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ABSTRACT. In this paper, we reconstruct Kuperberg’s G, web space [5, 6]. We
introduce a new web diagram (a trivalent graph with only double edges) and new
relations between Kuperberg’s web diagrams and the new web diagram. Using the web
diagrams, we give crossing formulas for the R-matrices associated to some irreducible
representations of U,(G») and calculate G, quantum link invariants for generalized twist
links.

1. Introduction

Suppose that U,(G») is the quantum group of type G,, where ge C is
neither zero nor a root of unity [1, 3].

Invariant theory of the U,(G,) fundamental representations was studied in
a skein theoretic approach by Kuperberg [6] and in a representation theoretic
approach by Lehrer—Zhang [7]. (Invariant theory of exceptional Lie group
G, was studied by Schwarz, Huang—Zhu [2, 11].) As an application of these
studies, Kuperberg explicitly gave Reshetikhin—Turaev’s quantum link invariant
(R-matrix) associated to the U,(G,) fundamental representations [9]. (The G
quantum link invariant was also obtained in a planar algebra approach by
Morrison—Peters—Snyder [8].)

In Kuperberg’s approach, diagrams in Figure 1 are introduced, which are
called elementary G, web diagrams. They are diagrammatizations of inter-
twiners between tensor representations of the U,(G») fundamental representa-
tions [5, 6].

These diagrams correspond to intertwiners in Homy, 6, (Ve , Vo) ® Vi)
and Homy, (6,)(Vays Veoy ® Vi, ), where Vo, is the first fundamental represen-
tation and V_, is the second fundamental representation.

Y Y

Fig. 1. Kuperberg’s elementary G, web diagram
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Y

Fig. 2. New web diagram

The purpose of this paper is to give a reformulation of Kuperberg’'s G,
web space, by introducing a new elementary G, web diagram in Figure 2 which
corresponds to an intertwiner in Homy,(G,)(Va,, Ve, ® V,), and to describe
crossings corresponding to the R-matrices associated to some U,(G») irreduc-
ible representations in the new G, web space.

In Section 2, we introduce the new elementary G, web and give relations
between Kuperberg’s webs and the new web. In Section 3, we define a G»
web space Wg, which is a C-vector space composed of G, web diagrams (G
webs embedded in a unit disk) and show that the G, web space is isomorphic
to an invariant space of tensor representations of the U,(G») fundamental
representations.

In Sections 4, we give the following crossing formulas which express the
crossing diagrams (R-matrices associated to U,(G»)) by linear sums of G, web
diagrams. (The first three crossing formulas are the same as Kuperberg’s
formulas [6], but the last formula is different from his. His last crossing
formula of double edges contains an error.)
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In Section 5, we show that the above crossing formulas induce a braid
group action on G, web space Wg,, and in Section 6, we give identities
which express idempotents in hom space between tensor representations by G,
web diagrams. Using the expressions of idempotents, we can obtain crossings
formulas for R-matrices associated to the U,(G») representation with the

highest weight 2c;. In Section 7, we calculate G, quantum invariant of
generalized twist links TW(m,n).
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2. G, web
First, we introduce G, webs in order to define a G, web space.

DeriNITION 1 (G, web). Let g € € be neither zero nor a root of unity.

Denote by [n] for neZs( the g-integer ";:q",ln and put [n)! == [n]n—1]...[1]

[m]!
mi ._
and [7] := ] for 0 <n<m.

By an elementary G, web, we mean one of the following two planar
univalent graphs or one of three planar uni-trivalent graphs

LLYLYLY

A G, web is a planar uni-trivalent graph whose vertex is either one of the
elementary G, webs with the following local relations:

(Loop relation)
(Monogon relations)
(Digon relations)

(Triangle relations)

A-BIL A, AL

(Double edge elimination)

=) gt~ + )

Using the above relations, we obtain the following additional relations.

ProrosITION 1. (Loop relation)
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( Monogon relation)

P
(Digon relations)

e s =
(Triangle relations)
Al A
/é\ _ _mumm$12+q2{J\‘ /&CZT%?/L\
12 ) 319
‘Z&\: _Bmﬂws—ﬁgé—q”+q4lj\
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( Pentagon relation)

where



24 Takuro SakaMoTO and Yasuyoshi YONEZAWA

2PP[12P°P, ¢ A o, g
R (10 T T )
_[2°8][12p®

[3]5[4]6[6]° ﬁé

where
Pl:%+%+%_%_2612+q4+q6+2q8
PZ:is_le—ngz 2¢* - 4"+ 4*.
@ ¢ 4t

Proor (Sketch of proof). Applying the relation (Double edge elimination)
or its rearrangement

H-) (- Hl =B

2112~ 3] 3]
to the left-hand side of an identity in this proposition and using the relations in
Definition 1, we obtain the identity. If we can not apply the elimination or the

rearrangement to the left-hand side, we first create single edges on the web by
using the relations

“ :’p]IWCb and )\k:[i%[}i][[iﬁ}(i]A

and apply the elimination or its rearrangement.
For example, the first digon relation in this proposition is obtained as
follows. First, create single edges on the G, web:

O--aines

By applying (Double edge elimination) to the right-hand side of the above
identity and using monogon, digon and triangle relations in Definition 1, we
obtain the following identity:

Q) maeO 3
B oe | "Rl R el

T e
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3. Web space W, and invariant space of representation

In this section, we define a G, web space Wg,, which is a C-vector space
spanned by G, web diagrams (G, webs embedded in a unit disk), where G,
web diagrams are defined as follows.

Let D be a closed unit disk in IR? with a fixed base point % on the
boundary 0D. A G, web diagram is the image of an embedding of a G, web
P in D such that every univalent of P lies in dD\{x}. We do not consider a
G, web which can not be embedded in the disk D.

For a given G, web diagram W, put the number 1 at each intersection of
single edges of W with dD and put the number 2 at each intersection on double
edges of W with 0D. A coloring of W is defined to be the sequence obtained
by reading numbers 1 and 2 on 0D clockwisely from the base point x. If W
has no univalent, a coloring of W is defined to be the empty sequence (.
Denote by s(W) the coloring of W.

For example, the colorings of G, web diagrams in Figure 3 are given by
s() =(1,1,1,1), s(W) =(2,1,1), s(W3) =(1,1,2,1), s(Ws) = (1,2,2,1,1).

Two G, web diagrams W, and W, are isotopic if there exists a base point-
preserving isotopy of D which moves W to W5.

Hereafter we fix a base point as G, web diagrams in Figure 3 and omit the
boundary of the unit disk.

©-D-D-&

Fig. 3. G, web diagrams

Write

S:={s=(s1,9,...,%)|n=>1,5e{1,2} (i=1,2,...,n)}U{J}.

We define a G, web space W, (s) for s € S by a C-vector space spanned by the
isotopy classes of G, web diagrams with the coloring s, modulo the relations in
Definition 1.

REMARK 1. The collection of the web spaces {Wg,(s)},.s has the spider
structure in the sense of Kuperberg [6, Section 3]:
(Join)

Kt WGz(S) X sz(t) - WGz (Sl)
(Rotation)
Ps,t* WGz (St) - WGz(tS)
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(Stitch)
Ot : Wa, (sst) — W, (2).

For s=(s1,8,...,8,) €S, let V; be the tensor representation of G,
quantum group Vo ® Vo, ®--- Vg, , where Vg is the si-th fundamental
representation (i =1,...,n).

The following theorem is due to [6, Theorem 6.10].

THEOREM 1 ([6]). The vector spaces W, (s) and the invariant space Inv(Vy)
have the same dimension.

Proor. Replacing numbers 2 in the coloring s into [1,1], we obtain a
clasp sequence C (see [6]). Since the web space Wg,(s) and the clasp web
space Wg,(C) have the same dimension, we obtain the theorem. ]

We denote by B(s) a basis of the vector space Wg,(s), called a G, web
basis.

ExampLE 1. For s=(1,1,1,1), (1,2,1,2) and (2,2,2,2), we have a G,
web basis B(s).

s = {) (0

B(1,2,1,2) = {H Ij;(}
s - {) (0 )

4. Crossing formula in the G, web space
Let #(s) be the length of a sequence se€ S, and define
S[n] .= {s € S| #(s) = n}.

We define an action of the braid group

. bib; = bb; (li=jI>1)
Bn _ bi 1l<i<n-—1 J J )
< (I<i<n-1) bibit1bi = biy1bibiyy (1 <i<n-—2)

on the collection of the web spaces
{WGZ(S)}SGS[H]'

For each s = (s1,%...,5,) € S[n], we define an action of the braid group B, on
the representation V, where V is the tensor representation V% ® V% ® -®
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, by setting p,(b;) to be the invertible intertwiner composed of R-matrix
IdVWH@"'@V’”Wq X Rsisi“ ® Id Vi, ®® Ve, € HomU (Gz)(Vs; Vgl(\))

where o; is the transposition between i-th and (i 4+ 1)-th entries. We represent
the R-matrices Rj;, Rj2, Ry and Ry, by the following crossing diagrams

N N\ y \/
XA A A
and represent the inverse R}!, Rp;!, R;;' and R5,! by the diagram obtained by
operating J-rotation on the above crossing diagrams.
The vector space  Homy,(g,)(Vs, Vi) (s,5"€S) is isomorphic to the
invariant space Inv(V, ® Vi), where w(s) is the sequence obtained by
reversing the order of the elements in the sequence s. By Theorem 1, each

of the above crossing diagrams has a description as a linear sum of the G, web
diagrams.

THEOREM 2. The four types of crossings corresponding to the R-matrices
have the following descriptions in the G, web diagrams:

—§D G I g W
i @
H* I [2][3])1 )
(q *QQH*Q ) <+ [12](14)[4][6]Z

q > [B][4][6]* N 3][4]%[6 1
e L+ e H* i @
ProOF. The crossing diagram on the left-hand side of Identity (1)
corresponds to the R-matrix Rj; in Enqu(Gz)(V(l,l))~ The vector space
Enqu<G2)(V(1,1)) is isomorphic to the invariant space Inv(¥{; 1 1)) and, by
Theorem 1, is isomorphic to the web space Wg,(1,1,1,1). Therefore, the
crossing diagram corresponding to Rj; is expressed by a linear sum of G,
web basis B(1,1,1,1). That is, Identity (1) is the expression of the crossing
diagram by G, web diagrams. The crossing formula about the R-matrix R;;!
is the identity obtained by operating the 3-rotation on each diagram in Identity
(1). Other Identities (2), (3) and (4) are also the expressions of the crossing
diagrams corresponding to the R-matrices Rj;, Ry and Ry by G, web
diagrams.

XX XX
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The 2nd and 3rd Reidemeister moves are corresponding to R-matrix
invertibility and the Yang-Baxter equation. We have to check that Iden-
tities (1), (2), (3) and (4) are well-defined. That is, we need to check that
crossing diagrams related by the 2nd and 3rd Reidemeister moves are
identical as elements of the G, web space, using Identities (1), (2), (3)
and (4).

For crossing diagrams with only single edges, it is enough to prove the
following identities by the 2nd and 3rd Reidemeister moves with only single

edges:
) (e

Other identities by the 2nd and 3rd Reidemeister moves including double edge
can be obtained by Identities (R2), (R3) and relations in Definition 1.

Proof of Identity (R2): By Identity (1), the left-hand side of Identity (R2) is

[§§§é§

—_— —4\/ —2\/

+[z2i+ 2 7?+ Q*Tf

q q q 1
*[*2%*[72;%@5*?

q* q? 1
S S S )

Using relations in Definition 1 and Proposition 1, we have the following
identities:

—_ [2[7][12] ~— [B]8] —

= = U —~ Q — 4~
— 6 [3][8]
T - = mEAL Z-HX
w) (18- - 5

By these identities, we find that the linear sum (5) is equal to the right-hand
side of Identity (R2).

The following lemma is helpful to prove other identities by Reidemeister
moves.

XX
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LemMA 1. We have the following identities:

(Fp1) éﬁﬁ)=:%75{ (Fp2) ?ﬁﬁ)=:$;9{ (Fp3) tjﬁf::$;%i
(Fa) %J:%S{ (Fu2) %J:wf (Fu3) ﬁ):w‘

This lemma is proved in Appendix A.
Proof of Identity (R3): By Identity (1), we have the following identity.

By Identity (R2) and Lemma (1) (Fpl), the right-hand side is equal to the

following:
3¢ -3 —1.\ ¢
q }/l q 2 q QJ q
= + + +
[Q]r 12 g/], 2] 12l
By Identity (1), this linear sum is equal to the right-hand side of Identity
(R3).
The invariance of crossing diagrams including double edges, as elements of

the G, web space, by the Reidemeister moves can be proved by using Identities
(R2) and (R3), Lemma 1 and the following digon relation

O=-w1 |

Here, we prove the following identity in the G, web space, corresponding to the
invertibility of Ry in Endy,c,)(V(2,2):

=Ry ©

By the digon relation, the left-hand side is equal to

S - e O

and, by Lemma 1 (Fp2), Identity (R2) and the digon relation, this is equal

to
erer &4~ e 007 |
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Proofs for the identities corresponding to the remaining Reidemeister
moves containing double edges can be done in a similar way. O

5. Braid action on the G, web space Wg,

Using the crossing formulas in Theorem 2, we can define an action of the
braid group B, on W, [n] =@, _ s Was (5)-

The action of the i-th generators b; and b; ! of B, (i=1,...,n—1) is
defined as follows. For a G, web diagram W e Wg,(s) C W, [n], bi(W) is
the element of Wg,(o;(s)), where o; is the transposition of i-th and (i + 1)-th
entries, obtained from W by gluing the (s;,s:11)-boundary of W and the
positive crossing (as the s;-univalent of W connects to the over arc of the
crossing). Similarly, b;'(W) is the element of Wg,(o;(s)) obtained from W
by gluing the (s;,s:41)-boundary of W and the negative crossing (as the
si-univalent of W connects to the under arc of the crossing). Then, we
replace the obtained knotted diagram into the linear sum of G, web diagrams
by the formulas in Theorem 2.

In other words, we regard the action of generators b; and b; I as positive
and negative crossings and univalents on the unit disc with a hole in Figure 4.

For a G, web diagram W diagrammatically denoted by

the action of the generators b; (resp. b;'!) amounts to putting the diagram W
into the hole of the diagram of b; (resp. b;!) in Figure 4 and gluing these
diagrams.

Fig. 4. Diagrammatic description of generator action

For example, the Bs action on the G, web space Wg,(1,2,2,1,1) is
described as follows. To the G, web diagram W, in Figure 3, the actions of
by,bs,b; ' € Bs are given by:
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"€ - Q- HED FE D)
) - ? [1@*1}%%@@?@
q q
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- (%35” ) 0=

6. Relation to idempotents and R-matrix of other irreducible representations

In this section, we describe a relation between G, web diagrams and
idempotents in the hom set Hoqu(Gz>(Vwi ® Vs Ve, ® Vi), where w; and w;
are fundamental weights. Using the idempotents, we construct the crossing
formulas for the R-matrices associated to other irreducible representations.

Let Pyj[w] be the idempotent in Endy, (g, (V. $?) which factors through the
irreducible representation with the highest weight . Note that the idempo-
tents satisfy

Pii[w|P[@] = 00, P11 [w].

By Theorem 1, Enqu(Gz)(Vglz) is isomorphic to the web space Wg,(1,1,1,1).
Therefore, we have the following identities which express idempotents P[]
by linear sums of G, web diagrams:

Pii2m] = > < [3[]4[}8 I [2]1[3];[( - [ﬂ%%ﬂﬂz
a 3 I
Pyi[ws] = 2]13 :ﬂi

_[4][6] ~—
I~

P[]

Pi;[0] =
By these identities and Identity (1), the R-matrix R;; is expressed by a
linear sum of idempotents Pji[w] as follows:
Ri1 = ¢*P112w1] — ¢ *Pii[w1] — Prfwa] + ¢~ 2P [0)].
(This identity can be found in [7, Sec. 8.1.1].)
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Let Py[w], i,je{l,2}, be the idempotent in Homy, G, (Ve ® Ve,
Ve ® Vo) which factors through the representation V.. Note that the
idempotents satisfy

P13 [@]Pa [@'|Pra|w] = O, P12[], Py [w]Pn[@'] = 0w, o Pn|w].

We have the following identities which express the idempotents Pj[w] by
linear sums of G, web diagrams:

1 Bl(®+q2 —14+q2+q7%) [4]
Proloy + @] = @H+ [7][15] I [2](3] [ﬂj;(
1 [3][4]
PoPen] = 2] [7]j;(+ [2][7] MI

_ [5][12]
Polm] = - 6] [8][15]I

_|_

i = BB ) (e
iy
ﬁéﬁ]g]jf(
i - ) (B gy
ST
Palesl =~y L
Pl = s

The idempotent Py;[cw] is equal to the linear sum obtained by operating (left-
right) symmetry on each diagram of the right-hand side of Pj[w]. In other
words,

PZI[W] = RZIPIZ[W]RTQI-
The R-matrices Ri» € Homy,(6,)(Veo, ® Vaoys Vo, ® Viry), Ro1 € Homy, (g,

(Va, ® Vo, Vioy ® Viy) and Ry € Endy (6, (VE?) are expressed by the fol-
lowing linear sums of idempotents.
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R = ¢’ Py + @] + ¢ Pu2w] — ¢ P[]
Ry = ¢*Pa[ow) + 2] + ¢ 4Py 2w1] — ¢ 2 P[]
Ry = ¢°Pn[2ms] — Py[3wi] + ¢ " Pu[2wi] — ¢ 2 Pulwm] + ¢ Pr(0],

Moreover, using the identities for the idempotents, we obtain crossing
formulas for the R-matrices associated to other irreducible representations.
For example, using the identity for Pj;[2cw;], we obtain the following
formulas for the R-matrices in Homy,(6,)(Vaw, ® Vs Ve, @ Vaw,) and
Hoqu(Gz)(V2wl ® Ve, Ve ® V2w2)

N/ [4][6] PN N 1
K= - 27 12n\+[3][8] T REA
NN [4][6] o N 1 N\
Qw/\ = A - 2] 12/)\ * [3][8]//\<+[2}[3] N

We also have a crossing formula which expresses the following crossing
corresponding to the R-matrix in Endu[(cz)(VZ%Z] )

AN
2wy Qw1

by a linear sum of 16 diagrams. Similarly, we have crossing formulas with
colorings w| + w,, 2w, and 3w; by using the idempotents Pjy[wm; + @y,
P22[2w2] and P22[3w1].

An open problem is to construct the idempotents which factor through
other irreducible representations as linear sums of G, web diagrams. If
this problem is solved, we can explicitly construct crossing formulas for
the R-matrix associated to other irreducible representations of U,(G») as
above.

7. G, quantum invariant of generalized twist link

We can obtain the following evaluations of positive and negative crossings
curls (diagrams in Reidemeister move 1) by using the crossing formulas (1) and
(4) in Theorem 2.

O =t XD =a?|
A =t XD =a|

Therefore, to obtain G, quantum invariant of an oriented link, we need to
normalize the crossing formulas in Theorem 2.
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Let L be an oriented link with & components (L;,L,,...,Ly), and let
D = (Dy,D,,...,D;) be an unoriented link diagram of L. Using the crossing
formulas, we define the polynomial evaluation for a link diagram D, denoted
by D), iy, ) 17 € {1,2} and j =1,...,k, as follows: First, replace each
component D Wlth the double line of G, web diagram if w; = w,. (We
regard D; as the single line of G, web diagram if w; = w;.) Next, apply
the crossing formulas in Theorem 2 to all crossings of the replaced diagram
of D. The polynomial <D}, . @) y 1s defined to be the polynomial which
is the evaluation of the above lmear sum of G, web diagrams by using the
relations in Definition 1 and Proposition 1.

THEOREM 3. For an oriented link L,

712)6011( )(q724)wzz(D)

(q <D>(w,-l,w,-27...,w,-k)

is a link invariant of L, where D is a link diagram of L and w) (D)
(resp. wx (D)) is the number of positive crossings of single edge on D minus
the number of negative crossings of single edge (resp. the number of positive
crossings of double edge minus the number of negative crossings of double
edge).

The link invariant is Reshetikhin-Turaev’s quantum link invariant asso-
ciated to the U,(G») fundamental representations, called G quantum invariant
for short. Denote by Py, o, wt.k)(L) the G, quantum invariant of an
oriented link L.

In the following, we determine the G, quantum invariant of the gener-
alized twist link TW(m,n) in Figure 5. The box of TW(m,n) is the tangle
diagram with n-crossing in Figure 6. Denote by Cr(n) the box illustrated in
Figure 6.

The evaluation {Cr(n))

.....

y is given by the following formula:

(w1,

(Cr(N)) (w1, 1) = (PPu[2w1] —q Pll[wl — Piy[wa] 4+ ¢ 2Py [0])"
_ 2n> ( n Ayp BWI +C<”>I

where

AY;) — [4][6] ( q2n + q712n) BYP _ ﬂ(an _ (_q76)n)7
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e

Fig. 5. Generalized twist link TW(m,n)

==
: n crossings  ifn >0

==

Cr(n) := = §
: —n crossings  if n < 0

==

Fig. 6. n-crossing

Using the above evaluation of {Cr

—~

1)) (w =), We obtain the following:

Pl o) (TW (m,n)) = ¢~ 2@V (TW (m,10)) (00 on)
— 12w m,n n7m2712
qm@m,n{f 1om [2][7][12]

[4][6]
a(m 200) ( m 2ITA22 o (2] pow BIBI2)  om) [8][15])
e [4][6]2 Mol M ][e) 5]
() [31[7][8] om) 21[12] oy [12] ) [2][15]
TPy (A“[mm B“[]*“l[])
() 2I7I8][15] ) L m) B, Ay BII6], o 2
+Chq [5] ( Apn [4] + By 4] + [12] (q 2+4+q" )>}

Similarly, when m and n are odd integers, we obtain the following:
P(w1 wz)(TW(man)) - <TW(man)>(w1,w2)

[M@Wﬂﬁ(ﬁ@mwa&+q% s B3

W“W(A?EJ+B e - el )
3

15] (o [BI[15] my [31[15]
@m[mm B g e

3

A o B

41(5]

[Cs —2+q_2)),
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where
T=qg 42+ 21—+ +28 — & +¢2,

oo B2 B4 BB + [7)
A=~ G T I e GHCE
(m) _ —am_ L s 4] (m) _ 3m L
B = gm T gpm G T )

When m,n € Z, we obtain the following:
Play zs) (TW (m, 1))

_—240(TW(m,n)) m.n o —24w(TW (m,n)) (n) —24m [7][8][15]
q <TW( ) )>(w2vw2)‘ q {A22 {3“4”5}
o [TIBI5] (o USIIS) . ooy Loy [2P120018] ooy 2)S)IS1ILS
P ( BEUE TP O e TPy )
oo RTINS [ o 202 o 221230018 — [2119)
R TENHIE (B” B O BREEe)

o RPI2PS] o [62(18]
e pnEe) PR ) )
o RITISIOSINS] ( yom I012) o 2127018
P R s (A” Bl O P
o L2238 — 219D o) 61218]
D R AR KT )

+E

o RUSTEIS] [ oy BI05) ooy BII3] oy (61182
5] (A” b 55 e~ O pRp

—p{m [6][18] LB [4][6]*[7][8][15] U)}

. B2[4][9)? [5][12]?
R
A = % (@®" Bl —2+q72)+ (-1)™),
" e )
o [3°[4] (q [}[][[7]][(51[11[21]1[118_] D _ (qym » BI[4]15]

[2]212] 0]12]

1
rom BIAIBI6 o (9]
T pgnopy ~ ) [18])’
m . m m [3} [ ]2[6}
Dy = (" —(-1) ) opaap
Eégl) — qﬁmﬂ_( 1)m [4”5] + —10m [5]

[6][8] o] 7 sjo)”
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REMARK 2. (1) If either (i) m and n are even or (ii) m is even and n is
odd, then o(TW(m,n)) =m—n. If m is odd and n is even, then
o(TW(m,n)) =n—m. If n and m are odd, TW(m,n) is a link.
Therefore the number w(TW (m,n)) is n —m or m — n.

(2) Since TW(O 0) is the 2-component trivial link, P, ., )(TW(0,0)) =

2 m [12 [7°[8)°[15]°
a [6] and Py, 0,)(TW(0,0)) = DRI

(3) Since TW(m,0) and TW(0,m) (m< -1, 1<m) are the triVial
knot, we have Py, o) (TW (m,0)) = Py o) (TW(0,m)) = BT 4nq

4[]
8[15
Py, 00) (TW(m,0)) = Py, ) (TW(0,m)) = [[3]}[[41][[ ]]

(4) Since TW(-1l,n—1), TW(n—1,-1), TW(l,n+ 1) and TW(n+1,1)
are the (2,n)-torus link, we find these G5 link invariant associated to
the fundamental representations are the same evaluation.

(5) By the up-down symmetry of the generalized twist link TW (m,n), we
have P, o) (TW(m,n)) = P, o) (TW(m,n)).

Appendix A. Proof of Lemma 1

Here, we give proofs of Lemma 1 (Fpl), (Fp2) and (Fp3). (The proofs of
Lemma 1 (Fnl), (Fn2) and (Fn3) are similar.)

Proof of Lemma 1 (Fpl): By Identity (1), the left-hand side of (Fpl) is equal

to
1 L/l q4 1 AN— q_6'\/
W 212% W*W Q[ BT
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VR T
Hr- W WH H

By these identities, the linear sum is equal to

W “U T wlT

We see, by Identity (1), that this is equal to the right-hand side of Identity
(Fpl).

Proof of Lemma 1 (Fp2): By Identity (1), the left-hand side of (Fp2) is equal
to
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By Relation (Double edge elimination) in Definition 1, we have the following

identities:
_ 3][4][6]| L’
7 = ol B R el rely
RPN B][4][6]| L’
A - [3]%/‘ s bf 007 el
Therefore, the linear sum

is equal to

_|_

We see, by Identity (3), that this is equal to the right-hand side of Identity

(Fp2).

Proof of Lemma 1 (Fp3): By Identity (2), the left-hand side of (Fp3) is equal

t S AT A S
R ARV e N

Using relations in Section 2, we have the following identities:

_[Bl[4)[6](¢* =2+ ¢* )T r
[12]

©)

1
3] 4]2[6177 B
[12]

[4][6]

[3]4][6][10 j w [3]14] W r
[5][12] [2][
[3][4][6] [10 EUJr 3][4] %‘JJF r
B2 = P22 = 2 [12]
BEPeSl [ﬂ[ﬂ%@ﬁ)_ ‘i
2] ) [12 ~—
[

3}%} ) [3]2[4}2[6213\TU+
m

21712
[3

]
PRy U
”2]w+ 212 j\ﬁ ’

1
[3][4) [G]W B
[12]

4]2[6}77
[12
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o C y SV i CNIE T
[12] 2 12—~

—[21[3][4][6] [2)[3][4] (6] | [2][3][4] [@W
%}_ + [12] j HJJF [12] ) + [12]
[2][3][4][6] [2][4][6]*

Therefore, the linear sum (9) is equal to

[4)[6](¢*° — ¢° — ¢* j L‘J (10— ¢ 6 — )
2][12] [2][12] )

L 9Bl CBIAPEPY U L%
]2 122 \\(:I% 2[122 ” +[3]

We see, by Identity (4), that this is equal to the right-hand side of Identity
(Fp3).
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