i) f gy =0 and (i) f}gr # 0.

First we treat the case (i). Suppose f,* =0. Then, (3.7) with ¢ =0 is
satisfied for any . If in addition, g # 0, then (3.8) with 7 = 0 determines ¢
uniquely for each € C%([0,/]). If g* =0, then we find that (3.8) with z =0
is satisfied for any ¢e C°([0,/]) and ¢ =0. Therefore, (3.7)-(3.9) with
o =1 =0 has a nontrivial solution of the form (¢4,0), so that A= f is an
eigenvalue of %, of infinite multiplicity. Let us turn to the case f* #0.
Then g} = 0, and hence (3.7) with ¢ = 0 implies y = 0. Thus, (3.8) with 7 =0
reduces to gi¢ =0. Since g =0, ¢ is arbitrary. Therefore, ker(Z, — f) D
{(,0)| ¢ € C°([0,1])}, showing dim ker(Z, — f;) = oo.

Second, we turn to handle the case (ii). It is easy to check that
&, — f,F is injective. Let R denote the range of %, — f*. We prove that
R = C3([0,1]) x C°([0,1]). To this end, we consider the nonhomogeneous
problem (3.7)-(3.9) with A= f* From (3.7) it follows that Yy =o/f} €
C°([0,7]). But, for (3.8) to have a solution ¥ € C3([0,/]), it is necessary
that o e C3([0,/]). Hence, R C C%([0,1]) x C°([0,/]). Conversely, if (7,7) €
C(10,1]) x C°([0, 1)), then ¢ = [+ {/; 0 — (D" +g7a)} /1) g and ¥ = o /f;
satisfy (3.7)-(3.9) with A= f*. We thus obtain R = C%([0,/]) x C°([0,/]),
which is a proper subset of C°([0,/]) x C°([0,/]). Finally, we observe that
C3([0,1]) is dense in C°([0,7]). This seems to be a standard fact, but for
completeness, we sketch a proof: Approximate o € C°([0,/]) by the solution u,
of the bundary value problem &?u” —u+ ¢ =0 in (0,/) and u'(0) = u'(/) = 0,
where ¢ is a positive number. Since u, is expressed by using the Green’s
function, it is straghtforward to verify that u.(x) converges to o(x) uniformly as
¢ | 0 (for details, see the proof of Lemma 2.9 in [14]). Therefore, R is dense in
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C°([0,1]) x €°(]0,1]), and we conclude that A= f* is in the continuous
spectrum.

The asymptotic behavior of 4; and y; as j — oo is easily obtained from the
formula (3.14).

To know the distribution of eigenvalues we need the following

Lemma 3.2. (a) If U, =(0,0), then f <0, trJ <0 and detJ > 0.

(b) Assume that one of the conditions (B), (C), (D) of Proposition 2.2
or (1), (ii), (iii) of Proposition 2.3 is satisfied. Let U, = (u,v). Then
Jr >0 and det J < 0.

(c) Suppose that one of the conditions (B), (C), (D) of Proposition 2.2 is
satisfied. Let U, = (i1,0). Then f*>0 and detJ > 0. Moreover,
if m¥ <my, then trJ <0, provided that k > 0 is sufficiently small.

(d) Assume that one of the conditions (i), (ii), (ili) of Proposition 2.3 is
satisfied. Let U, = (i,0). Then f* <0, trJ <0 and detJ > 0.

Proor. For U, = (0,0) the assertion is obvious.
Letting Q(u) be the left hand side of (2.9) as in Section 2, we first prove
that

ﬁ*
1+ ku?

det J = — o' (u,). (3.16)
To show this we observe that v(u) = myu/(1 + ku®) — 1 satisfies f(u,v(u)) =0,
hence f,(u,v(u)) + fo(u,v(u))v’'(u) = 0. Therefore, for U, = (u.,v.) # (0,0),
we have

V() = — Ll 0) S (3.17)

Soluev(w))

On the other hand, it is straightforward to see that g(u, v(u)) = Q(u)/(1 + ku?).
Hence,

gt 0(10)) + g (1, 0(0) 0’ () = Q' () /(1 + kue®) = 2kuQ(u) /(1 + kui®).
By virtue of Q(u,) =0 and (3.17), we obtain
G — 9o LI = Q' (w) /(1 + kat?),

which results in (3.16).
From (3.4) and (2.6) it follows that

: My 2myu, miu, 5
= + = 1 — ku?).
/ L+ku? (14 ku?)* (1 +ku2)2( )
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Hence, f >0 if u. <1/vVk and f <0 if u.>1/vVk. Since g <0, we
conclude that trJ < 0 if u, > 1/Vk.

Notice that 0 < u < 1/v/k in all cases stated in Propositions 2.2 and 2.3.
Hence, f,(u,v) > 0. Moreover, Q'(u) < 0 because it is the intermediate root of
Q(u) =0. Consequently det J < 0 for U, = (u,v) by (3.16). Therefore, (b) is
proved.

Assertion (c) is the same as Lemma 3.9 of [4]. Hence we have proved all
assertions of the lemma.

LemmA 3.3. Let U, = (u.,v.) be a constant steady-state of (2.1)—(2.3) and
let %, denote the linearized operator OyF (U, D,). For j=1,2,3,..., define

_ detJ
Lt

(L) If U.=(0,0), then the spectrum of %, is contained in the left half
plane {4 € C|Re A <0} for all D, > 0.

(1) If U, = (u,v), then D; is negative for all j =1,2,3,.... Moreover,
4 <0<y forall j=0,1,2,....

(1) If U. = (a,0) such that > 1/\k, then D; is negative for all j =
1,2,3,.... Moreover, the spectrum of ¥, is contained in the left-
half plane for all D, > 0.

(IV) If U, = (4,0) such that 0 < i < 1/\k, then D; is positive for all
j=1 If D.> Dy then , <0<y, for all n>0. If D, = D; for
some j =1, then Re i, <Reyu, <0 for 1 <n<j—1, 4 <0=y,
and 4, <0 <p, for n=j+1. If Diy1 <D, <D, then Re A, <
Re u, <0 for 1 <n < j, while 4, <0<y, for any n> j+ 1.

D;

if fy #0.

Proor. First, we observe that Re 4, < Re g, < 0 if and only if
trJ—-D,/, <0 and detJ — D, f ¢, > 0.

Moreover, if detJ — D, f)/, <0, then 4, <0 < u,. Combining these obser-
vations with Lemma 3.2, we can prove all assertions easily and we omit the
detail.

DeriNiTION 3.4, Let U, = (u.,v.) be a constant steady-state of (2.1)-
(2.3). Define the stability index Inds(U,, D.) of (U.,D,) by

Inds(U,, D) = #{u, | Re u, < 0},
where #A4 stands for the number of distinct elements of a countable set A.

If U, = (&7 with 0<#< 1/vk, then Inds(U.,D.) = j if D < D, <
D;. This formula is valid for j > 0 if we understand Dy = +c0. We observe
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that U, is linearly stable against disturbances of wave number < Inds(U., D),
but disturbance of wave number > Inds(U., D,) grows.

3.2. Bifurcation. If U, = (u.,v,) is a constant solution of (3.1), then
F(U,D)=0 for all D> 0.

If 0yF(U,,D,) is an isomorphism from X to Y, then by the implicit function
theorem we see that F~'(0)N ¥y = {(U.,D)|(U.,D) e ¥;} where 7, is a
neighborhood of (U.,D.) in X x IR. Therefore, for (U,,D.) to be a bifur-
cation point it is necessary that %, = 0y F (U, D.) does not have a bounded
inverse. The following proposition is a restatement of Theorems 1.7 and 1.18
of [1] in our notation.

ProposiTiION 3.5 (Bifurcation from a Simple Eigenvalue). Let X, Y,
v and F be as above. For D, >0, let L, denote the Fréchet derivative
0uF(U.,D,) and Ly = 0ydpF(U.,D.). Assume that the following conditions
hold:

(1) ker(L,) is one-dimensional, spanned by @y,

(2) range(L.) has co-dimension 1; ie. dim[Y /range(L.)] =1,

(3) LDy ¢ range(L.).
Let Z be any closed subspace of X such that X = span{®y} ® Z (ie. any
Ue X can be uniquely written as U=0®y+V, a € R, VeZ). Then there
is a 6 >0, a neighborhood V"~ of (U, Dy) in X xR and a smooth curve
(¥,D) : (~5,0) = Z xR such that ¥(0) =0, D(0)=D, and F7'(0)NY¥ =
{(Us + 5(@o + ¥(5)), D(s)) | Is| <0} U{(U., D) [ (U, D) e 77},

Let us now condsider when %, satisfies the assumptions of Proposition
3.5. By Lemma 3.3, we see that %, is not invertible only when U, = (@,7)
with 0 < @ < 1/Vk and D, = D; for some j > 1. From Lemma 3.1 it follows
that ker 0y F(U., D;) is spanned by @y = (¢; ., ¥, ) (see (3.15)). To find
range 0y F(U,, D,), we consider the nonhomogeneous problem (3.7)—(3.9) with
D.=D; and A=y;=0. Then (3.11) reduces to

frD" 4+ det Jy = [t — glo. (3.18)
Since f,*Djyy/', +det Jyy; . =0, this equation has a solution if and only if
1
Jo(fu*r =g, 0); . dx=0. (3.19)
If (3.18) has a solution y, then (3.10) gives us ¢ and we obtain a solution of

(3.7)-(3.9) with D. = D;, A= p; =0. Therefore, (o,7) € range dyF(U., D;) if
and only if (3.19) is satisfied.



Continuous stationary solutions 231

Let us expand 0 = Y, 0, cos(nnx/l) and 1 =) _," 7, cos(nnx/l). Since
¥+ = cos(njx/l), (3.19) is equivalent to the condition

17— 9,0 =0.

Hence, codim range 0y F(U.,,D;) = 1.
Note that

AN O 0
OUODF(U*,DJ-) = (0 dz/dx2>.

Hence, 0ydpF(U.,D;)® = (0, ). Then

! - " d ! 2 ”jx
[ v =i o s =i [ cos* B ax 20
This means that condition (3) of Proposition 3.5 is satisfied.
Consequently, we have a one-parameter family of non-constant solutions

of F(U,D)=0:

THEOREM 3.6. Let U = (i1,0) be a constant steady state of (2.1)—(2.3) such
that 0 < it < 1/\/k. For each positive integer j, there exists a é > 0 such that
(3.1) has a one-parameter family of nonconstant solutions {(U(s), D; + D(s))} ;<5
of the form

<
—
=

[
~

Il

i+ S(¢j,+(x) + ¢(X7 S)),
v(x,5) = 0+ 50 1 (x) + ¥ (x,5))),
#(x,0) =0, Y(x,0) =0, D(0) =0.

Moreover, in a small neighborhood of (U,D;) in X x R, there is no solutions
other than {(U(s), Dj + D(s))} s YU{(U, D)} p_p,|<s,» Where do > 0.

3.3. Behavior of critical eigenvalue. For simplicity, let ¥p denote the
linearized operator O0yF(U,D) and #(s) denote J0yF(U + s(@y+ ¥(s)),
D; + D(s)). Obviously #(0) = &p, has 0 as an eigenvalue. Recall that %
has 4;(D) as an eigenvalue such that y;(D;) = 0, where we write 4;(D) in order
to emphasize the dependence on D. From Lemma 3.3 (IV) it follows that
(D) <0 if D < Dj, u;(D;) =0, and y;(D) > 0 if D > D;. This means that U
becomes more unstable as D increases over D;.

In this subsection we study the behavior of the eigenvalue u(s) of Z(s)
such that x(0) =0. To be rigorous, we recall the notion of a K-simple
eigenvalue and its perturbation theory ([2]):
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DeriniTION 3.7. Let X, Y be Banach spaces. Let L, K be bounded
linear operators from X into Y. We say that u € R is a K-simple eigenvalue of
L if

(i) dim ker(L — uK) = codim range(L — uK) = 1,

(i) if ker(L — uK) is spanned by xo, then Kxy ¢ range(L — uK).

In this terminology, we have seen above that #p, has 0 as an Z-simple
eigenvalue, which makes (U, D;) a bifurcation point. Moreover, 0 is also
an i-simple eigenvalue of Zp, where i is the inclusion mapping X C Y.
Indeed, by (3.15) we see that the left-hand side of (3.19) with (o,7) = @y =

(/L5 DY, 4 s equal to

* / .
<fu* +f“ i’”) J cos? ilx dx.
u 0

Note that (f})*+ frgr=frtrJ—detJ <0 since f*>0, trJ <0 and
det J > 0. Therefore, (3.19) does not hold, yielding @, ¢ range <p,.

Therefore, by Corollay 1.13 of [2] we obtain an i-simple eigenvalue y(D) of
&p near D = D; and an i-simple eigenvalue u(s) of #(s) near s =0. Due to
the uniqueness, we see that y(D) = (D). Now we apply Theorem 1.16 of [2]
and obtain

—sD'(s)u(D;
tim POy (3.20)
s—0, u(s) #0 ,u(s)
From (3.13) we have
245(DY(D) + Li(D) — (tr J = DL(D) — 4,1 = 0.
Hence x;(D;) = 0 implies
WD) =~ £/ (0 T = Dyty) > 0.

Therefore, we obtain the following

LemMmaA 3.8.  Let u(s) be the i-simple eigenvalue of #(s). Then u(s) <0 if
sD'(s) > 0, while u(s) >0 if sD'(s) <0.

To compute D(s) we take a shorter way.
Define a function u = p(v) by
my — /m? — 4k(1 + v)?
plv) = 2%(1 +v)

(3.21)
for 0 < v < vy, where

vy =—m— 1. (3.22)
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Put
h(v) = g(p(v),v) for ve (0,vy). (3.23)

Since u = p(v) solves (2.6) for each ve[0,v)], we see that if v solves the
boundary value problem

{DU” +h(v) =0 for 0 <x </ (3.24)

v'(0) = v'(1) = 0.

then (p(v),v) is a solution of (3.1), as long as 0 < v(x) < vy is satisfied for
0<x</ We also note that (u,v) is a solution of (3.1) in a small neigh-
borhood of (&,7) if and only if v is a solution of (3.24) and u = p(v).

We expand v and D around ¢ and D; as follows:

v(x) =0+ sv1(x) —|—szvz(x) +s3u3(x) +e
D(S):Dj+Sd1+Szd2+s3d3+--..

We substitute these expressions in (3.24) and equate each coefficient of s to
zero (m=0,1,2,...), obtaining
div! + h'(9)v; =0,

1
Djvy + dyv] + h' (D)o, + Eh"vlz =0,
1 (3.25)

Dy + divl + dyvi + W' (D)vs + h" (D)viv2 + Eh’”(ﬁ)vf =0,

The first equation is satisfied if we take v; =y, . (x) = cos(mjx/l). Let
Ly = D;d*/dx*+ h'(v). Then the second equation reads

1
Lovy + dyo] + Eh”(l‘z)vf =0. (3.26)
This is solvable if and only if

! 1
L (dlu;’ + Eh”(aﬁﬁ) W, dx=0. (3.27)

: "n_ _ p
Since v{' = 4y, ,, we have

! . / .
—;d, J cos? X gy + 1h"(z‘;) J cos® X dx =0,
. I 2 . I

which yields
dy =0. (3.28)
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Then (3.26) reduces to Lovp +27'h"(8)v? = 0. In view of
v? = cos?(mjx/l) = : 1 + cos 21 ,
2 e
we find that vy(x) is of the following form:

2mjx
0 =& +mes T, (G eR),

Substituting this in the equation, we obtain

2nj. 27, h" (o 27,
—(>iDin, cos %x +h'(v) (fz + 17, cos ?) + iv) <1 + cos ?) =0.
Hence,

h”(ﬁ) h”(ﬁ)

o S LR Y, vy GV

AN

Here, we observe that (i) differentiation of f(p(v),v) =0 with respect to

v yields  p'(v) = —fu(p(v),v)/fu(p(v),v) and (i) ()_ u(p(v),0)p"(v) +
gu(p(v),v). Therefore,

oy _ S0 0)0e(p(0).0) ~ f(p(0). D)l p(0). )
") = Fulp(0),0) '

Hence,

det J
1

From this and Dj/; =detJ/f we see that h'(0) — D;/o; = =3 det J/f, =
—3h'(%) < 0 and #, is well-defined. We now have a formula for vy:

W) | W
' (5) T 120 (o)

W' (5) = (3.29)

(3.30)

br(x) = — l)_] 2mjx .

l
Now the third equation of (3.25) becomes

|
Lovs + dyvi + 1" (B)v102 + 1" (@)0] = 0.

The solvability condition for this equation is as follows:

/ / hm(ﬁ) /
ng vivy dx + h”(ﬁ)J vivy dx + g J vl dx = 0. (3.31)
0 0 0
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We observe

/ ! 1
/ &M 3
"oy dx = —=¢; 2odx = (2= +12)1 J“d:—l.
Jovlvl X 50 Jovlvz X <2+4 ) Ov1 X g

Also, from (3.30) it follows that

5h" (D)
2 -2\
2T = )
Therefore, substituting these together in (3.31), we obtain

1

& 24/,

(3h" (5) — 5h" (5)?). (3.32)

We conclude this section with the following

PropPoSITION 3.9. Let the assumptions of Proposition 2.2 be satisfied
and let the steady state U = (i,7) of (2.1)—(2.3) satisfy 0 <u < 1/vVk. Let
{(_U(s),D(s))}IS‘ <5 be the branch of nonconstant solutions bifurcating from
(U,Dj). Denote 0yF(U(s),D(s)) by Z(s) and let u(s) be the i-simple eigen-
value of L(s) such that u(0) =0. Then, u(s) >0 if 30" (5) < 5h"(v)*, while
u(s) <0 if 30" (%) > Sh" (7)™

PrROOF. Since sD’(s) = s(d, + 2sdy + O(s?)) = 2s°d, + O(s*), we have
sD'(s) > 0 if d» > 0, whereas sD'(s) < 0 if d» <0, providede that |s| is suffi-
ciently small. Combining this observation with Lemma 3.8 and (3.32), we
obtain the assertion of the proposition.

4. Boundary value problem for a single equation

In this section we describe the classical method to construct all solutions of
the boundary value problem for a single equation obtained from the system
of two stationary algebra-differential equations. Recall that A(v) is defined as
a Holder continuous function on the interval 0 < v < vy by (3.23), and it is
smooth on the interval 0 < v < vy. By a solution of (3.24) we mean a pair
(v,D) € C}(]0,1]) x (0,00) for which (3.24) is satisfied and 0 < v(x) < vy for
x €[0,/].

To begin with, we remark that any nonconstant solution of (3.24) is
obtained once we have all of (strictly) monotone increasing solutions. Indeed,
first assume that (v;(x),D) is a monotone decreasing solution. Then
(v1({ — x),D) is a monotone increasing solution. Therefore, there exists a
monotone increasing solution (vp(x),D) such that vo(x) =uv;(/ — x). Hence
v1(x) = vo(/ — x). Next, we assume that (v,(x), D) is a solution of (3.24) for
which there is an x; € (0,/) such taht vj(x;) =0. Then there exist xy and x;
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such that 0 < xp < x] < x2 </, vh(x0) = vh(x2) =0, x5(x) # 0 for x € (xg,x1) U
(x1,x2). Suppose that v5(x;) =0. Then A(v2(x;)) =0, which implies that
v2(x1) =0 or va(x1) =0. Since vj(x;) =0, the uniqueness of solution of the
initial value problem for v” = —h(v)/D yields that vy(x) =v or vy (x) =7,
which is not possible. Hence, v5(x;) #0. We consider the case v} (x;) > 0.
Then vi(x) <0 for xe(xp,x1) and vi(x) >0 for xe(x),x2). Let us
put w(t) =uv(x; +1) for xp—x1 <t<xp—x;. Then w'(z) =vj)(x; +1) =
—h(va(x1 +1))/D = —h(w(t))/D, and w(0) =uvy(x1), w'(0)=70v)(x;)=0.
Notice also that z(7) = w(—1t) satisfies z”(¢) = —h(z(¢))/D, z(0) = v2(x;) and
z'(0) =0. The uniqueness of solution of the initial value problem implies
that w(?) =z(r) on [0,min{x, — x1,x] — x0}]. We know that w'(x; —x) =
z'(x; —x0) =0, w(#) >0 for 0 <7< xy—x; and z/(¢) > 0 for 0 < ¢ < x; — Xo.
Hence, we must have x; — x; = x; — x9. Therefore, we find that vy(x; —¢) =
va(x1 + 1) for te]0,x; —xg]. If xp </, then there is an x3 such that x, <
x3 <1, vi(x) <0 for x € (x2,x3) and vj(x3) =0. By the same reasoning as
above we find that Uz(Xz - l) = UQ(XZ + l) for te [0,)(?3 — XZ] and x, — x; =
x3 — x2. Repeating this process, we conclude that /= n(x, — x;) for some
integer n > 2, and vp(x) is a periodic function. Therefore, v2(x) is monotone
on [0,//n]. We may assume that v}(x) >0 on (0,//n). We define V(x)=
va(nx/l) for 0 <x<I/n. Then (V(x),DI*/n*) is a monotone increasing
solution of (3.24). In this way, we obtain any solution of (3.24) by making
use of a monotone increasing solution for some D > 0.

4.1. Monotone increasing solutions. Multiplying both sides of

Dv" + h(v) =0 (4.1)

by v/, we obtain

Dv'v" + h(v)v' = 0.

Let us define
H(v) = J h(s)ds for 0 <v < wy. (4.2)
Then
(Buwr+uw) =o
so that, by virtue of v’(0) =0

gv’(x)z + H(v(x)) = H(a), where a = v(0).
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Therefore

2
v'(x)* = 5 (H(a) = H(p(x)). (4.3)
This is meaningful only if H(a) > H(v(x)). If v(x) is monotone increasing,
then v(x) >a for x>0. Hence we require that H(a) > H(v) for v>a.
Recall that

>0 if 0<v<uy,

=0 if v=u,
h(v) <0 if v<v<,
=0 if v=r7,

>0 if 0<v<uy.

Therefore, H(v) achieves a local maximum at v = v, is monotone decreasing
in the interval v < v < 7, is monotone increasing in the interval o < v < vy,.
Consequently the only possible choice for a is a € [v, 7].

Since we are looking for monotone increasing solutions,

v(x) = % VA(H@) — Ho(x))). (44)

By the boundary condition at x =/, it holds H(a) = H(v(l)). Let b= v(]).
Then it is required that there exists a b > « such that H(b) = H(a), which may
restrict the range of a. We shall discuss this later.

Now equation (4.4) can be integrated as

v dw X
L V2(H(@ —Hw) D (45)

In particular, putting x =/ results in

VD1 / J”(”) d (4.6)
. V2@ ")

which defines a function D = D(a). Equation (4.5) defines v = v(x;a) as the

inverse function and it is a monotone increasing solution of the boundary value
problem (3.24) for D = D(a).

Let us consider the domain of the functions D(a) and v(x;a).

(A) H(v) < H(vy). In this case, for each a € [v, 7] there exists a unique

b =b(a) such that H(b) = H(a). Hence, D(a) and wv(x,a) are
defined for a € [v, 7).

We may state this situation in terms of b as follows. There is

a unique v* € (7, vy] such that H(v*) = H(v) and, for each b € [, v*],
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the equation H(a) = H(b) has a unique solution a = a(b) € [v,7)].
Hence, D(b) and v(x, b) are defined for b € [7, v*].

more clearly in Figure 2 and Figure 3, where k. = 0.021.

(B) H(v) > H(vum).

b =b(a) € [5,vy] if a € [vy, D]

for a € (v, 7).

In this case there is a unique v, € (v,7) such that
H(vy,) = H(vyr) and the equation H(h) = H(a) has a unique solution
Hence, D(a) and v(x,a) are defined
This case is described by Figure 4.
We explore the cases using numerical calculations for parameter values
my = 2.00, my =5.05 and u; = 6.90.
(1) if £k =0.02, then u =0.64, v=0.27, u =3.29, 5 =4.40, H(v) = 14.92

It holds

and H(vy) = 15.74. Therefore H(v) < H(vy), and we obtain case (A);

and H(vy) =4.51.

(2) if k =0.03, then u = 0.65, v = 0.28, & = 3.17, 5 = 3.87, H(v) = 11.91
Thus H(v) > H(vy), and we obtain case (B).

Fig. 2. Case (A) with H(v) < H(vy),
k < k.

k= k..

Fig. 4. Case (B) with H(v) > H(vum), k > k..

We show the case
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Hence, both Case (A) and Case (B) can be observed under suitable
parameter values.
For simplicity we put

(v if H() < How),
thm {vm it H(v) > H(vy).

We define
%1, + = {(v(x,a),D(a)) | an < a <7},

%, ={(v(l = x,a),D(a))|an < a <7},
61 =%1,+ UG, —.

These are the branches of monotone increasing solutions, monotone decreasing
solutions and monotone solutions, respectively.

4.2. Boundary layer in monotone solutions. In this subsection we consider the
asymptotic behavior of monotone increasing solutions (v(x,a),D(a)) as a — ©
and as a — a,,, where a,, is a critical value defined above.

THEOREM 4.1. As a1, () v(x,a) — © uniformly on [0,1] and (i) D(a) —
Dy = h'(8)/(n/1)".

THEOREM 4.2. It holds that

1) if H(v) < H(vy), then v(x,a) develops a boundary layer at x =1, as
al v, namely,
la) ov(x,a) — v locally uniformly in [0,[), whereas v(l,a) — b(v);
1b) D(a) — 0;

2) if H(v) > H(vy), then there exists a unique vy € (v,0) such that
H(v,) = H(vy) and as a | vy,
2a) v(x,a) — v(x,vy) uniformly on [0,1];
2b) D(a) — D, where D, is a positive number;

REMARK. In Case 2), the limit v(x, vy ) is twice continuously differentiable
on [0,/] and satisfies v(/,vy) = vy and v’(I,vp) = 0; hence it is a solution of
(3.24). However, the linearized operator L = Dd?/dx? + h'(v,,(x)) is singular
in the sense that L¢ ¢ C°([0,1]) if ¢ € C*([0,]]) satisfies, e.g., #(I) # 0.

In order to prove these theorems we make use of the following

LemMA 4.3.  Assume that the function g(u) is continuously differentiable
in the closed interval [0, Uy] and the derivative g'(u) is Holder continuous with
exponent y there. Put
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Suppose that there exist two constants u,,, uy such that 0 < u, < uy < Uj
and the following (1)-(iv) are satisfied: (1) g(0) = g(u,) =0, (i) ¢'(0) <0,
g’ () > 0; (iil) g(u) < 0 for 0 < u < u,, whereas g(u) >0 if w,, <u < Uy, and
(iv) Glupy) =0. For 0 <o <y, ty < f <uy we define

Y dv
z /2(G(2) — G(v)

B dv
’ Il(ﬂ)L,,, 26GB) - G)

Then, (a) Iy(), I} (f) are continuously diﬁ"erenliable in 0< o<y, u, <p <uy,
respectively (b) as o1 upy, Io(a) = 7/(2\/g'(tum)), and as | u,, L(f)—
7/ (2+/ 9" (t)), (c) for any J € (0, um)

g dv 1 1

= log - + O(1),
L VG —c@)_ vigoy Eat o
Unm dv

=0(1 as o | 0;
L 2(G(a) — G(v)) M) !

(d)  Assume furthermore g'(up) > 0. Then I,(B) remains bounded as [ 1 uy.
Proor. The proof is elementary, see for instance [§].
ProOOF (OF THEOREM 4.1). (i) By the properties of H(v), we know that

min H(v) = H(?).

V=<Uv=<Upy
Recall that the monotone increasing solution satisfies

dv, . [2(H(a) — H(v(x)))
dx( X) = \/ D ’

This solution is well-defined as long as E(v) = H(a) — H(v) is nonnegative.
As a 19, bla) — v; therefore, a < v(x ) s b(a) implies assertion (i).
(i) Define I(a)= ["1//2[H(a) — H(v)]dv, then we have D(a)=
I1>/1*(a).
We define functions Iy(a) and I,(b) by

v dv _
Iy(a) = L h @) A0 for v<a<,
b dv _
Ii(h) = Jﬁ NG ) for v < b < vy.

Then we have I(a) = Iy(a) + I,(b(a)).
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Since H(a) = H(b), we have h(a) = h(b)b'(a). We see that h(a) <0 for
a <, and h(b) >0 for b > o. Therefore db(a)/da < 0. Hence, as a | 7, we
obtain b(a) | @.

Notice that (i) h(v) = h(?) =0, (ii) A'(v) <0, A'(%) > 0, (iii) ~(v) <O for
v<v<7, h(v)>0for o <v<uvy and (iv) H(?) =0. Hence, we see that ly(«)
and [ (b) satisfy the conditions of Lemma 4.3. Therefore, by Lemma 4.3 (b),
we have

n n
a 0 and L(b) > ———= as b |0
NG salb n 1(b) NG sh|b

Consequently, I(a) — n/+/h'(5), which means that D(a) — i'()/(z/1)*.

ProorF (oF THeEOREM 4.2). First we prove assertion 1). In the case
H(v) < H(vp), h(v) is twice continuously differentiable in the closed interval
[0,b(v)]; hence we can apply Lemma 4.3 to Iy(a) and I;(b). By (c) of Lemma
4.3, I(a) = Iy(a) + I, (b(a)) — +o0 as a | v. Hence D(a) — 0 as a | v because
of (4.6).

Let x be any positive number satisfying v <v+x < 3. Let x.(a) € (0,/)
be the unique point such that v(x.(a),a) =v+x. Then Lemma 4.3 (c)
implies

Xela) _

1 jmmi——m»/ fa =1

as a | v. Note that v(x;a) is monotone increasing in x, and hence we have
a<v(x,a) <v+k for 0 <x <x(a). Since x.(a) — I, we may conclude that
v(x,a) — v uniformly on [0,/ —J] as a | v for any 6 > 0. On the other hand,
v(l,a) =b(a) 1 b(v) as a | v.

On the other hand, when H(v) = H(vy), we have b(v) = vy and h(v)
is not differentiable at v = vy,. However, we can prove that [;(b) remains
bounded as b T vy. Indeed, H(v) is convex in [5,vy] since h'(v) > 0 in the
interval [0,vy). Therefore H(v) > H(b)(v —7)/(b — 0) for v € [, b], where v <
b <wvy. Hence, H(b) — H(v) = H(b)(b—v)/(b—7) for v e [p,b], from which
it follows that

=~ ) _
Lb) < \/b—vJ dv V2(b —b)

V2HD) s Vb —v  JHD)

This verifies the assertion. Once we know the boundedness of I;(b(a)) as
a | v, we can argue in exactly the same way as in the case H(v) < H(vy) and
obtain the conclusion also in this case.

Next we prove assertion 2). We have just proved that [;(b) remains
bounded as b T vy,. Hence it is sufficient to verify that Iy(a) remains bounded
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as a | vy If h'(v,) >0, then we can use the convexity of H(v) in the interval
[om, 7] as in the arguments above.

If A'(vy) <0, we divide the integration interval [v,,?] into [v,,v;] and
[vr,], where A'(v;) =0. We use the convexity of H(v) in the interval [v;, 7]
and obtain H(v) < H(v;)(v—1)/(v; — 0), and hence H(a) — H(v) > H(v;) —
H(v) = H(v;)(v—uv;)/(B—v;) on [v;,0]. On the interval [v,,v;], the con-
cavity of H(v) implies H(v) < h(a)(v—a)+ H(a), so that H(a) — H(v) >
—h(a)(v —a). Using these estimates, we can easily derive a uniform bound
on ly(a) as a | v,. We omit the detail.

Therefore, in Case (A) (i.e., H(v) < H(vy)), the solution develops a
boundary-layer. On the other hand, in Case (B), no layer appears in the
monotone solutions, and D(a) is bounded away from 0.

4.3. Global behavior of bifurcating branches. Let ¥ be the set of all non-
constant solutions of the boundary value problem for the single equation (3.24)
and % denote the connected component of &, the closure in C°([0,/]) x
(0,400), which contains the bifurcation point (7,D;). By the well-known
result of Rabinowitz [10] (see also [9] and Appendix of [15]), we see that if &;
is compact then it contains another bifurcation point (7, Dy) for some k # j.
The following lemma, however, rules out this possibility, and implies that %; is
not compact in D x (0,+00) where D = {ve C?([0,/])| -1 < v(x) < vy for all
x € 0,/]}.

LemMma 4.4. If m #n then 6, N%, = .

Proor. To prove this, we define the mode of a nonconstant solution v(x)
of (3.24). We say that a solution v(x) is of mode n if v/(x) has n — 1 zeros in
the open interval (0,/). Therefore, if v(x) is monotone increasing (or decreas-
ing), then the mode of v(x) is one.

We claim that any nonconstant solution (v(x),D) on %, is of mode m.
Clearly, near the bifurcation point (7, Dy,), solutions on %,,\{(?, D) | D > 0} are
of mode m. Assume for contradiction that %, contains a solution (w(x), D) of
mode n # m. Then by continuity of v’(x) with respect to D, the derivative
#'(x) of some solution (#, D) € %,, must have a double zero. But, this implies
that 9'(x) =0 since

d*v’

pL’
dx?

+h'(D)p" = 0. 4.7
It is important to point out that the argument above works only in the case
—1 <& < wy for all xe[0,/] since the uniqueness of the solution of the initial
value problem is used to conclude # =0. The function /(v) is not differenti-
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able at v = vy, though it is Holder continuous there. However, if #(xy) = vy
for some xj; €[0,/], then x3; is a maximum point of #(x), and hence
?'(xp) =0. If in addition xp is a double zero of #'(x), then 7”(xy) =0.
Therefore, h(9(xp)) =0. On the other hand,

h(o(xn)) = h(om) = g(p(var),vmr) >0

since the point (p(var),var) is in the region where g(u,v) > 0. This excludes
the possibility that ¢’ has a double zero at x = xy,.

Therefore, (#, D) must be a bifurcation point. But this leads to a contra-
diction because there exist two sequences of solutions {(w,(x),D,)},~, and
{(vu(x), D)} -y such that (w,(x),D,) — (8,D) as v — oo, (v,(x),D,) - (7, D)
as i — oo, wy(x) is of mode n whereas v,(x) is of mode m. Since (7,D) is a
simple bifurcation point, the solution set near (7, D) consists of two curves: one
is the trivial branch {(3,D)|D > 0} and the other is a branch of nonconstant
solutions of some definite mode (see Theorem 3.6).

Now that %; is not compact in D x (0,4+00), we would like to know in
what way the branch %; approaches the boundary. First, we consider the case
where D is sufficiently large.

PROPOSITION 4.5.  Assume that condition (D) of Proposition 2.2 is satisfied
and k is so small that tr J < 0 is satisfied (see Lemma 3.2). Then there exists
a positive constant D*, depending only on the function h(v) and I, such that the
boundary value problem (3.24) has only constant solutions if D > D*.

Proor. It is convenient to put y = 1/D, so that our equation becomes
v" + yh(v) = 0.

First, we prove that v(x) needs to be close to a constant when y is small.
Since we know that v is a priori bounded, i.c.,

0<o(x) <wvy for x €[0,/],
h(v) is also bounded by a positive constant M independent of y:

|h(v(x))| < M for x e10,/].
Put
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and choose an x, € [0,/] such that v(x.) = ¢. Therefore, from the expression

Xe

v(x)=c— y<Jx (x — )h(v(2))dt + J

X 0

(e — t)h(u(z))dz)

it follows that

X Xe M M. 2
(x—0)M dt+yL (xe = )M dt = Vsz +% < yMI>.

o6~ <7 |

0

This in particular yields that max v(x) — min v(x) < 2yMI?. Using this fact we
can verify that either v(x) = v or it satisfies the inequality

5 —2yMI* < v(x) < 04 2yMI> (4.8)

for xe[0,/]. For the proof we observe that if v(x,,) =min v(x), then
v"(x;) =0, so that A(v(x,)) <0. Hence, v < v(x,) <. Now if max v(x) >
#+2MI[% then v(x) > for all xe[0,/], which is impossible. Therefore,
max v(x) < o+ 2yM/[>. Next, assume that v<minv<o—2yMI/>. Then
max v(x) < 5, so that h(maxv(x)) <0. This contradicts the fact that
v"(xpr) <0 for xp, such that v(xy) = max v(x). Consequently we have either
v(x) = or inequality (4.8).
Now we decompose v into

1 1
v(x) = ¢+ p(x), where ¢ = %L v(x)dx, Jo o(x)dx = 0.

Then
9"+ yh(c+¢) =0,
which yields
9" +y(h(c) +h'(c+ Op)p) =0,

where 0 = 0(x) satisfies 0 < 6 < 1. Multiply both sides with ¢ and then
integrate the resulting equation over the interval [0,/]. We obtain

1 I
—J (0" + yJ ' (¢ + 0p)p? dx = 0.
0 0

We fix a Jy >0 such that ©+dy < vy, and assume that 2yMI* < 6.
Then, thanks to (4.8), we have

|7 (¢ + O0p(x))] < M, for x e 0,1],



Continuous stationary solutions 245

provided that 2yMI> <), where M; is a positive constant depending only
on Jdp. Thus we obtain

! 1
J (¢")2dx < yM, J ¢* dx.
0 0

Recalling the Poincaré type inequality

2

Jl w2 dx < %Jl(w’)zdx +% <le(x)dx) with 4 = (n/]){

0 1Jo 0

we find that

! !

1

J () dx < yM, .7J (¢")dx,
0 % Jo

showing that ¢’'=0 if yM,//1 <1. In other words, v(x)=7 if D>

My/4.

Therefore, %, cannot extend to the neighborhood of D=+, so
that the projection of the branch %, on R forms either (i) an interval
{D|0< D <Dy} or (ii) an interval {D|d, <D < Dy}, where Dy, d, are
positive constants. Combined with Theorem 4.2, this observation yields the
following

PrROPOSITION 4.6. Let Projg %, denote the projection of %, on IR
(i) If H(v) < H(vy), then Projg 6, = (0,Dy] for some Dy >0. (i) If
H(v) > H(vy), then Projg 6, = [d., Dy for some Dy > d, > 0.

ReMARK. Let us consider the case H(v) > H(vy) and the branch of
monotone increasing solutions 4, = {(v(-,a), D(a)) | vm < a < 0} where v,, < ¥
satisfies H(v,,) = H(vy). The arguments at the beginning of Subsection 4.1
yield that the initial value problem for Dv” + h(v) = 0 subject to v(0) =a < v,
and v/(0) =0 has a unique strictly increasing solution v(x;a) which satisfies
v(&a) =vy for some & >0, but v/(&a)>0. Thus, the boundary value
problem (3.24) has no solution satisfying v(0) < v,,. The branch %; ., there-
fore, cannot continue beyond the singular solution (v(x,v,,), D(v,)) mentioned
in Remark immediately after Theorem 4.2. Consequently, %) , is a curve
connecting the bifurcation point (7, D;) with (v(-,vy), D(vm)) € (02) x (0, ).

5. Appendix

Here we give some explicit formulas for p_(v), h(v) and their derivatives.
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p-(v) =

Ying L1 et al.

my —/E(v)

here E(v) = m? — 4k(1 + v)*
W0 t0) where E(v) = m; (I+0)7,

o) = —sso-+ (224 (22~ 1)o) -0

W (v) = —pz +

1'(v) = 2p_(v)

(1]
(2]
(3]

(4]

[5]
6]
7]
8]
9]
[10]
[11]
[12]
[13]

(14]

(15]

ny

my —my  my + (my — my)v
my (1+v)y/E(v)

(my —m)E(v) + k(my + (my — my)v)(p—(v)/E(v) + 2(1 + v))
(1 +0)E(v)\/E(v) '

-(v),
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