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ABSTRACT. In this article, we study the infinitesimal isometries on tangent sphere
bundles over orientable three-dimensional Riemannian manifolds. Focusing on the
vector fields which do not preserve fibers, we show the existence of lifts to the bundles
of orthonormal frames. These lifts enable us to analyze the infinitesimal isometries by
the symmetry of principal fiber bundles. We prove that the tangent sphere bundle
admits a non-fiber-preserving infinitesimal isometry if and only if the base manifold
has the same constant sectional curvatures as the fibers have. As an application, we
classify the infinitesimal isometries on tangent sphere bundles for the three dimensional
case.

1. Introduction

For any fixed positive number A, the tangent sphere bundle T#M of radius
A over a Riemannian manifold (M,g) is defined to be the set of all tangent
vectors of length A, which is a hypersurface in the tangent bundle with the
induced Sasaki metric g5. For A =1, it was proved in [9] and [10] that the
geodesic flow on a tangent sphere bundle is an infinitesimal isometry if and
only if the base manifold is a space of constant curvature one. The gener-
alization of this fact is a key to classifying the infinitesimal isometries on
a tangent sphere bundle. This generalization for orientable two-dimensional
Riemannian manifolds was studied and the infinitesimal isometries on the
tangent sphere bundles were classified in [3]. In this article, we study the three-
dimensional case, and see the differences coming from the dimensions.

In general, a vector field on a fiber space is called fiber preserving if the
local one-parameter group of local transformations generated by the vector field
maps each fiber into another one. For example, the lifts X~ and ¢~ to T*M,
which are to be described below, are fiber preserving, whereas the geodesic flow
is not fiber preserving. If there exists an infinitesimal isometry which does
not preserve fibers, it seems that the base space and the fibers have specific
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common properties such as sectional curvatures. In Section 3, we study non-
fiber-preserving infinitesimal isometries on T*M.

To analyze the infinitesimal isometries on T#M, we define lifts to the
bundle of orthonormal frames, which enable us to make use of the symmetry of
principal fiber bundles. Let SO(M) be the bundle of oriented orthonormal
frames over M. The bundle SO(M) has a natural Riemannian metric G
defined by

2

GX,Y)="0(X)-0(Y) +% trace(‘o(X) - w(Y))

for X, Y e T,SOM), ue SO(M),

where 6 and @ denote the canonical form and the Riemannian connection form
on SO(M), respectively. In their papers [8], Takagi and Yawata classified the
infinitesimal isometries of (SO(M),G) when 1 =+/2 and dim M # 2,3,4 nor
8. In the three-dimensional case, the principal SO(3) bundle SO(M) can be
also regarded as a circle bundle over the tangent sphere bundle. Nagy used
this bundle to study the geodesics of 7'M (cf. [5]). On this circle bundle, we
define lifts of infinitesimal isometries on 7#M to those on SO(M) in Section 3.

For a Riemannian manifold M with metric g, let i(M,g) denote the Lie
algebra of infinitesimal isometries on (M, g), D*(M) the Lie algebra of two-
forms on M, and D*(M), the parallel two-forms in D?(M) with respect to
the Riemannian connection V. Given X €i(M,g), the differentials of local
transformations generated by X induce a vector field X% on T*M. We call
X© the lift of X. On the other hand, we identify D*(M) with the set of all
skew-symmetric tensor fields of type (1,1) on M in the usual manner. For
¢GDZ(M), let ¢ denote the corresponding skew-symmetric tensor field of
type (1,1). Then, the one-parameter group of transformations exp 19, teR,
induces a vector field ¢© on T#M. We call ¢~ the lift of 4. The following
theorems are the main results of this paper.

THEOREM 1. Let (M,g) be a connected, orientable three-dimensional Rie-
mannian manifold of class C* and A a positive number. Then, we have the
following for {(T*M,g").

(i) There exists a homomorphism ¥ of {(T*M,g%) into i(SO(M),G).

(i) The bundle (T*M,qg®) admits a non-fiber-preserving infinitesimal iso-
metry if and only if (M,g) is a space of constant curvature 1/°.

In the three-dimensional case, the above result (ii) is the generalization
of the fact stated at the beginning of this article. Since the fiber preserving
case was studied in [2], the result (ii) completes classifying the infinitesimal
isometries on the tangent sphere bundles.
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THEOREM 2. Let (M,g) be a connected, orientable three-dimensional Rie-
mannian manifold of class C* and A a positive number. The Lie algebras of
infinitesimal isometries on the tangent sphere bundles are classified as follows:

(i) When (M,q) is not a space of constant curvature 1/2%,

i(TAM»gS) = Span{XLv¢L;X ei(M,g),pe EZ(M)O}
R

The brackets relations are given by
[XLv YL} = [Xa Y]Lv [¢L7‘//L} = _[¢a lp]Lv [XL7¢L] = _[VXa ¢]L7

where X, Y €i(M,g) and ¢, € D*(M),
(i) When (M,g) is a space of constant curvature 1/1°,

i(T"M,g%) = span{X ", %; X €i(M,g)},
R

where G denotes the geodesic flow on T*M. The brackets relations are given
by
XEvh=1x, 71",  [xtg=o.

Compared with the two-dimensional case (cf. [3]), non-fiber-preserving
infinitesimal isometries in the three-dimensional case are, if they exist, essen-
tially equivalent to the geodesic flow ignoring the infinitesimal isometries of
the base space. Here, we review the two-dimensional case: Let (N,h) be a
connected, orientable two-dimensional Riemannian manifold of class C*.

(i) When (N,h) is not a space of constant curvature 1/2%, we have

i{(T*N,hS) = span{X L, wl; X €i(N,h)},
R

(Xt YH =[x, 15 (Xt ol =0,

where X,Y €i(N,h) and w denotes the volume element of (N,h).
(i) When (N,h) is a space of constant curvature 1/1*, we have

{(T"N,h%) = span{X ", 0", 4, [w",%]; X €i(N,h)},
R

[XL; YL] - [Xa Y]L7 [XLawL] =0, [Xng] =0,
[XL7 [va g“ =0, [wLa [wLa g]] =-9, [g» [wLa g]] = va
where 4 denotes the geodesic flow on T*N.
If the dimension of the base manifold is greater than two, the tangent

sphere bundle is not isometric to the bundle of oriented orthonormal frames.
For the three-dimensional case, we note that a fixed point theorem is applied
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to the fiber to determine the lifts in Section 4. Differences coming from the
dimensions can be also seen in the results gained by Blair in [1].

2. Orthonormal frames over a tangent sphere bundle

In this section, definitions and basic formulas used in this paper are
summarized. More details are stated in [3]. In the course of this paper, we
consistently assume that (M,g) is a connected, orientable three-dimensional
Riemannian manifold of class C*.

Let TM be the tangent bundle of a Riemannian manifold (M,g), and
nry 2 TM — M be the bundle projection. Recall that the connection map
K :TTM — TM corresponding to the Riemannian connection V is defined
to be
h(X(1) - X

K(Z) = lim -2

1 ; for Ze TxyTM, X € TM,
—

where X (1), —e<t<e¢ for some &>0, is a differentiable curve on TM
satisfying X (0) = X, X(0) = Z. Also t(X(f)) denotes the parallel displace-
ment of X(7) from 7mpy(X(¢)) to mry(X) along the geodesic arc joining
nrm(X(#)) and 7wy (X) in a normal neighborhood of 7z (X). Then the
Sasaki metric g% on TM is defined by the formula

9°(Z, W) = g((nrm) . (Z), (mrm) . (W) + g(K(Z), K(W))
for ZWeTyTM, X e TM.

For a fixed positive number /, the total space of tangent sphere bundle 7*M
over M is defined to be the set {X € TM;g(X,X) = 2*}. We also denote the
induced metric on T7*M by g5.

The bundle of oriented orthonormal frames SO(M) is a principal fiber
bundle over the base manifold M with structure group SO(3). We denote this
bundle simply by P. On the other hand, the set of all oriented orthonormal
frames SO(M) can be regarded as the total space of a circle bundle over the
base manifold 7#M. Denoting this bundle by Q, the bundle projection
no:0— T*M is defined by

no(u) = 1X3 for u = (X1, X2, X3) € SO(M),

and the structure group SO(2) acts on the bundle Q on the right as follows:

2 2
ua = (; ar Xy, lzl:aéX/,)Q) for a = (aj) € SO(2),
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where we identify SO(2) with the subgroup of SO(3) given by

al a0
al a3 0 |;(a)eS0(2)
0 0 1

Let 0(3) be the Lie algebra of SO(3). An inner product <-,-> on the vector
space 0(3) is defined by (A,C) = trace('d- C) for 4,Ceo(3). Let o(2)"
denote the orthogonal complement of 0(2) in 0(3), and p: 0(3) — 0(2) be the
orthogonal projection. Then, the composition wyp := pw defines a connection
form on Q. The relation between the Sasaki metric ¢° on T*M and the
metric G on SO(M) is given by

2
G(X, ¥) = ¢ (mg). X, (mo). V) + 5 Cwo(X), wo(¥))

for X, Y e T,SO(M), ue SO(M).

Let N be a Riemannian manifold with metric #. Let §(N) denote the set
of all differentiable functions on N, and X(NV) the set of all differentiable vector
fields on N, respectively. Suppose further that (N,4) has the structure of a
fiber space as bundles (7*M,g%), (P,G) or (Q,G). The bundle projection is
denoted by 7my. A vector field X on N is called fiber preserving if the local
one-parameter group {¢,}, —& < t < ¢, of local transformations generated by X
maps each fiber of N into another one, where ¢ is a positive function on N.
More precisely, the condition is that

VxeN, Vyeny'((x), Vi (il <e), an(p(x)=an(p(r).

We call Y in X(NV) vertical if it is tangent to the fiber at each point of N.
The vector field X on N is fiber preserving if and only if the commutator
product [X, Y] is vertical for any vertical vector field Y. At each point x in N,
the horizontal subspace (#y), of the tangent space T\N is expressed as the
orthogonal complement of the vertical subspace (#%), that is tangent to the
fiber of N. Then the tangent space T,N is decomposed into a direct sum
TN = (#N), ® (VN),-

TP = (Ap), ® (Vp), = {B(&),;Ee R} ®{4;; 4 €0(3)},
T.0 = (#0),® (70), = {B(&), + 4;;E e R, A e0(2)"} @ {4;; 4 € 0(2)},
Ty, T"M = (Hrip)y, ® (Vom)y,

= {(m0),(B(¢),); ¢ e R} @ {(mg).(4;); A € 0(2) 7},
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where B(&) denotes the standard horizontal vector field corresponding to
¢eR’ and A4* the fundamental vector field corresponding to A e o(3).
Aspects of these decompositions are studied in [4] and [5]. Given a vector
field X on the base space of the bundle N, there exists a unique N-horizontal
vector field X ¥ on N such that (my),(X¥) = X, which is called the hori-
zontal lift of X to N. One then has

(4%, X1 =0 for any A € o(3), (2.1

likewise,
[A4*, XHe] =0 for any A4 € 0(2). (2.2)

Each projection 7y is a Riemannian submersion. Especially, we shall use the
following formula. Let VS and D denote the Riemannian connections of
(T*M,g3) and (SO(M),G), respectively. Then we have

G(Dyny Yo, ZHo) = gS(V3Y,Z)  for X,Y,ZeX(T*M). (2.3)

The following formulas are also frequently used throughout this paper.
Let Q denote the curvature form of V, then

1
QX yHry = —Ew([XH”, YHr))  for X,Y e X(M).

For any 4, C € 0(3) and En,CeR3, we have

G([B(£), B()), A7) = =2°<Q(B(&), B(n)), 4>, (2.4)
47, B()) = B(AQ), (2.5)
(4%, C*] = [4,C]", (2.6)
G(Dp(5B(n), B()) =0, (2.7)
G(DppA*, C*) =0, (2.8)
)2
G(Dye A", Bn)) =5 <2(B(E), B), 4, (2.9)
DA*C*=%[A,C]*. (2.11)

From formulas (2.6), (2.8), (2.9), and (2.11), we can easily confirm the fol-
lowing fact.
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Fact 1. The fundamental vector fields are infinitesimal isometries on
(SO(M), G).

These formulas and Fact 1 are based on [6] and [§].

3. The lifts of infinitesimal isometries

In this section, we define the lift Z%*¢ € X(Q) for Z € i(T*M,g5) and prove
that Z%e is in i{(Q, G). This lift gives the homomorphism of i(7*M,g5) into
i(SO(M), G) stated in Theorem 1. We first define ¢; e R® and A4; € o(3) for
i=1,2,3.

e; ='(1,0,0), e = '(0,1,0), e =1'(0,0,1),

0 0 1 0 0 O 0 -1 0
Ai=]1 0 0 0, 4A=]0 0 1], 4=|1 0 0
-1 0 0 0 -1 0 0 0 0

1
V2
normal vector of o(2). For the ¢; and A;, the following formulas will be

frequently used in the argument below.

The system { AhﬁAz} is an orthonormal basis of 0(2)L and %A3 1S a

[A1,A2] = A3, [Ax, A3] = A1, [A3, 4] = Ay; Ajey = —e3, Ajer =0,
Arez =e;, Ayer =0, Ayer =—e3, Arez=ey,
Azer = ey, Azer = —ey, Azez =0.

Here, we note that the system {B(e;), B(es), B(e3), L A},1 435,145} defines an
orthonormal basis for each tangent space of SO(M).

Given an infinitesimal isometry Z of (T*M,g%), we define the lift
ZLoe X(Q) by

1 * *
zto = zHe 4 ?G(DA;ZHQ, A3)A;. (3.1)
From Theorem 1.1 in [3] and its proof, we know the following facts for the lift
Zto,

FAcT 2. For an infinitesimal isometry X on (T*M,gS), we have that
(i) The values of the Lie derivatives

(Lyro G)(Blei); B(¢j)),  (LyroG)(A4;,47),  (Lyro G)(Blei), 4y)

I ]

all vanish for 1 <i,j<3 and 1 <k <2,
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(i) We denote the lift X' by ¥(X). Then the mapping ¥ :(T*M,g5)
— X(SO(M)) gives a homomorphism from the Lie algebra of fiber preserving
infinitesimal isometries of (T*M,g%) to that of (SO(M),G).

If Z is fiber preserving, we know that Z%¢ is in #(SO(M), G) from (ii) of
the above facts. Throughout this section and Section 4, we assume that Z
does not preserve a fiber of T*M. By (i) of the above facts, to prove Z%¢ is in
i(SO(M), G), it suffices to show that the equality

(L,1,G)(W,A5) =0 (3.2)
holds for any P-horizontal vector field W.

PrOPOSITION 1. The lift Z%e preserves the fibers of Q, that is,
[Z%e, 43] = 0.

PrOOF. Since A3 is in i(SO(M),G), and V5Z is skew-symmetric with
respect to gs, we have

* 1 * * *
[A,% ) ZLQ] = P {As G(DAI*ZHQ» Az)}A3

1 * * * * *
= F{G(D[A;,AHZHQ + Dy:[43,Z27], 43) + G(D4: 2", 43, 43))} 43

1 * * *
= ?{G(DAgZHgvAz) — G(D:Z"e, A1)} 45 =0,

where the formulas (3.1), (2.2), (2.6), and (2.3) were used in turn. O

Set W, =[A},Zt¢] and W, =[A4;,Z%]. The pair of vector fields
{W,, W)} plays a vital role in the proofs of the theorems. From the Jacobi
identity and Proposition 1, we have

[, Wa] = [45, W] (3-3)
LemMA 1. The vector fields W\ and W, are P-horizontal vector fields.
Proor. Let i, j be 1 or 2. Since A is in i(SO(M),G), we have
G(W;, A}) = A G(Z"0, A]) = G(Z", 4], 4]))
= G(D:Z",4]) + G(ZM"2,Dy-A]) — G(D4 Z"2, 47) = 0
by using (3.1), (2.6), and (2.11) in turn. On the other hand, we have
G(W, A3) = ~Z 0 G(A] A5) — G(4],[43,2)) = 0

by (i) in Fact 2 and Proposition 1. Hence, W; is P-horizontal. O
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If the equalities W} = W, =0 hold on SO(M), then the vector fields
(47, 2] = W, — F{Ai G(DAI*ZHQ,AZ)}A3 —?G(DAI*Z”QAZ)[AZ. , A3

are vertical for i = 1,2 on P. For any vertical vector field ¥ on T*M, there
exist f1,f2e F(SO(M)) such that VHe = fl4y 4+ f24;. Then, the vector
field

2

Z,V] = [(mg), 2", (mg), V] = (mg), D_{(Z"ef)A; + f[Z", 471} (34)
i=1

is also a vertical vector field on T#M. This conclusion contradicts the
assumption that Z is not fiber preserving on T/M. Hence there exists an
open set of SO(M) where W; does not vanish for either i=1 or i=2. In
fact, we can assume that both W} and W, do not vanish on the open set,
because we have

[A;, Wl] = W2 and [A;, Wz] = —W1 (3.5)

from the Jacobi identity and Proposition 1. Furthermore, we have the
following lemma.

LEMMA 2. Let U be the non-empty open set of SO(M) defined by
U={ueSOM); (W), #0 and (W>), # 0}.
Then, U is an open dense subset of the fibers np'(np(U)).

Proor. Let i be 1 or 2, and u in U. Using a local expression 4 =
v+ 217 for some functions £, /7 € F(SO(M)) and vertical vector
fields V1, V> € X(T*M), the nonzero P-horizontal component of (W;), is equal
to that of {£,![V1,Z]" + f2[V»,Z)""¢},. Therefore, the horizontal component
of either [V, Z], ) or [V2,Z],,(,, does not vanish. This means that the local
one-parameter group {¢,}, —¢ < t < ¢, of local transformations generated by Z
does not preserve the fiber 7}, (7p(u)), that is,

IX,3Y engly (np(n), 0< 3 <e —& <Vi<eé,

i (0(X)) # mrip(9,(Y)). (3.6)

Suppose that W; =0 holds on an open set O of np!'(zp(U)) and u is in
UNnp'(np(0)), where we can assume that i=1,2 from (3.5). Then, by
the formula (3.4), we know that [Z, V] is vertical on 7y(O) for any vertical
vector field ¥ on T*M. This implies that the local transformations {¢p,}
(0 < 3" < ¢, Jt| < &") preserve the fibers of 7np(0). However, since each fiber
of T*M is a totally geodesic submanifold of SO(M), each isometry ¢, maps the
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whole fiber 7!

{0.(X),0(Y)} < 9,(mpspy (mp(W)) = 77ty (e (9, (mo (1)),

This contradicts (3.6), which comes from the open set O defined beneath the
formula (3.6). O

y(mp(u)) to a fiber, hence we have that

Levva 3. (i) Dye[A*, Z] + D, ;10 A* =0 for all A€ o(3).
(ii) D W2+ Dy, A5 =0, Dy; Wy + Dy, A7 = 0.

Proor. (i) When 4 is in 0(2), the formula of (i) is trivial from Proposi-
tion 1. Let A be in 0(2)" and Y € X(SO(M)) an arbitrary P-horizontal lift.
Then we have

G(Dy-[A*,Z%2),Y) = A*G(D4-Z"%,Y)  (by Fact 1 and (2.1))
= —A*G(DyZ" 4*)  (by (i) in Fact 2)
= —G(Dy[A*,Z%],4*)  (by Fact 1 and (2.1))
= G([A4*,Z%],DyA") (by Lemma 1)
=—G(Y,D,. 51047) (by Fact 1).

From this formula, we obtain the formula (i), because both D4.[4*, Z%¢] and
Dy,. 714" are P-horizontal by virtue of (2.8), (2.10), and Lemma 1.
(ii) Substituting 4* = A{ + 45 in the formula of (i), we have

Dy Wy + Dy; Wi+ Dy, Ay + Dy, A} = 0. (3.7)
From (3.3) we also have

DAI*WQ—DWZAT —DAZ* W -|-DW]Aék =0. (3.8)
Adding each side of the formulas (3.7) and (3.8), we obtain

Z(DAIX Wy + DWIA;) =0,

which implies the first formula of (ii). Then the second formula of (ii) is
immediate. O

Lemma 4. Set Gj=G(W;,W;) for 1<i,j<2 Then, the functions
G; on SO(M) satisfy the following equations. (i) A;Gy =0, (i) 456G =
—2A1*G12, (111) A;Gn = 2G12, (IV) Al*Gzz = —2A§G12, (V) A;Gzz = 0, (Vl)
A;Gzz = —2G12, (Vll) A;Glz = G22 — G11.

ProoF. We prove this lemma in the order (i), (v), (iii), (vii), (ii). The

formulas of (iv) and (vi) are obtained by the same way as (ii) and (iii),
respectively, so we omit the proof for these two formulas.
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(i), (v) Let i be 1 or 2. From (i) of Lemma 3, we have
A;Gi =2G(D 4 Wi, W;) = =2G(Dw, A7, Wh).

The right hand side of the above formula equals zero because DA/ is skew-
symmetric with respect to the metric G by Fact 1.

(i) Since A3 is in i(SO(M),G), by using the Jacobi identity and
Proposition 1, we have

A3Gu = 2G([45, W], Wh) = 2G([[43, A7), Z"°] + [4], [45, Z"°]], W1)
=2G([43,Z%], W) = 2Ga.

(vii) By a similar calculation to the above, we have
A;Gio = G([A3, Wh], Wa) + G(Wh, (A5, Wa]) = G2 — Gy

(i) Using the above results (i) and (iii), we can derive the left hand side
of the formula (ii) from the right hand side as follows:

ZATGU:AI*A;GU :[AT,ASF]GH-FA;ATGH :—A;Gll. O

LEMMA 5. Set W3 = —[A], Wi|, then the system {(W1),,(W>),. (W3),}
Sforms an orthogonal basis of the P-horizontal space (#p), at each point u in an
open dense subset U’ of the set U defined in Lemma 2.

Proor. This lemma is proved by solving the equations given in Lemma 4
on each fixed fiber of the bundle P. Let z be an arbitrary point in M, and
set S =mp(np!(z)), which is a sphere of radius A in the tangent space T.M.
To solve the equations on 7p'(z), we choose arbitrary uy in 7p'(z). Let
(x!,x2,x%) be the canonical coordinate system with respect to the frame

up € SO(M). Then, S is expressed as
{22, x%) e R3 (¢ + ()7 + ()7 = 22}, (3.9)

In this setting, we define a local coordinate system (x,y), 0 <x <z, 0< y<
27 for S satisfying

(x',x?,x%) = (Asin x cos y, A sin x sin y, A cos x). (3.10)
There exists a local section ¢ < nél(S) of Q such that

(mo).((41)) = (55 L 50490 = (525 5:) L forues

Let 0 denote a coordinate for the integral curves of A5 such that d/d0 = Aj.
Then, (x,y,0) provides a local coordinate system for nél(S) on which the
section ¢ is given by (x, y,0). Then, the equations in Lemma 4 are written as
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the following system of partial differential equations.

6G11 _ 5622 - aG12 _
W—ZGIZ7 W_ _2G12, W— G22_G11. (311)
6G11 —0, '1 anz _ 0, .1 5?11 I 26G12 _ 07
Oox sin x 0Jy sinx 0y ox
6G22 2 aGlz
- =0. 3.12
Ox sinx dy (3.12)

By the equations (3.11), the functions Gyi, G, and Gy, are of the forms
Gii=a sin(20 + y) + b, Gy = —a sin(ZH + y) + b,
G2 = acos(20 + ), (3.13)

where a, b, and y are functions on S. By substituting (3.13) in (3.12), we
obtain that

. da dy 0b
. Aot Ao = .14
sin(26 + y) . +a cos(20 + ) R + =~ 0, (3.14)
_sm(?@er)@_acos.(zﬁer)@+ .1 %:0’ (3.15)
sinx  Jy sin X dy ' sin x dy
sin(20 + y) da  a cos(20+y) dy 1 ob
. e O
sinx  y sin x Jy sinx dy
+ 2 cos(20 + )@— 2a sin(20 + )Q =0
Y Ox 7 ox -

. Oa dy 0b  2cos(20+7) da
—Sln(29+y)a—aCOS(ZQ—I—y)a-Fa‘FTa—y
_ 2asin(20+y) oy _

sin x dy 0

Eliminating 0b/0x and 0b/dy from the above four equations, we have that

da a Oy oa .0y
Z__ hts == . 3.16
0x sin x 9y’ oy @S X oy (3.16)
Then, we obtain
%a  a 1 Gady . 0ady acosxdy
ox?  dy?2  sinx dx dy 0y 0x  sin? x Oy
62;/
in x — —. 1
+a (sm X x) axdy (3.17)
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By differentiating (3.14) and (3.15) with respect to 6, we have that

A

da . ay B da . ay _
cos(20 + y) i sin(260 + y) E 0, cos(20 + ) 3 + a sin(26 + y) - 0,
which implies that
da 0y 0Oa 0y\

On the intersection of the set {X € S;a(X) # 0} and the great circle x = n/2 of
the sphere S, we have from (3.17) and (3.18) that da = 0/2%, where 4 denotes
the Laplacian on S. Since the coordinate system (x, y) for S is an arbitrary
one, we have that 4a =0 on the open set {X € S;a(X) # 0} of S, which
implies that 4a = 0 on S because of the continuity of the function 4a. Since
any harmonic function on a connected compact Riemannian manifold is
constant, the function a is constant on S. Then, from (3.14), (3.15), and
(3.16), we know that the functions b and y are also constant on S. Since
Gy + Gy = 2b, we have by Lemma 4 that

A;Gy = A;(2b — Gp) =0,  A[Gy = A7 (2b— Gyy) =0.

Together with (i) of Lemma 4, the above formula implies that the function Gy;
is a constant on each fiber of SO(M). Therefore, we also have 2Gy, = A5Gy,
=0 and G»n — Gi1 = A5G =0 by Lemma 4. We rewrite these formulas
below for the citation.

A3GH =0,  AlGy =0, (3.19)
Gir = 0, (3.20)
G = Gx. (3.21)

We know that W3 =Dy A — D4 W) is P-horizontal from Lemma 1,
(2.8), and (2.10). By the Jacobi identity and (3.3), we have
(A7, [A3, W3]] = [4], —[Ay, Wh] = [4}, W]

= 2[4y, [45, W1]]

=20, + 2[1‘1;, Ws).
Therefore, we know that if W3 =0 holds on an open set O of SO(M), it also
holds on O that W, =0 and W), =0 from the above formula and (3.21).
Hence, (W3), # 0 at each point u in an open dense subset U’ of U, where U is

the open set of SO(M) defined in Lemma 2. The orthogonality of the system
{W1, Wy, W3} at each point in U’ is given by (3.20) and the following simple
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calculations. We have
1
G(Wy, W3) = —G(W1, 4], W1]) = —EATG(Wl, W) =0

by Fact 1 and (i) in Lemma 4, and we also have
G(Wo, W3) = —G(W>, [A], W1])
= —A[G(Wr, W\) + G([4], W>], W1) (by Fact 1)
= G([4y, W2], ) (by (3.20))
= G([4;, ], wh)  (by (3.3))

1
ZEAE‘G(Wl,Wl) (by Fact 1)

=0 (by (3.19)).
These equalities show that W3 is perpendicular to both W; and W5. O

The following proposition gives the main part of (i) in Theorem 1. After
we classify the infinitesimal isometries in the final section, we know that the lifts
are endowed with the homomorphism between i(T*M,g®%) and i(SO(M), G).

PrROPOSITION 2.  Given an infinitesimal isometry Z of a tangent sphere
bundle (T*M , g5), the lift Z*¢ defined by (3.1) is an infinitesimal isometry on the
bundle of oriented orthonormal frames (SO(M), G).

Proor. Let U be the open set of SO(M) defined in Lemma 2. If the
interior (SO(M)\U)° is not the empty set, then we know that the restricted
vector field ZLe | (SO(M)\U)® is an infinitesimal isometry from (ii) in Fact 2.
Therefore, according to Fact 2 and Lemma 5, it is sufficient to verify that the
equality (3.2) holds on U for W = W, W>, and W3. In fact, we have that

(L0 G)(W1, 43)
=ZMG(Wh, 43) — G([Z"2, W], 43) = G(Wh, (272, 43))
= —G([Z"2,[4],Z")], (4], 45]) (by Proposition 1 and Lemma 1)
= —A7G([Z" [}, Z"]], 43) + G([47, [2", [4}, Z"]]], 43)
(by Fact 1)
= A;G([A],Z"2),[Z" 2, 43)) (by (i) in Fact 2 and Lemma 1)
+ G([[A], 2], [A], Z5] + (270, [47, [4], Z"]]], 43)

(by the Jacobi identity)
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= G((Z", 4], [4], Z™))], 43) (b (3.20))
= —G([A},[A},Z19)),[Z"2, 43]) (by (i) in Fact 2 and Lemma 1)
= G([4},Z"],[4},[Z%, 45]))  (by Fact 1 and (3.20))

= G([A}, 2", [45, 127, 47]))  (by (3.3))

:7%A;G([AI*,ZLQ],[AT,ZLQ]) —0  (by Fact 1 and (3.19)).

By the same calculation as the above, we also have (L., G)(W2,A45)=0.
Next, we have that

(L1 G) (W3, 43)
= Z"0G(W3, 47) — G([Z"°, W3], 43) — G(W3, (212, 43))
= G([Z%e, 4}, W]}, 43) (by Proposition 1 and Lemma 1)
= G[[Z"0, A7), W), 43) + G(4},[Z0, W]}, 43)
(by the Jacobi identity)
— A;G(ZE0, W], 45) — G(Z%e, W], (4], 43])  (by Fact 1)
= G([z", W], 43)
(by (L,1,G)(W1,A43) =0, Proposition 1, and (2.6))
= —G(Wy,[Z"2, 43)]) (by Lemma 1 and (i) in Fact 2)
=G(W, W) =0 (by (3.20)).

Thus, we verified the equality (3.2) on U. Since L,.,G is a continuous tensor,
it vanishes on SO(M) entirely, which completes the proof of Proposition 2.

O

4. Curvatures of base spaces

Using the lifts studied in the previous section, we show in this section that
(M, g) is a space of constant curvature 1/A%, which is the necessary condition
for (ii) in Theorem 1. For this purpose, we first study a relation between the
lift Ze and the standard horizontal vector fields.

LEMMA 6. The norms of the horizontal vector fields W; and [A}, W},
1 <i,j<2, are constants on each fiber of P.

Proor. The functions Gy, 1 <i,j <2, are constants on each fiber of U
from Lemma 4 and the formulas (3.19), (3.20), and (3.21). Therefore we know
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that U = n;! (np(U)) by the continuity of the functions Gy, and that the norms
of W; are constants on each fiber. On the other hand, since the lift Z%¢ is
an infinitesimal isometry from Proposition 2, the brackets [A4;, W] are also
infinitesimal isometries on SO(M). For any A € 0(3), we have

A*G(47, Wi, 147, Wi))
=26([47, [47, Will, [47, W)
= 2[4], WiG(A7, [4], W)]) + 2G(47, [[47, Wi, [4;, Wj]]) = 0.
Hence, the norms of [4/, W] are also constants on each fiber. O

LemMMA 7. For the brackets [A}, W;], 1 <i,j <3, we have the following.
(i) [47, Wa] = [A45, W] = 0, (ii) [A], W] = [43, W] = — W3, (iii) [A], W3] = W1,
(iv) [A5, W3] = Wa, (v) [A5, Wi] = Wa, (Vi) [A], Wh] = =W, (vii) [45, W3] =0.

Proor. (i) The formula [4], W>] = [4;, W] was given by (3.3). Let U
be the open set defined in Lemma 2. If the interior of the complement of U
is not empty, where 1] vanishes identically at each point, then the equality
[A, W>] = 0 holds on the set (SO(M)\U)® by virtue of

2[’4;’ WZ} = [A;7 Wl] + [Ai‘a WZ]
= [[45, 47), Wi] + [4], [45, "]
= [43,[47, W],

Therefore, it is sufficient to verify that the equality [4], W>] =0 holds on U.
At each point of U, the vector field [4], W] is perpendicular to both ¥} and
W,, because we have from (3.3) and (3.19) that

1
G([47, Wa], Wh) = G([4;, W], W) =§A§G(W1, W) =0,

1
G([A], Wa], W2) = 5 A[G(Wa, W) = 0.

By Lemma 5 and Lemma 6, we know that W3 # 0 at each point of the open
set U. Hence, we can write [A4], W>] = a[4], Wi] on U, where o€ (U) is
constant on each fiber of P by Lemma 6. Then, we have

[A;7 [Afv WZH = OC[A; [Afa Wl]] (41)

The left hand side of the above equality is calculated by the Jacobi identity and
(3.5) as follows:

[A;’ [Afa WZ” = [[A;7Aﬂv Wﬂ + [A1*7 [A;7 WZH = [A; WZ] - [Aikv Wl] (42)
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The right hand side of the equality (4.1) is calculated by the Jacobi identity,
(3.3), and (3.5) as follows:

aldy, [y, W] = a(([43, A7), Wi] + A7, [45, Wh]]) = 2004}, Wal. - (4.3)
We have by (4.2) and (4.3) that
(45, Wh] = 20[A}, Wa] + [A], W1]. (4.4)
By (4.2), we further have
A3, [A3, [A}, Wall] = [43, [4y, Wal] = [45, [47, W1 ]
= [[d3, 43}, Wa] + [43, [45, W]
— A5, A7), Wi] = [4], [45, W]
= —[d], Wa] — [A5, W] — [43, W\] = [A[, W]
= —4[4], W].
On the other hand, by (4.3) and (4.4), we also have
43,0143, [A7, WAT)] = 29([45, 43, Wa) + 2004} (45, W3]
= 2u[A}, W] — 2a]A], W]
= 20(2u[A], Wa] + [A], Wh]) — 20[A4], W]
= 40’ [A}, Wr).

Consequently, we obtain the formula —4[A4}, W>] = 44>[A}, W] from the above
formulas, which implies that [4], W] = 0.
(i) From the Jacobi identity and (i), we have

[A;’ WZ] - [Al*v Wl] = [[A;7Aﬂ’ W2] + [Afv [A;v W2H = [A§a [Al*’ WZ” = 0.

Since the definition of W3 is W3 = —[A], W1], we obtain (ii) by the formula
above.

(iii), (iv), (vi) By using (ii), the Jacobi identity, (i), and (3.5) in turn, we
have that

(A7, W3] = 4y, =[4;, W]

= —[[4y, 43], Wa] = [A3, [A7, W]l = —[45, Wa] = W,
[, W3] = [4;, =41, W]

= —[[dy, 47], Wil = [41, [4y, W] = [43, W] = W,
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[A;7 W3] = [A;a _[AT7 W]
= —[[45, 4], ] = [47, [45, W]] = =2[4;, "] = 0.
The formulas (v) and (vi) had already been given by (3.5). O

LemMMA 8. The norms of the P-horizontal vector fields Wy, W», and W3 are
the same nonzero-constants on SO(M).

ProoF. Since Wy, W,, and Wj are infinitesimal isometries on SO(M), we
have that

WG(Wy, W) = 2G([W1, Wl], W) =0,
WZG(Wl, W) = 2G([W2, Wl], Wl) = —2W1G(W2, W) +2G(W2, [W17 Wl]) =0,
WiG(Wy, W) =2G([W3, Wh), Wi) = =2WG(W3, W) + 2G(Ws, [W,, Wi]) = 0,

where Lemma 5 was applied. Therefore, the norm of W) is a constant on the
open set U defined in Lemma 2. Since the norm of W) is a continuous
function on SO(M), the domain U must equal SO(M). By (3.21), the norm
of W, is the same as that of ;. As for the norm of W3, it also coincides
with that of W) from the following calculation.

G(W3, W3) = G([4], W], [43, W2])
= A{G(Wh, [43, Wa]) — G(W, [A], [45, W2]])
= —A{G(W\, W3) = G(W1, [[4], A3], Wa] + [43, [A], W)
= —G(Wy, 43, W])

- G( Wla Wl)a
where Lemma 7, Fact 1, the Jacobi identity, and Lemma 5 were applied.
[
Dividing Z by the constant norm ||[W]|, we assume ||[W;|| =1 for i =1,

2,3 in the remainder of this section. The following proposition shows that the
vector fields W), W,, and W3 are equivalent to standard horizontal vector
fields.

PropoOSITION 3. Let (M,g) be a connected, orientable three-dimensional
Riemannian manifold of class C* and A a positive number. If the bundle
(T*M,g3) admits a non-fiber-preserving infinitesimal isometry Z, then there
exists a nonzero constant p such that

A7, Z") = uBle)) and [A7,[A], 2% = —uBles)  for i=1,2,
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ProoF. By normalizing W) appropriately, we shall show that

23: G(Wi, B(e;)) =3

i=1

on SO(M). Set K = 21‘3:1 G(W;, B(e;)). We first show that the function K is
constant on each fiber of the bundle P. We have by (2.5) and Lemma 7 that

ATK = G([47, W], Bler)) + GOW1, 45, B(en)]) + G([4], W3], Ble2)
+ G(Wa, 47 Bex))) + G4}, W3], Bles)) + G(Ws, 4], B(e3))
= —G(W3,B(e1)) — G(W1,B(e3)) + 0+ 0+ G(W1,B(e3)) + G(Ws3, Bler))
:(),
A3K = G([43, W], Bler)) + G(W1, 43, B(en)]) + G(143, Wal, Ble2)
+ G(Wa, 145, Be2)]) + G([A43, W3, B(ex)) + G(Ws, [43, B(e3))
— 04+ 0— G(Ws, B(es)) — G(Wa, B(e3)) + G(Wa, B(es)) + G(W3, B(e3))
=0.

By using these equalities, we also have that A{K = [4], 45]K = 0. Hence, K
is constant on each fiber of P.

We next fix an arbitrary fiber of 7#M. We denote this fixed fiber by S,
which is a sphere of radius 4. By the fixed point theorem, we can choose uy in
np! (npip(S)) such that (W3), = B(es),, holds, where, if necessary, we adopt
—Z in i(T*M,g5) from the beginning instead of Z. Let (x' x? x°) be the
canonical coordinate system with respect to the frame ug e SO(M). In this
setting, we define a local coordinate system (x,y) for S given by (3.9) and
(3.10). Since

A;G(Wh, B(es)) = G(W2, B(es)),  A3G(Wa, Bles)) = —G(W1, B(es)),

the functions G(W), B(es)) and G(W>, B(es)) can be written as follows using
the same local coordinate system (x, y,0) for the fiber of SO(M) as in the
proof of Lemma 5.

G(W1, B(e3)) = ¢ sin(0 + p), G(W>,B(e3)) = ccos(6+p), (4.5

where ¢ and p are functions on the sphere S. We have by Fact 1, (2.5), and
Lemma 7 that

A{G(W1, B(es)) + Ay G(W2, B(es))
= G( W],B(@])) + G(Wz,B(e