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The number of paperfolding curves in a covering of the plane
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ABsTRACT. This paper completes our previous one in the same journal (vol. 42, pp. 37—
75). Let € be a covering of the plane by disjoint complete folding curves which
satisfies the local isomorphism property. We show that @ is locally isomorphic to
an essentially unique covering generated by an oo-folding curve. We prove that 4
necessarily consists of 1, 2, 3, 4 or 6 curves. We give examples for each case; the last
one is realized if and only if % is generated by the alternating folding curve or one
of its successive antiderivatives. We also extend the results of our previous paper to
another class of paperfolding curves introduced by M. Dekking.

1. Definitions, context and main results

In order to simplify some notations, we identify R?> with C and Z*> with
the set Z +iZ of Gaussian integers. We denote by N* the set of strictly
positive integers.

Concerning folding sequences and folding curves, we use the definitions,
the notations and the results of [4].

We consider sequences (ak);—j<,_1> (@k)rens> (@k)rez With ap = +1 for
each k and associated curves (Ci)_r<p> (Ci)ren+> (Ck)rez such that:

(a) each segment Cy is an oriented interval [xi, x; + &/] with x; € Z 4 iZ

and g e {l,—1,i,—i};

(b) if Cx and Cyqp exist, then x; + & = xx41 and g1 = i%eg; moreover
the curve is “rounded” in x;,; so that it does not pass through that
point.

We call (Cy), ., a complete curve. For each S = (ar), ., ; (resp. (ax);en-)s
we write S = (—dn—k);<gen1 TSP (—a_i)jc_n-)-

We say that a set of curves ¥ covers the plane (resp. the square S =
{x+u+iv|u,vel0,m]} with xeZ +iZ and meN") if each nonoriented
interval [z,z+¢ CC (resp. [z,z+¢ CS) with zeZ+iZ and ece{l,i} is
the support of exactly one segment of one curve of 4. A set of complete
curves which covers the plane will be called a covering.
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Two sets of curves are considered isomorphic if they are equivalent up to
translation. The notion of local isomorphism is defined in [4, p. 58]: two
coverings %, & are locally isomorphic if each bounded fragment of & (resp. 2)
is isomorphic to a fragment of & (resp. %); any covering % satisfies the local
isomorphism property if each bounded fragment of % has copies everywhere
in 6.

For each ne N*, we consider n-folding sequences (ax),_;.,._; and as-
sociated n-folding curves (Ci),_; 5., obtained by folding n times a strip of
paper in two, each time possibly to the left or to the right, then unfolding
it with right angles. These curves, rounded as it is mentioned above, are
self-avoiding. We also consider oo-folding sequences (ay),.N-, Where each
(ay,...,a_1) is an n-folding sequence, and associated oo-folding curves.

These two types of folding sequences and curves have been considered by
various authors (see for instance [1] and [3]).

In [4], we introduced complete folding sequences (ax), ., wWhere each tuple
(a@ks1,---,axr) 18 a subsequence of an n-folding sequence for an integer n, and
associated complete folding curves. For each oo-folding sequence S, (S,+1,S)
and (S,—1,S) are complete folding sequences.

One motivation for introducing them came from two plane filling prop-
erties which are mentioned by various authors:

First, by [4, Th. 3.1], for each m € N*, there exists n € N* such that each
n-folding curve covers a square [x,x + m] x [y, y + m] for some (x,y) e Z>. Tt
follows that each oo-folding or complete folding curve covers arbitrarily large
squares.

Second, by [4, Th. 3.15], for each co-folding curve C associated to an
oo-folding sequence S, the 4 curves obtained from C by rotations of angles 0,
n/2, m, 3n/2 around its origin are disjoint. They can be connected in two
different ways in order to form 2 complete folding curves, both associated to
(S,+1,S) or both associated to (S,—1,S).

These 2 curves form a covering, except for C belonging to a particular
class. By [4, Th. 3.15], if C belongs to that class, then the 2 curves can
be completed in a unique way to form a covering by 6 curves. The 4
other curves are not associated to sequences of the form (7,+1,T) or
(T,-1,T).

All these coverings satisfy the local isomorphism property. According to
Theorem 4 below, any covering which satisfies the local isomorphism property
is locally isomorphic to one of them.

More generally, it follows from [4, Th. 3.10] that each complete folding
curve can be completed in an essentially unique way into a covering which
satisfies the local isomorphism property. By Theorem 3 below, in such a
covering, each bounded fragment appears with a well determined density.
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By [4, Th. 3.12], any such covering contains at most 6 curves. In the
last part of Section 2, we show that it can actually contain 1, 2, 3 or 4
curves. We also prove that it cannot contain 5 curves and that it contains 6
curves only in the particular case described above. We also consider the
following question: If % is such a covering, for which integers n does there
exist a covering by n curves which is locally isomorphic to %?

In [2], M. Dekking considers another notion of folding sequence. He calls
a folding string any sequence (aj,...,an-1) in {—1,+1}. He introduces the
folding convolution S x T of two folding strings S, 7. For each folding string
S, he defines the sequences S*” with S*! =S and S*"**1) = §*" xS for each
neN*. Then he considers S$** =, n+ S™.

He gives characterizations of the folding strings S which satisfy (1) (resp.
(1) and (2), resp. (1) and (2) and (3)) for the properties (1), (2), (3) below:

(1) S** is self-avoiding;

(2) each curve associated to S** covers arbitrarily large squares;

(3) S is perfect in the sense that, for each curve C associated to S**, the
plane is covered by the 4 curves obtained from C by rotations of
angles 0, n/2, n, 37/2 around its origin.

Many examples of oo-folding sequences are actually constructed in that
way, including the positive folding sequence associated to the dragon curve (see
[4, Example 3.13]) and the alternating folding sequence (see [4, Example 3.14]).
Some of them are used in the present paper.

Some results similar to those of [4] are also true for folding sequences and
curves in Dekking’s sense:

For each folding string S = (ai,...,am—1), we call a complete S-folding
sequence any sequence T = (by),., such that S** contains a copy of each
(bks1y- -« biktr). A complete S-folding curve is a curve associated to such a
sequence.

It follows from the properties of the convolution * that (S*%,+1,5*%)
and (S§**,—1,S8**) are complete S-folding sequences, that each complete
S-folding sequence satisfies the local isomorphism property and that any two
such sequences are locally isomorphic.

The following results are true for each folding string S = (ai,...,dn1)
which satisfies the properties (1), (2) above. Their proofs are similar to [4]:

Any complete S-folding curve C is self-avoiding and covers arbitrarily
large squares. We have a derivation on C such that m consecutive segments of
C are replaced with one segment. The derivative C’ of C is also a complete
S-folding curve.

Each complete S-folding curve can be completed, in an essentially unique
way, into a covering by such curves which satisfies the local isomorphism
property. Moreover, all the coverings obtained in that way from complete
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S-folding curves are locally isomorphic. It would be interesting to determine
the number of curves which can appear in such a covering.

The 4 curves considered in the property (3) described above are disjoint.
They can be connected in two different ways in order to form 2 complete
S-folding curves associated to the string (S**,4+1,S8**), or 2 complete
S-folding curves associated to the string (S**,—1,8*%). If S satisfies (3),
then these 2 curves form a covering which satisfies the local isomorphism
property.

If S does not satisfy (3), then the 2 curves do not form a covering, but they
can be completed in a unique way into a covering which satisfies the local
isomorphism property. It follows from Theorem 2 below that this covering
contains exactly 6 curves.

A simple example of that situation is obtained with S = (+1,-1,—1).
Then S** is the alternating folding sequence. It follows from [4, Th. 3.15]
that all coverings by 6 folding curves are obtained from oo-folding sequences
R+ S*° with R finite.

Many other examples exist for folding curves in the sense of Dekking.
One of them is given in [2, Fig. 18] with S = (+1,-1,+1,+1,-1,-1,-1,
+1,-1).

2. Detailed results and proofs

First we introduce some notions which will be useful both for classical
folding curves and for folding curves in the sense of Dekking.

For each curve C, we denote by o(C) the initial point of the first segment
of C and B(C) the terminal point of the last segment of C, if they exist.

From now on, we consider sets @ of disjoint self-avoiding curves such that,
for each endpoint z = x+ iy € Z +iZ of a segment of a curve of &, one of
the two following possibilities is realized, depending on the parity of x + y:

(a) the oriented segments of curves of ¥ which have z as an endpoint are

among [z,z+ 1], [z,z—1], [z+1i,2], [z—1i,z];

(b) they are among [z+ 1,z], [z—1,z2], [z,z+1], [z,z —i].
We note that this property is necessarily true if ¢ consists of one curve. It
follows that it is also true if % is a covering which satisfies the local iso-
morphism property and if each curve in % covers arbitrarily large squares.

For any such sets 4, &, we write ¥ =~ & if there exists a translation 7 such
that (%) = 2. We write ¥ < Z if € # 2, if each curve of € is contained in
a curve of &, and if any consecutive segments of a curve of & which belong
to curves of ¥ are consecutive in one of them. We write ¥ <« Z, if ¥ < & and
if, for each segment 4 of a curve of %, the 6 segments which form two squares
with 4 belong to curves of 2.
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If € and & are coverings, we say that a map 4 from the set of segments
of € to the set of segments of & is a derivation if:
(a) there exists a sequence S = (ay,...,d,—1) in {+1,—1} such that, for
each segment A of a curve of &, 47'(A) is a subcurve of a curve of
% associated to S or to S, depending on the parity of x + y where
o(A) = x+iy;

(b) for any consecutive segments 4, B of a curve of &, A7'(A4) and
A~1(B) are consecutive subcurves of a curve of %.

(c) there exists a direct similitude o such that o(a(4)) = a(47'(4)) and
a(B(A)) = B(47'(A4)) for each segment A of a curve of Z.

The composition of two derivations is a derivation. If ¢ is a covering
by folding curves which satisfies the local isomorphism property, then, by
[4, Prop. 3.3], the derivation 4 defined in [4] satisfies the properties above
with m =2 and 4(%) is a covering by folding curves which satisfies the
local isomorphism property. For each folding string S = (ay,...,a,_1) which
satisfies the properties (1), (2) considered in Section 1, we have a derivation 4
associated to S on each covering ¥ by S-folding curves which satisfies the
local isomorphism property and 4(%) is a covering by S-folding curves which
satisfies the local isomorphism property. In both cases, the n-th derivation
A" is defined on % for each neN.

For each covering %, each set of curves # < %, each derivation 4 : 4 — €
and each n € N such that 4" is defined on %, we denote by 4 "(%) the union
of the sets (4”)'(4) for 4 a segment of a curve of 7.

ProprosITION 1.  Consider a covering € with a derivation A : € — €, a set
of curves F < € and a translation t such that ©(F) « A~ (F). For each n e N,
denote by 1, the translation such that t,(A™"(F)) = A™"(¢(F)) C 4" 1 (F).
Then the inductive limit of the sets A™"(F) relative to the translations t, is a
covering & with the same number of curves as F. Moreover, & is locally
isomorphic to € if € satisfies the local isomorphism property.

Proor. It suffices to prove that 7,(47"(#)) « 47" (&) for each ne N*.
We show that, for each segment S of 47"(%), the segments Sj,...,Ss which
form two squares with 7,(S) all belong to 4" (7).

Write Uy = Vo =1(4"(S)). Consider the segments U, U, Us, Vi, V2, V3
€ A7Y(F) such that Uy,..., Uy (resp. Vy,...,Vs) are consecutive segments of
a square.

Consider the closed curve 4 =A47"(Up)U---UA7"(U;) and the closed
region P limited by A. Note that, for each i€ {0,...,3}, the last segment
of A7"(U;) and the first segment of 47"(U;y1) form a right angle directed to
the exterior of P (here we identify 3+ 1 with 0). As & is a covering and
A7(Uy),...,47"(U;) are subcurves of curves of &, it follows that no curve
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of & can cross the frontier 4 of P. Consequently, the interior of P contains
no segment.

We prove in the same way that the interior of the closed region Q limited
by B=A47"(Vy)U---UA7"(V3) contains no segment. As Sj,...,Se are nec-
essarily contained in P U Q, it follows that they belong to 4 UB C 4" (7).

|

Concerning folding curves in the sense of Dekking, we have:

THEOREM 2. Let S be a folding string which satisfies the properties (1), (2)
of Section 1, but not the property (3). Let € be a covering by S-folding curves
which satisfies the local isomorphism property and contains a curve C associated
to (S*°,F1,8**). Then % contains exactly 6 curves.

Proor. We consider a covering ¢ and a derivation 4 : ¥ — & associated
to S. We have 4(C) =~ C. Consequently, we can suppose 4(C) = C, which
implies & = @ since C can be extended into a unique covering which satisfies
the local isomorphism property. We can also suppose without restricting the
generality that S begins with +1 and that the two first segments of C are [0, 1]
and [1,1+1].

It follows from [2, Th. 5] and its proof that % contains at least 6 curves:
Two of them including C are associated to (S**, &, S**) with e = F1. Each of
these 2 curves contains 2 of the segments [0, 1], [0,—1], [;,0], [-,0]. On the
other hand, they do not contain the segments [1 +i,4], [-1,—1+14], [-1 — i, —1],
[1,1 —i], which necessarily belong to 4 other curves.

We are going to prove that # « 4 _2(37 ) for the set of 6 disjoint curves
F < % which consists of the 8 segments [0, 1], [0,—1], [£,0], [—£,0], [l +1i,1],
[-1,=1+1i], [-1—14,—i], [I,1 —i. Then it follows from Proposition 1 applied
to the derivation 4% that (J,.x 4 2" (%) C % is a covering by 6 curves, and
therefore % contains exactly 6 curves.

By symmetry, it suffices to show that the 6 segments which form 2
squares with [l +ii] belong to 47%(F). Our hypotheses imply [0,1]e
A71[0,1]), [1,1+4e47'([0,1]), [1,0] € 47'([i,0]). They also imply [1 +i,i] €
A Y([1 +4,i]) since [1 +i,i] does not belong to A4~'([0,1]), 47'([1,1 +i]) and
A7'([i,0]) which are contained in the 2 curves of % associated to (S**,¢, $*).

As 4 satisfies the property (c) of the definition of derivations, there exists
ze(Z+iZ)—{0,1,—1,i,—i} such that z=p(47'([0,1])) = a(47'([1,1 +1])),
(1+i)z=BA (1,1 +1) =47 (1 +4,i])) and iz =BA (1 +ii]) =
a(471([i,0])). Tt follows that a(A~'([1 +i,i])) #14+i and B(47"([1 +1i,1))
#i. Consequently, 4~ '([l +i,i]) contains [I +2i,1 +i] and [i,2i].

It follows that [i,0], [0,1], [1,1 4], [I +2i,1 + i, [i,2i] belong to 4~ (F).
Now it suffices to show that [2i,1 4 2i] € 47 2([1 +i,1]).
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We observe that A~ '([142i,1+4]) and A~ '([i,2i]) necessarily have a
common vertex since 4~ '([0,1]) and 4~ '([1 +i,i]) have the common vertex
1+i As % is a covering, it follows that [2i,1+2i]e A~ '([1 +2i,1 +i])U
AN+ i) uda™ (i, 21]) € A72([1 + i d). [

From now on, we consider a covering ¢ by folding curves which satisfies
the local isomorphism property. We do not mention the orientation of the
curves when it is not necessary.

The definition of the sets E,(%) for ne NU{oo} and F,(%) for ne N is
given in [4]. Their existence follows from [4, Prop. 3.3]. When there is no
ambiguity, we write E, and F, instead of E,(%) and F,(%).

For each ne N and each z e E,, the 4 nonoriented subcurves of curves
of € with endpoint z and length 2" are all obtained from one of them by
successive rotations of center z and angle 7/2.

We say that z =x+iy € Z +iZ is even (resp. odd) if x + y is even (resp.
odd).

For each ne N and each ueZ +iZ, we have:

By, ={u+2"|veZ+iZ even} if uekby;
Ey1 ={u+2"v|veZ+iZ even} if uekEy. ;
o :{Ll+2n+lU|UEZ+iZ} if ue Foyr;

Eyir ={u+2"|veZ+iZ}  if ueEy,.

For each u € Z + iZ, the translation 7, : v — u + v preserves (resp. inverses)
the orientation of the segments of curves of % if u is even (resp. odd).

For neN and ueZ+iZ even, we have ty1,(F,) = F,. For each
v € F,, the connections between the 4 segments which have v as an endpoint
are preserved by ton, if and only if u € 2(Z 4 iZ).

For neN and ueZ+iZ, we have tyn1,(Foy1) = Fouy1. For each ve
F»,.1, the connections between the 4 segments which have v as an endpoint
are preserved by 7,.+1, if and only if u is even.

It follows that, for each ne N, each ue€ Z +iZ and each set of curves
B < €, we have 15.:1,(#) < € if # contains no pair of consecutive segments
with a common vertex in Ey, ;.

We denote by R, (resp. R}) the set of non-negative (resp. strictly positive)
real numbers. For each set of curves # < % which is bounded in R?, we say
that # has the density d e R, in % if, for each ¢ € R, there exists r € R} such
that, for each se R} with s >r and each zeC,

s’d(1 —e) < |{Z <6|F =% and F C Z,(2)}| < s*d(1 +¢),
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where X(z) ={z+x+iy|x,y€[0,s]}. The density of # in % is uniquely
determined.

THEOREM 3. Each bounded set of curves 8 < % has a density d > 0 in €.

REMARK. As the definition of density is local, B has the same density in
any covering & which is locally isomorphic to €.

Proor. First we give a lower bound for d. As % satisfies the local
isomorphism property and |E,| < 1, there exists a copy of # with no vertex
in E,. Let n be the smallest integer such that some .« < ¥ with &/ =~ %
has no vertex in Ey,,;. Then we have 75.1.(o/) < € for each z € Z + iZ, and
therefore d > 1/22+2,

Now we prove that d exists. For each ue C and each se R}, we con-
sider Ej(u) ={# <%|# =% and & C Z,(u)}. We show that, for large s
and for u,ve C, |Ey(v)| — |Es(u)| is small compared to s°.

We consider two integers r, s such that s is large compared to 2" and 2" is
large compared to the size of #. There exists z € Z 4+ iZ such that v —u —
2z = x4y with sup{|x|,|y|} <2". We have |E (u)| < |E,(v)|+m+n
where

Q

The integer m is small compared to s since s is large compared to 2". The
integer n is small compared to s> because 2 is large compared to the size of 4,
and because we have 7,+1.(#) < % if # < % contains no pair of consecutive
segments with a common vertex in FE, .

It follows that |Es(u)| — |Es(v)| is small compared to s if it is positive.
The same result is true for |E(v)| — |Es(u)]- [ |

)

m
n

NN

<% 2Zy(u) and v (F) € Zs(v)}, and
% 772

NN
Il

I

{ %
{ %

F C
,F C2Zy(u) and 151 (F) £ C}.

From now on, we do not use the identification of R? with C.

THEOREM 4. € is locally isomorphic to a covering generated by a curve
associated to an oo-folding sequence.

Proor. For neN and (u,v) € E,(¥), we denote by %,(u,v) the set
of curves obtained from % by keeping only the segments contained in
[u—2"u+2"x[v—2"v+2". For m<n, €n(u,v) is the restriction of
Gu(u,v) to [u—2"u+2" x [v—2",0+2".

By Konig’s lemma, there exists a sequence (X,),.n € [I,cn En(%) such
that, for m < n, the translation X,, — X,, induces an embedding of %,,(X,,) in
€.(X,). As € satisfies the local isomorphism property, the inductive limit of
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(€1(Xn)),cn relative to these embeddings is a covering & which is locally
isomorphic to ¥ and satisfies the local isomorphism property. The image X
of the elements X, in & belongs to E.,(Z). Each of the two halves of curves
of 2 which start at X is associated to an oo-folding sequence. |

REMARK. According to [4, Th. 3.10/, the covering & given by Theorem 4
is essentially unique: two such coverings only differ by a translation or/and a
change in the connections at the E,, point.

For each (x,y)eZ? the unit square [x,x+ 1] x [y,y+ 1] is essentially
contained in one of the connected components of R?> — %, but each of its 4
vertices can belong to that component or to another one. We say that two
unit squares S, T are connected if they have exactly 1 common vertex X and
if X and their centers belong to the same component.

For each X € Z’, we say that X satisfies the condition (P) if X € E; and
if each unit square with the vertex X is connected to 2 unit squares without
the vertex X.

LEmMMA 5. There exists AeZ? such that {X e Z*|X satisfies (P)} =
{A+7r(2,-2)+5(2,2)|r,s€ Z}.

Proor. For each X € E;, the 4 nonoriented subcurves of curves of &
with endpoint X and length 4 are all obtained from one of them by succes-
sive rotations of center X and angle /2. Consequently, for each of them, X
satisfies the condition (P) if and only if the second and the third segment
starting from X are obtained from the first one by turning left then right, or
right then left.

It follows that each X € E, satisfies P if and only if X 4 (2,0) (resp.
X +(0,2)) does not satisfy P. [ |

Notation. We denote by O the point (0,0) € R>.

THEOREM 6. One of the two following properties is true:

(1) & consists of 1, 2, 3 or 4 curves;

(2) € consists of 6 curves and € is generated by a curve associated to the
alternating folding sequence or to one of its primitives.

Proor. By [4, Th. 3.15], if E,,(%) # &, then & consists of 2 curves or the
property (2) above is true. It remains to be proved that, if E,(%) = ¢, then
% consists of at most 4 curves.

For each X e R? and each curve D, we denote by 6(X, D) the minimum
distance between X and a vertex of D. In the proof of [4, Th. 3.12], we saw
that there exist k e N and X e R? such that 6(X, D) < 1.16 for each D in the
k-th derivative 4%®) of 4. Moreover, ¥ and ¥ have the same number of



10 Francis OGER

Z

«Zy

7 l X3 I Y3

Z3

Fig. 1A Fig. 1B

curves and E, (%) = & implies E,,(4%)) = #. Consequently, we can replace
% with 4, and therefore suppose for the remainder of the proof that there
exists (x, y) € R? such that 6((x, ), C) < 1.16 for each C e %.

Now we apply Lemma 5 to %. There exists 4e€Z> such that
{BeZ?|P(B)} = A+7Z(2,-2) +7Z(2,2), and therefore (c,d)e Z* such that
P(c,d) and |x —c|+|y—d| <2.

For each n e N, we consider the images (¢,,d,) and (x,, y,) of (¢,d) and
(x,y)in ™. We have |x, — ¢,| + |y» — d,| <2. In the proof of [4, Th. 3.12],
we saw that J((x, y), C) < 1.16 for each C e & implies d((x,, y»), D) < 1.16 for
each D e @™,

As E, (%) = &, there exists a maximal integer k& such that (¢, dy) satisfies
the condition (P) for ¥*). Replacing % with %) if necessary, we can assume
k=0. We can also assume (co,dy) = (c1,d1) = O. Then we have two cases:

(a) Oe (%)

(b) O € E3(%) and, in the derived covering %', each unit square with

vertex O is connected to exactly one unit square without vertex O.

Figures 1A and 1B represent these two cases. Whatever the case, there
are 2 possible dispositions for the subcurves of length 4 with endpoint O
of the curves of 4. We only consider one of them since the other one is
equivalent modulo a symmetry. Similarly, we only consider one of the 2
possible choices for the connections in O. We note that the ball B((x, y),1.16)
is contained in the interior of the square (Z;, 2>, Z3,Z4) because (x, y) belongs
to the square (X1, X2, X3, X4).

In Figure 1A, the connections in Y;, Y3 are imposed by the connections
in O, since the property O € F>(%) implies X, X2, X3, X4 € E5(%). Because of
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the existence of connections in X7, X3, X3, Xy, all the subcurves represented are
contained in at most 4 curves of 4. As no other curve of € can reach the
vertices in B((x, y),1.16), € contains at most 4 curves.

In Figure 1B, the connections in X7, X», X3, X4 are imposed since, in 4,
each unit square with vertex O is connected to only one unit square without
vertex O. Consequently, ¥ contains at most 2 curves with segments in the
interior of the square (Yj, Y2, Y3, Ys). As at most 2 other curves of € can
reach the vertices in B((x, y),1.16), it follows that % contains at most 4
curves. |

By [4, Th. 3.2, Cor. 3.6 and Th. 3.7], € is locally isomorphic to a covering
by 1 curve. We also have:

PROPOSITION 7. @ is locally isomorphic to a covering by 2 curves.

Proor. By Theorem 4, we can suppose that @ is generated by a curve
associated to an oo-folding sequence S. Then, by [4, Th. 3.15], € itself consists
of 2 curves except if S is the alternating folding sequence or one of its
primitives. So we can suppose for the remainder of the proof that there
exists k € N such that S®) is the alternating folding sequence 7. Then #*) is
generated by a curve associated to T.

If there exists a covering & by 2 curves which is locally isomorphic to
%', then there exists a k-th primitive & of 2 which is locally isomorphic to
%, and & also consists of 2 curves. So we can suppose k = 0. Then % is the
covering shown in [4, Fig. 8].

For each n e N* and each r € Z, two bounded subcurves of distinct curves
of ¥ form a covering %, ,, in the sense given in the proof of [4, Example 3.§],
of the triangle T, , = ((0, (2r)2"), (2", (2r + 1)2"),(=2",(2r + 1)2")). For each
s € Z, the translation X — X + (0,s2"*!) induces an isomorphism from %, , to
(gn,r+s~

Now, for each ne N, we consider the embedding 7, : 2,0 — Gan1 C
%ani2,0 induced by the translation 7,: X — X + (0,22"+1).  We observe that
Upen 701G (5, Y (Tans2.0)) .- .) = R%. Tt follows that the inductive limit of
(62n,0),cn- relative to the embeddings 7, is a covering by 2 curves which is
locally isomorphic to %. |

We do not know presently for which coverings % there exists a covering
9 consisting of 3 or 4 curves which is locally isomorphic to 4. However, we
are going to give examples of the two situations. Here, for any sets of curves
F, 9, we say that & is interior to ¥ if # « ¥.

EXAMPLE 8. Let € be a covering generated by a dragon curve associated
to the wo-folding sequence (ai),.n+ With ay» = +1 for each ne N.  Then € is
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(2,2)
(2,0)
Fig. 2A Fig. 2B

locally isomorphic to two coverings by 3 curves, one where each pair of curves
has common vertices and one with two curves separated by the third one.

Proor. For the first covering, we apply Proposition 1 to the set of curves
2 shown in Figure 2A with horizontal and vertical segments. It is embedded
in % since it appears in [4, Fig. 7] between (2,0) and (2,2).

We consider the first primitive of 2, shown in Figures 2A and 2B
with diagonal segments, and the second primitive, shown in Figure 2B with
horizontal and vertical segments. They are also embedded in 4. By Figure
2B, the second primitive contains the image of & under a rotation by —zu/2;
we note that this image is not interior to it because the condition is not satisfied
for one of the segments, but it is satisfied at the following step. Repeating this
process 3 more times, we obtain a copy of & which is interior to the 8-th
primitive of &.

For the second covering, we apply Proposition 1 to the set of curves &
shown in Figure 3A (page 13) with horizontal and vertical segments. It is
embedded in % since it appears in [4, Fig. 7] between O and (0, 3).

We consider the first primitive of &, shown in Figures 3A and 3B, and the
second primitive, shown in Figure 3B. They are also embedded in 4. By
Figure 3B, an image of & under a rotation by =z is interior to the second
primitive of &. Repeating this process 1 more time, we obtain a copy of &
which is interior to the 4-th primitive of &. |

EXAMPLE 9. Let € be a covering generated by a curve associated to the
ow-folding sequence (a), .+ With ayw = aywa = +1 and ayme: = ays = —1 for
each neN. Then € is locally isomorphic to a covering by 4 curves.

Proor. The covering % is represented in Figure 4 (page 13). We apply
Proposition 1 to the set of curves & shown in Figure 5A (page 14) with
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(0,3)
(0] % %
Fig. 3A Fig. 3B

Fig. 4

horizontal and vertical segments. It is embedded in % since it appears in
Figure 4 between (—3,0) and O.

We consider the first primitive of &, shown in Figures 5SA and 5B, and
the second primitive, shown in Figure 5B. The second primitive is embedded
in the covering generated by a curve associated to the oo-folding sequence
() gen- With aysm = aysn = —1 and  aya2 = ayus = +1 for each nmeN.
According to Figure 5B, it contains a copy of the image of & under the
reflection about the y-axis; we note that this copy is not interior to it because
the condition is not satisfied for one of the segments, but it is satisfied at the
following step.
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Fig. 5A Fig. 5B

Then, by applying a process which is the image of the previous one under
the reflection about the y-axis, we obtain a copy of £ which is interior to the
4-th primitive of 2. ]

Acknowledgement

We are grateful to the referee for his suggestions, and especially for
drawing our attention to the paper [2] by M. Dekking. We also thank the
proofreader for his comments.

References

[1] D. Davis and D. E. Knuth, Number representations and dragon curves I and II,
J. Recreational Math. 3 (1970), 66-81 and 133-149.

[2] M. Dekking, Paperfolding morphisms, planefilling curves, and fractal tiles, Theoret.
Comput. Sci. 414 (2012), 20-37.

[3] M. Dekking, M. Mendes France and A. Van Der Poorten, Folds, Math. Intelligencer
4 (1982), 130-138.

[4] F. Oger, Paperfolding sequences, paperfolding curves and local isomorphism, Hiroshima
Math. Journal 42 (2012), 37-75.

Francis Oger
UFR de Mathématiques, Université Paris T
Batiment Sophie Germain, case 7012
75205 Paris Cedex 13
France
E-mail: oger@math.univ-paris-diderot.fr



