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Abstract. In this article, we study the infinitesimal isometries on tangent sphere

bundles over orientable three-dimensional Riemannian manifolds. Focusing on the

vector fields which do not preserve fibers, we show the existence of lifts to the bundles

of orthonormal frames. These lifts enable us to analyze the infinitesimal isometries by

the symmetry of principal fiber bundles. We prove that the tangent sphere bundle

admits a non-fiber-preserving infinitesimal isometry if and only if the base manifold

has the same constant sectional curvatures as the fibers have. As an application, we

classify the infinitesimal isometries on tangent sphere bundles for the three dimensional

case.

1. Introduction

For any fixed positive number l, the tangent sphere bundle T lM of radius

l over a Riemannian manifold ðM; gÞ is defined to be the set of all tangent

vectors of length l, which is a hypersurface in the tangent bundle with the

induced Sasaki metric gS. For l ¼ 1, it was proved in [9] and [10] that the

geodesic flow on a tangent sphere bundle is an infinitesimal isometry if and

only if the base manifold is a space of constant curvature one. The gener-

alization of this fact is a key to classifying the infinitesimal isometries on

a tangent sphere bundle. This generalization for orientable two-dimensional

Riemannian manifolds was studied and the infinitesimal isometries on the

tangent sphere bundles were classified in [3]. In this article, we study the three-

dimensional case, and see the di¤erences coming from the dimensions.

In general, a vector field on a fiber space is called fiber preserving if the

local one-parameter group of local transformations generated by the vector field

maps each fiber into another one. For example, the lifts X L and fL to T lM,

which are to be described below, are fiber preserving, whereas the geodesic flow

is not fiber preserving. If there exists an infinitesimal isometry which does

not preserve fibers, it seems that the base space and the fibers have specific
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common properties such as sectional curvatures. In Section 3, we study non-

fiber-preserving infinitesimal isometries on T lM.

To analyze the infinitesimal isometries on T lM, we define lifts to the

bundle of orthonormal frames, which enable us to make use of the symmetry of

principal fiber bundles. Let SOðMÞ be the bundle of oriented orthonormal

frames over M. The bundle SOðMÞ has a natural Riemannian metric G

defined by

GðX ;Y Þ ¼ tyðXÞ � yðYÞ þ l2

2
traceð toðXÞ � oðY ÞÞ

for X ;Y A TuSOðMÞ; u A SOðMÞ;

where y and o denote the canonical form and the Riemannian connection form

on SOðMÞ, respectively. In their papers [8], Takagi and Yawata classified the

infinitesimal isometries of ðSOðMÞ;GÞ when l ¼
ffiffiffi
2

p
and dimM0 2; 3; 4 nor

8. In the three-dimensional case, the principal SOð3Þ bundle SOðMÞ can be

also regarded as a circle bundle over the tangent sphere bundle. Nagy used

this bundle to study the geodesics of T 1M (cf. [5]). On this circle bundle, we

define lifts of infinitesimal isometries on T lM to those on SOðMÞ in Section 3.

For a Riemannian manifold M with metric g, let iðM; gÞ denote the Lie

algebra of infinitesimal isometries on ðM; gÞ, D2ðMÞ the Lie algebra of two-

forms on M, and D2ðMÞ0 the parallel two-forms in D2ðMÞ with respect to

the Riemannian connection ‘. Given X A iðM; gÞ, the di¤erentials of local

transformations generated by X induce a vector field X L on T lM. We call

X L the lift of X . On the other hand, we identify D2ðMÞ with the set of all

skew-symmetric tensor fields of type ð1; 1Þ on M in the usual manner. For

f A D2ðMÞ, let ~ff denote the corresponding skew-symmetric tensor field of

type ð1; 1Þ. Then, the one-parameter group of transformations exp t ~ff, t A R;

induces a vector field fL on T lM. We call fL the lift of f. The following

theorems are the main results of this paper.

Theorem 1. Let ðM; gÞ be a connected, orientable three-dimensional Rie-

mannian manifold of class Cy and l a positive number. Then, we have the

following for iðT lM; gSÞ.
(i) There exists a homomorphism C of iðT lM; gSÞ into iðSOðMÞ;GÞ.
(ii) The bundle ðT lM; gSÞ admits a non-fiber-preserving infinitesimal iso-

metry if and only if ðM; gÞ is a space of constant curvature 1=l2.

In the three-dimensional case, the above result (ii) is the generalization

of the fact stated at the beginning of this article. Since the fiber preserving

case was studied in [2], the result (ii) completes classifying the infinitesimal

isometries on the tangent sphere bundles.
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Theorem 2. Let ðM; gÞ be a connected, orientable three-dimensional Rie-

mannian manifold of class Cy and l a positive number. The Lie algebras of

infinitesimal isometries on the tangent sphere bundles are classified as follows:

(i) When ðM; gÞ is not a space of constant curvature 1=l2,

iðT lM; gSÞ ¼ span
R

fX L; fL;X A iðM; gÞ; f A D2ðMÞ0g:

The brackets relations are given by

½X L;Y L� ¼ ½X ;Y �L; ½fL;cL� ¼ �½f;c�L; ½X L; fL� ¼ �½‘X ; f�L;

where X ;Y A iðM; gÞ and f;c A D2ðMÞ0.
(ii) When ðM; gÞ is a space of constant curvature 1=l2,

iðT lM; gSÞ ¼ span
R

fX L;G;X A iðM; gÞg;

where G denotes the geodesic flow on T lM. The brackets relations are given

by

½X L;Y L� ¼ ½X ;Y �L; ½X L;G� ¼ 0:

Compared with the two-dimensional case (cf. [3]), non-fiber-preserving

infinitesimal isometries in the three-dimensional case are, if they exist, essen-

tially equivalent to the geodesic flow ignoring the infinitesimal isometries of

the base space. Here, we review the two-dimensional case: Let ðN; hÞ be a

connected, orientable two-dimensional Riemannian manifold of class Cy.

(i) When ðN; hÞ is not a space of constant curvature 1=l2, we have

iðT lN; hSÞ ¼ span
R

fX L;oL;X A iðN; hÞg;

½X L;Y L� ¼ ½X ;Y �L; ½X L;oL� ¼ 0;

where X ;Y A iðN; hÞ and o denotes the volume element of ðN; hÞ.
(ii) When ðN; hÞ is a space of constant curvature 1=l2, we have

iðT lN; hSÞ ¼ span
R

fX L;oL;G; ½oL;G�;X A iðN; hÞg;

½X L;Y L� ¼ ½X ;Y �L; ½X L;oL� ¼ 0; ½X L;G� ¼ 0;

½X L; ½oL;G�� ¼ 0; ½oL; ½oL;G�� ¼ �G; ½G; ½oL;G�� ¼ oL;

where G denotes the geodesic flow on T lN.

If the dimension of the base manifold is greater than two, the tangent

sphere bundle is not isometric to the bundle of oriented orthonormal frames.

For the three-dimensional case, we note that a fixed point theorem is applied

345Isometries on sphere bundles



to the fiber to determine the lifts in Section 4. Di¤erences coming from the

dimensions can be also seen in the results gained by Blair in [1].

2. Orthonormal frames over a tangent sphere bundle

In this section, definitions and basic formulas used in this paper are

summarized. More details are stated in [3]. In the course of this paper, we

consistently assume that ðM; gÞ is a connected, orientable three-dimensional

Riemannian manifold of class Cy.

Let TM be the tangent bundle of a Riemannian manifold ðM; gÞ, and

pTM : TM ! M be the bundle projection. Recall that the connection map

K : TTM ! TM corresponding to the Riemannian connection ‘ is defined

to be

KðZÞ ¼ lim
t!0

t t0ðXðtÞÞ � X

t
for Z A TXTM; X A TM;

where XðtÞ, �e < t < e for some e > 0, is a di¤erentiable curve on TM

satisfying X ð0Þ ¼ X , _XXð0Þ ¼ Z. Also t t0ðX ðtÞÞ denotes the parallel displace-

ment of XðtÞ from pTMðXðtÞÞ to pTMðXÞ along the geodesic arc joining

pTMðX ðtÞÞ and pTMðXÞ in a normal neighborhood of pTMðXÞ. Then the

Sasaki metric gS on TM is defined by the formula

gSðZ;WÞ ¼ gððpTMÞ�ðZÞ; ðpTMÞ�ðWÞÞ þ gðKðZÞ;KðWÞÞ

for Z;W A TXTM; X A TM:

For a fixed positive number l, the total space of tangent sphere bundle T lM

over M is defined to be the set fX A TM; gðX ;X Þ ¼ l2g. We also denote the

induced metric on T lM by gS.

The bundle of oriented orthonormal frames SOðMÞ is a principal fiber

bundle over the base manifold M with structure group SOð3Þ. We denote this

bundle simply by P. On the other hand, the set of all oriented orthonormal

frames SOðMÞ can be regarded as the total space of a circle bundle over the

base manifold T lM. Denoting this bundle by Q, the bundle projection

pQ : Q ! T lM is defined by

pQðuÞ ¼ lX3 for u ¼ ðX1;X2;X3Þ A SOðMÞ;

and the structure group SOð2Þ acts on the bundle Q on the right as follows:

ua ¼
X2
k¼1

ak
1Xk;

X2
l¼1

al
2Xl ;X3

 !
for a ¼ ðai

j Þ A SOð2Þ;
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where we identify SOð2Þ with the subgroup of SOð3Þ given by

a11 a12 0

a21 a22 0

0 0 1

0
B@

1
CA; ðai

j Þ A SOð2Þ

8><
>:

9>=
>;:

Let oð3Þ be the Lie algebra of SOð3Þ. An inner product h� ; �i on the vector

space oð3Þ is defined by hA;Ci ¼ traceð tA � CÞ for A;C A oð3Þ. Let oð2Þ?
denote the orthogonal complement of oð2Þ in oð3Þ, and p : oð3Þ ! oð2Þ be the

orthogonal projection. Then, the composition oQ :¼ po defines a connection

form on Q. The relation between the Sasaki metric gS on T lM and the

metric G on SOðMÞ is given by

GðX ;Y Þ ¼ gSððpQÞ�X ; ðpQÞ�YÞ þ l2

2
hoQðXÞ;oQðY Þi

for X ;Y A TuSOðMÞ; u A SOðMÞ:

Let N be a Riemannian manifold with metric h. Let FðNÞ denote the set

of all di¤erentiable functions on N, and XðNÞ the set of all di¤erentiable vector

fields on N, respectively. Suppose further that ðN; hÞ has the structure of a

fiber space as bundles ðT lM; gSÞ, ðP;GÞ or ðQ;GÞ. The bundle projection is

denoted by pN . A vector field X on N is called fiber preserving if the local

one-parameter group fjtg, �e < t < e, of local transformations generated by X

maps each fiber of N into another one, where e is a positive function on N.

More precisely, the condition is that

Ex A N; Ey A p�1
N ðpNðxÞÞ; Et ðjtj < eÞ; pNðjtðxÞÞ ¼ pNðjtðyÞÞ:

We call Y in XðNÞ vertical if it is tangent to the fiber at each point of N.

The vector field X on N is fiber preserving if and only if the commutator

product ½X ;Y � is vertical for any vertical vector field Y . At each point x in N,

the horizontal subspace ðHNÞx of the tangent space TxN is expressed as the

orthogonal complement of the vertical subspace ðVNÞx that is tangent to the

fiber of N. Then the tangent space TxN is decomposed into a direct sum

TxN ¼ ðHNÞx l ðVNÞx.

TuP ¼ ðHPÞu l ðVPÞu ¼ fBðxÞu; x A R3gl fA�
u ;A A oð3Þg;

TuQ ¼ ðHQÞu l ðVQÞu ¼ fBðxÞu þ A�
u ; x A R3;A A oð2Þ?gl fA�

u ;A A oð2Þg;

TX3
T lM ¼ ðHT lMÞX3

l ðVT lMÞX3

¼ fðpQÞ�ðBðxÞuÞ; x A R3gl fðpQÞ�ðA�
u Þ;A A oð2Þ?g;
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where BðxÞ denotes the standard horizontal vector field corresponding to

x A R3, and A� the fundamental vector field corresponding to A A oð3Þ.
Aspects of these decompositions are studied in [4] and [5]. Given a vector

field X on the base space of the bundle N, there exists a unique N-horizontal

vector field XHN on N such that ðpNÞ�ðXHN Þ ¼ X , which is called the hori-

zontal lift of X to N. One then has

½A�;XHP � ¼ 0 for any A A oð3Þ; ð2:1Þ

likewise,

½A�;XHQ � ¼ 0 for any A A oð2Þ: ð2:2Þ

Each projection pN is a Riemannian submersion. Especially, we shall use the

following formula. Let ‘S and D denote the Riemannian connections of

ðT lM; gSÞ and ðSOðMÞ;GÞ, respectively. Then we have

GðD
X

HQY
HQ ;ZHQÞ ¼ gSð‘S

XY ;ZÞ for X ;Y ;Z A XðT lMÞ: ð2:3Þ

The following formulas are also frequently used throughout this paper.

Let W denote the curvature form of ‘, then

WðXHP ;YHPÞ ¼ � 1

2
oð½XHP ;YHP �Þ for X ;Y A XðMÞ:

For any A;C A oð3Þ and x; h; z A R3, we have

Gð½BðxÞ;BðhÞ�;A�Þ ¼ �l2hWðBðxÞ;BðhÞÞ;Ai; ð2:4Þ

½A�;BðxÞ� ¼ BðAxÞ; ð2:5Þ

½A�;C �� ¼ ½A;C��; ð2:6Þ

GðDBðxÞBðhÞ;BðzÞÞ ¼ 0; ð2:7Þ

GðDBðxÞA
�;C �Þ ¼ 0; ð2:8Þ

GðDBðxÞA
�;BðhÞÞ ¼ l2

2
hWðBðxÞ;BðhÞÞ;Ai; ð2:9Þ

GðDA �BðxÞ;C �Þ ¼ 0; ð2:10Þ

DA�C � ¼ 1

2
½A;C��: ð2:11Þ

From formulas (2.6), (2.8), (2.9), and (2.11), we can easily confirm the fol-

lowing fact.
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Fact 1. The fundamental vector fields are infinitesimal isometries on

ðSOðMÞ;GÞ.

These formulas and Fact 1 are based on [6] and [8].

3. The lifts of infinitesimal isometries

In this section, we define the lift ZLQ A XðQÞ for Z A iðT lM; gSÞ and prove

that ZLQ is in iðQ;GÞ. This lift gives the homomorphism of iðT lM; gSÞ into

iðSOðMÞ;GÞ stated in Theorem 1. We first define ei A R3 and Ai A oð3Þ for

i ¼ 1; 2; 3.

e1 ¼ tð1; 0; 0Þ; e2 ¼ tð0; 1; 0Þ; e3 ¼ tð0; 0; 1Þ;

A1 ¼
0 0 1

0 0 0

�1 0 0

0
B@

1
CA; A2 ¼

0 0 0

0 0 1

0 �1 0

0
B@

1
CA; A3 ¼

0 �1 0

1 0 0

0 0 0

0
B@

1
CA:

The system 1ffiffi
2

p A1;
1ffiffi
2

p A2

n o
is an orthonormal basis of oð2Þ? and 1ffiffi

2
p A3 is a

normal vector of oð2Þ. For the ei and Ai, the following formulas will be

frequently used in the argument below.

½A1;A2� ¼ A3; ½A2;A3� ¼ A1; ½A3;A1� ¼ A2; A1e1 ¼ �e3; A1e2 ¼ 0;

A1e3 ¼ e1; A2e1 ¼ 0; A2e2 ¼ �e3; A2e3 ¼ e2;

A3e1 ¼ e2; A3e2 ¼ �e1; A3e3 ¼ 0:

Here, we note that the system Bðe1Þ;Bðe2Þ;Bðe3Þ; 1lA�
1 ;

1
l
A�

2 ;
1
l
A�

3

� �
defines an

orthonormal basis for each tangent space of SOðMÞ.
Given an infinitesimal isometry Z of ðT lM; gSÞ, we define the lift

ZLQ A XðQÞ by

ZLQ ¼ ZHQ þ 1

l2
GðDA�

1
ZHQ ;A�

2 ÞA�
3 : ð3:1Þ

From Theorem 1.1 in [3] and its proof, we know the following facts for the lift

ZLQ .

Fact 2. For an infinitesimal isometry X on ðT lM; gSÞ, we have that

(i) The values of the Lie derivatives

ðL
X

LQGÞðBðeiÞ;BðejÞÞ; ðL
X

LQGÞðA�
i ;A

�
j Þ; ðL

X
LQGÞðBðeiÞ;A�

kÞ

all vanish for 1a i; ja 3 and 1a ka 2,
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(ii) We denote the lift X LQ by CðX Þ. Then the mapping C : iðT lM; gSÞ
! XðSOðMÞÞ gives a homomorphism from the Lie algebra of fiber preserving

infinitesimal isometries of ðT lM; gSÞ to that of ðSOðMÞ;GÞ.

If Z is fiber preserving, we know that ZLQ is in iðSOðMÞ;GÞ from (ii) of

the above facts. Throughout this section and Section 4, we assume that Z

does not preserve a fiber of T lM. By (i) of the above facts, to prove ZLQ is in

iðSOðMÞ;GÞ, it su‰ces to show that the equality

ðL
Z

LQGÞðW ;A�
3 Þ ¼ 0 ð3:2Þ

holds for any P-horizontal vector field W .

Proposition 1. The lift ZLQ preserves the fibers of Q, that is,

½ZLQ ;A�
3 � ¼ 0.

Proof. Since A�
3 is in iðSOðMÞ;GÞ, and ‘SZ is skew-symmetric with

respect to gS, we have

½A�
3 ;Z

LQ � ¼ 1

l2
fA�

3GðDA�
1
ZHQ ;A�

2 ÞgA�
3

¼ 1

l2
fGðD½A �

3
;A �

1
�Z

HQ þDA �
1
½A�

3 ;Z
HQ �;A�

2 Þ þ GðDA �
1
ZHQ ; ½A�

3 ;A
�
2 �ÞgA�

3

¼ 1

l2
fGðDA �

2
ZHQ ;A�

2 Þ � GðDA�
1
ZHQ ;A�

1 ÞgA�
3 ¼ 0;

where the formulas (3.1), (2.2), (2.6), and (2.3) were used in turn. r

Set W1 ¼ ½A�
1 ;Z

LQ � and W2 ¼ ½A�
2 ;Z

LQ �. The pair of vector fields

fW1;W2g plays a vital role in the proofs of the theorems. From the Jacobi

identity and Proposition 1, we have

½A�
1 ;W2� ¼ ½A�

2 ;W1�: ð3:3Þ

Lemma 1. The vector fields W1 and W2 are P-horizontal vector fields.

Proof. Let i, j be 1 or 2. Since A�
i is in iðSOðMÞ;GÞ, we have

GðWi;A
�
j Þ ¼ A�

i GðZLQ ;A�
j Þ � GðZLQ ; ½A�

i ;A
�
j �Þ

¼ GðDA �
i
ZHQ ;A�

j Þ þ GðZHQ ;DA �
i
A�

j Þ � GðDA�
i
ZHQ ;A�

j Þ ¼ 0

by using (3.1), (2.6), and (2.11) in turn. On the other hand, we have

GðWi;A
�
3 Þ ¼ �ZLQGðA�

i ;A
�
3 Þ � GðA�

i ; ½A�
3 ;Z

LQ �Þ ¼ 0

by (i) in Fact 2 and Proposition 1. Hence, Wi is P-horizontal. r
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If the equalities W1 ¼ W2 ¼ 0 hold on SOðMÞ, then the vector fields

½A�
i ;Z

HQ � ¼ Wi �
1

l2
fA�

i GðDA �
1
ZHQ ;A�

2 ÞgA�
3 �

1

l2
GðDA �

1
ZHQ ;A�

2 Þ½A�
i ;A

�
3 �

are vertical for i ¼ 1; 2 on P. For any vertical vector field V on T lM, there

exist f 1; f 2 A FðSOðMÞÞ such that VHQ ¼ f 1A�
1 þ f 2A�

2 . Then, the vector

field

½Z;V � ¼ ½ðpQÞ�ZHQ ; ðpQÞ�VHQ � ¼ ðpQÞ�
X2
i¼1

fðZHQf iÞA�
i þ f i½ZHQ ;A�

i �g ð3:4Þ

is also a vertical vector field on T lM. This conclusion contradicts the

assumption that Z is not fiber preserving on T lM. Hence there exists an

open set of SOðMÞ where Wi does not vanish for either i ¼ 1 or i ¼ 2. In

fact, we can assume that both W1 and W2 do not vanish on the open set,

because we have

½A�
3 ;W1� ¼ W2 and ½A�

3 ;W2� ¼ �W1 ð3:5Þ

from the Jacobi identity and Proposition 1. Furthermore, we have the

following lemma.

Lemma 2. Let U be the non-empty open set of SOðMÞ defined by

U ¼ fu A SOðMÞ; ðW1Þu 0 0 and ðW2Þu 0 0g:

Then, U is an open dense subset of the fibers p�1
P ðpPðUÞÞ.

Proof. Let i be 1 or 2, and u in U . Using a local expression A�
i ¼

f 1i V
HQ

1 þ f 2i V
HQ

2 for some functions f 1
i ; f

2
i A FðSOðMÞÞ and vertical vector

fields V1;V2 A XðT lMÞ, the nonzero P-horizontal component of ðWiÞu is equal

to that of f f 1i ½V1;Z�HQ þ f 2i ½V2;Z�HQgu. Therefore, the horizontal component

of either ½V1;Z�pQðuÞ or ½V2;Z�pQðuÞ does not vanish. This means that the local

one-parameter group fjtg, �e < t < e, of local transformations generated by Z

does not preserve the fiber p�1
T lM

ðpPðuÞÞ, that is,

bX ; bY A p�1
T lMðpPðuÞÞ; 0 < be 0 < e; �e 0 < Et < e 0;

pT lMðjtðXÞÞ0 pT lMðjtðY ÞÞ: ð3:6Þ

Suppose that Wi ¼ 0 holds on an open set O of p�1
P ðpPðUÞÞ and u is in

U V p�1
P ðpPðOÞÞ, where we can assume that i ¼ 1; 2 from (3.5). Then, by

the formula (3.4), we know that ½Z;V � is vertical on pQðOÞ for any vertical

vector field V on T lM. This implies that the local transformations fjtg
ð0 < be 00 < e 0; jtj < e 00Þ preserve the fibers of pQðOÞ. However, since each fiber

of T lM is a totally geodesic submanifold of SOðMÞ, each isometry jt maps the

351Isometries on sphere bundles



whole fiber p�1
T lM

ðpPðuÞÞ to a fiber, hence we have that

fjtðX Þ; jtðY ÞgH jtðp�1
T lMðpPðuÞÞÞ ¼ p�1

T lMðpT lMðjtðpQðuÞÞÞÞ:

This contradicts (3.6), which comes from the open set O defined beneath the

formula (3.6). r

Lemma 3. (i) DA � ½A�;ZLQ � þD½A �;ZLQ �A
� ¼ 0 for all A A oð3Þ.

(ii) DA �
1
W2 þDW1

A�
2 ¼ 0, DA �

2
W1 þDW2

A�
1 ¼ 0.

Proof. (i) When A is in oð2Þ, the formula of (i) is trivial from Proposi-

tion 1. Let A be in oð2Þ? and Y A XðSOðMÞÞ an arbitrary P-horizontal lift.

Then we have

GðDA � ½A�;ZLQ �;YÞ ¼ A�GðDA�ZLQ ;Y Þ ðby Fact 1 and ð2:1ÞÞ

¼ �A�GðDYZ
LQ ;A�Þ ðby ðiÞ in Fact 2Þ

¼ �GðDY ½A�;ZLQ �;A�Þ ðby Fact 1 and ð2:1ÞÞ

¼ Gð½A�;ZLQ �;DYA
�Þ ðby Lemma 1Þ

¼ �GðY ;D½A �;ZLQ �A
�Þ ðby Fact 1Þ:

From this formula, we obtain the formula (i), because both DA � ½A�;ZLQ � and
D½A �;ZLQ �A

� are P-horizontal by virtue of (2.8), (2.10), and Lemma 1.

(ii) Substituting A� ¼ A�
1 þ A�

2 in the formula of (i), we have

DA �
1
W2 þDA �

2
W1 þDW1

A�
2 þDW2

A�
1 ¼ 0: ð3:7Þ

From (3.3) we also have

DA �
1
W2 �DW2

A�
1 �DA �

2
W1 þDW1

A�
2 ¼ 0: ð3:8Þ

Adding each side of the formulas (3.7) and (3.8), we obtain

2ðDA �
1
W2 þDW1

A�
2 Þ ¼ 0;

which implies the first formula of (ii). Then the second formula of (ii) is

immediate. r

Lemma 4. Set Gij ¼ GðWi;WjÞ for 1a i; ja 2. Then, the functions

Gij on SOðMÞ satisfy the following equations. (i) A�
1G11 ¼ 0, (ii) A�

2G11 ¼
�2A�

1G12, (iii) A�
3G11 ¼ 2G12, (iv) A�

1G22 ¼ �2A�
2G12, (v) A�

2G22 ¼ 0, (vi)

A�
3G22 ¼ �2G12, (vii) A�

3G12 ¼ G22 � G11.

Proof. We prove this lemma in the order (i), (v), (iii), (vii), (ii). The

formulas of (iv) and (vi) are obtained by the same way as (ii) and (iii),

respectively, so we omit the proof for these two formulas.
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(i), (v) Let i be 1 or 2. From (i) of Lemma 3, we have

A�
i Gii ¼ 2GðDA �

i
Wi;WiÞ ¼ �2GðDWi

A�
i ;WiÞ:

The right hand side of the above formula equals zero because DA�
i is skew-

symmetric with respect to the metric G by Fact 1.

(iii) Since A�
3 is in iðSOðMÞ;GÞ, by using the Jacobi identity and

Proposition 1, we have

A�
3G11 ¼ 2Gð½A�

3 ;W1�;W1Þ ¼ 2Gð½½A�
3 ;A

�
1 �;ZLQ � þ ½A�

1 ; ½A�
3 ;Z

LQ ��;W1Þ

¼ 2Gð½A�
2 ;Z

LQ �;W1Þ ¼ 2G21:

(vii) By a similar calculation to the above, we have

A�
3G12 ¼ Gð½A�

3 ;W1�;W2Þ þ GðW1; ½A�
3 ;W2�Þ ¼ G22 � G11:

(ii) Using the above results (i) and (iii), we can derive the left hand side

of the formula (ii) from the right hand side as follows:

2A�
1G12 ¼ A�

1A
�
3G11 ¼ ½A�

1 ;A
�
3 �G11 þ A�

3A
�
1G11 ¼ �A�

2G11: r

Lemma 5. Set W3 ¼ �½A�
1 ;W1�, then the system fðW1Þu; ðW2Þu; ðW3Þug

forms an orthogonal basis of the P-horizontal space ðHPÞu at each point u in an

open dense subset U 0 of the set U defined in Lemma 2.

Proof. This lemma is proved by solving the equations given in Lemma 4

on each fixed fiber of the bundle P. Let z be an arbitrary point in M, and

set S ¼ pQðp�1
P ðzÞÞ, which is a sphere of radius l in the tangent space TzM.

To solve the equations on p�1
P ðzÞ, we choose arbitrary u0 in p�1

P ðzÞ. Let

ðx1; x2; x3Þ be the canonical coordinate system with respect to the frame

u0 A SOðMÞ. Then, S is expressed as

fðx1; x2; x3Þ A R3; ðx1Þ2 þ ðx2Þ2 þ ðx3Þ2 ¼ l2g: ð3:9Þ

In this setting, we define a local coordinate system ðx; yÞ, 0 < x < p, 0 < y <

2p for S satisfying

ðx1; x2; x3Þ ¼ ðl sin x cos y; l sin x sin y; l cos xÞ: ð3:10Þ

There exists a local section sH p�1
Q ðSÞ of Q such that

ðpQÞ�ððA�
1 ÞuÞ ¼

q

qx

� �
pQðuÞ

and ðpQÞ�ððA�
2 ÞuÞ ¼

1

sin x

q

qy

� �
pQðuÞ

for u A s:

Let y denote a coordinate for the integral curves of A�
3 such that d=dy ¼ A�

3 .

Then, ðx; y; yÞ provides a local coordinate system for p�1
Q ðSÞ on which the

section s is given by ðx; y; 0Þ. Then, the equations in Lemma 4 are written as
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the following system of partial di¤erential equations.

qG11

qy
¼ 2G12;

qG22

qy
¼ �2G12;

qG12

qy
¼ G22 � G11:

qG11

qx
¼ 0;

1

sin x

qG22

qy
¼ 0;

1

sin x

qG11

qy
þ 2

qG12

qx
¼ 0;

qG22

qx
þ 2

sin x

qG12

qy
¼ 0:

8>>>>>>><
>>>>>>>:

ð3:11Þ

ð3:12Þ

By the equations (3.11), the functions G11, G22, and G12 are of the forms

G11 ¼ a sinð2yþ gÞ þ b; G22 ¼ �a sinð2yþ gÞ þ b;

G12 ¼ a cosð2yþ gÞ; ð3:13Þ

where a, b, and g are functions on S. By substituting (3.13) in (3.12), we

obtain that

sinð2yþ gÞ qa
qx

þ a cosð2yþ gÞ qg
qx

þ qb

qx
¼ 0; ð3:14Þ

� sinð2yþ gÞ
sin x

qa

qy
� a cosð2yþ gÞ

sin x

qg

qy
þ 1

sin x

qb

qy
¼ 0; ð3:15Þ

sinð2yþ gÞ
sin x

qa

qy
þ a cosð2yþ gÞ

sin x

qg

qy
þ 1

sin x

qb

qy

þ 2 cosð2yþ gÞ qa
qx

� 2a sinð2yþ gÞ qg
qx

¼ 0;

�sinð2yþ gÞ qa
qx

� a cosð2yþ gÞ qg
qx

þ qb

qx
þ 2 cosð2yþ gÞ

sin x

qa

qy

� 2a sinð2yþ gÞ
sin x

qg

qy
¼ 0:

Eliminating qb=qx and qb=qy from the above four equations, we have that

qa

qx
¼ � a

sin x

qg

qy
;

qa

qy
¼ a sin x

qg

qx
: ð3:16Þ

Then, we obtain

q2a

qx2
þ q2a

qy2
¼ � 1

sin x

qa

qx

qg

qy
þ sin x

qa

qy

qg

qx
þ a cos x

sin2 x

qg

qy

þ a sin x� 1

sin x

� �
q2g

qxqy
: ð3:17Þ
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By di¤erentiating (3.14) and (3.15) with respect to y, we have that

cosð2yþ gÞ qa
qx

� a sinð2yþ gÞ qg
qx

¼ 0; �cosð2yþ gÞ qa
qy

þ a sinð2yþ gÞ qg
qy

¼ 0;

which implies that

a
qa

qx

qg

qy
� qa

qy

qg

qx

� �
¼ 0: ð3:18Þ

On the intersection of the set fX A S; aðX Þ0 0g and the great circle x ¼ p=2 of

the sphere S, we have from (3.17) and (3.18) that Da ¼ 0=l2, where D denotes

the Laplacian on S. Since the coordinate system ðx; yÞ for S is an arbitrary

one, we have that Da ¼ 0 on the open set fX A S; aðXÞ0 0g of S, which

implies that Da ¼ 0 on S because of the continuity of the function Da. Since

any harmonic function on a connected compact Riemannian manifold is

constant, the function a is constant on S. Then, from (3.14), (3.15), and

(3.16), we know that the functions b and g are also constant on S. Since

G11 þ G22 ¼ 2b, we have by Lemma 4 that

A�
2G11 ¼ A�

2 ð2b� G22Þ ¼ 0; A�
1G22 ¼ A�

1 ð2b� G11Þ ¼ 0:

Together with (i) of Lemma 4, the above formula implies that the function G11

is a constant on each fiber of SOðMÞ. Therefore, we also have 2G12 ¼ A�
3G11

¼ 0 and G22 � G11 ¼ A�
3G12 ¼ 0 by Lemma 4. We rewrite these formulas

below for the citation.

A�
2G11 ¼ 0; A�

1G22 ¼ 0; ð3:19Þ

G12 ¼ 0; ð3:20Þ

G11 ¼ G22: ð3:21Þ

We know that W3 ¼ DW1
A�

1 �DA �
1
W1 is P-horizontal from Lemma 1,

(2.8), and (2.10). By the Jacobi identity and (3.3), we have

½A�
1 ; ½A�

3 ;W3�� ¼ ½A�
1 ;�½A�

2 ;W1� � ½A�
1 ;W2��

¼ �2½A�
1 ; ½A�

2 ;W1��

¼ �2W2 þ 2½A�
2 ;W3�:

Therefore, we know that if W3 ¼ 0 holds on an open set O of SOðMÞ, it also
holds on O that W2 ¼ 0 and W1 ¼ 0 from the above formula and (3.21).

Hence, ðW3Þu 0 0 at each point u in an open dense subset U 0 of U , where U is

the open set of SOðMÞ defined in Lemma 2. The orthogonality of the system

fW1;W2;W3g at each point in U 0 is given by (3.20) and the following simple
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calculations. We have

GðW1;W3Þ ¼ �GðW1; ½A�
1 ;W1�Þ ¼ � 1

2
A�

1GðW1;W1Þ ¼ 0

by Fact 1 and (i) in Lemma 4, and we also have

GðW2;W3Þ ¼ �GðW2; ½A�
1 ;W1�Þ

¼ �A�
1GðW2;W1Þ þ Gð½A�

1 ;W2�;W1Þ ðby Fact 1Þ

¼ Gð½A�
1 ;W2�;W1Þ ðby ð3:20ÞÞ

¼ Gð½A�
2 ;W1�;W1Þ ðby ð3:3ÞÞ

¼ 1

2
A�

2GðW1;W1Þ ðby Fact 1Þ

¼ 0 ðby ð3:19ÞÞ:

These equalities show that W3 is perpendicular to both W1 and W2. r

The following proposition gives the main part of (i) in Theorem 1. After

we classify the infinitesimal isometries in the final section, we know that the lifts

are endowed with the homomorphism between iðT lM; gSÞ and iðSOðMÞ;GÞ.

Proposition 2. Given an infinitesimal isometry Z of a tangent sphere

bundle ðT lM; gSÞ, the lift ZLQ defined by (3.1) is an infinitesimal isometry on the

bundle of oriented orthonormal frames ðSOðMÞ;GÞ.

Proof. Let U be the open set of SOðMÞ defined in Lemma 2. If the

interior ðSOðMÞnUÞ� is not the empty set, then we know that the restricted

vector field ZLQ j ðSOðMÞnUÞ� is an infinitesimal isometry from (ii) in Fact 2.

Therefore, according to Fact 2 and Lemma 5, it is su‰cient to verify that the

equality (3.2) holds on U for W ¼ W1;W2, and W3. In fact, we have that

ðL
Z

LQGÞðW1;A
�
3 Þ

¼ ZLQGðW1;A
�
3 Þ � Gð½ZLQ ;W1�;A�

3 Þ � GðW1; ½ZLQ ;A�
3 �Þ

¼ �Gð½ZLQ ; ½A�
1 ;Z

LQ ��; ½A�
1 ;A

�
2 �Þ ðby Proposition 1 and Lemma 1Þ

¼ �A�
1Gð½ZLQ ; ½A�

1 ;Z
LQ ��;A�

2 Þ þ Gð½A�
1 ; ½ZLQ ; ½A�

1 ;Z
LQ ���;A�

2 Þ

ðby Fact 1Þ

¼ A�
1Gð½A�

1 ;Z
LQ �; ½ZLQ ;A�

2 �Þ ðby ðiÞ in Fact 2 and Lemma 1Þ

þ Gð½½A�
1 ;Z

LQ �; ½A�
1 ;Z

LQ �� þ ½ZLQ ; ½A�
1 ; ½A�

1 ;Z
LQ ���;A�

2 Þ

ðby the Jacobi identityÞ
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¼ Gð½ZLQ ; ½A�
1 ; ½A�

1 ;Z
LQ ���;A�

2 Þ ðby ð3:20ÞÞ

¼ �Gð½A�
1 ; ½A�

1 ;Z
LQ ��; ½ZLQ ;A�

2 �Þ ðby ðiÞ in Fact 2 and Lemma 1Þ

¼ Gð½A�
1 ;Z

LQ �; ½A�
1 ; ½ZLQ ;A�

2 ��Þ ðby Fact 1 and ð3:20ÞÞ

¼ Gð½A�
1 ;Z

LQ �; ½A�
2 ; ½ZLQ ;A�

1 ��Þ ðby ð3:3ÞÞ

¼ � 1

2
A�

2Gð½A�
1 ;Z

LQ �; ½A�
1 ;Z

LQ �Þ ¼ 0 ðby Fact 1 and ð3:19ÞÞ:

By the same calculation as the above, we also have ðL
Z

LQGÞðW2;A
�
3 Þ ¼ 0.

Next, we have that

ðL
Z

LQGÞðW3;A
�
3 Þ

¼ ZLQGðW3;A
�
3 Þ � Gð½ZLQ ;W3�;A�

3 Þ � GðW3; ½ZLQ ;A�
3 �Þ

¼ Gð½ZLQ ; ½A�
1 ;W1��;A�

3 Þ ðby Proposition 1 and Lemma 1Þ

¼ Gð½½ZLQ ;A�
1 �;W1�;A�

3 Þ þ Gð½A�
1 ; ½ZLQ ;W1��;A�

3 Þ

ðby the Jacobi identityÞ

¼ A�
1Gð½ZLQ ;W1�;A�

3 Þ � Gð½ZLQ ;W1�; ½A�
1 ;A

�
3 �Þ ðby Fact 1Þ

¼ Gð½ZLQ ;W1�;A�
2 Þ

ðby ðL
Z

LQGÞðW1;A
�
3 Þ ¼ 0; Proposition 1; and ð2:6ÞÞ

¼ �GðW1; ½ZLQ ;A�
2 �Þ ðby Lemma 1 and ðiÞ in Fact 2Þ

¼ GðW1;W2Þ ¼ 0 ðby ð3:20ÞÞ:

Thus, we verified the equality (3.2) on U . Since L
Z

LQG is a continuous tensor,

it vanishes on SOðMÞ entirely, which completes the proof of Proposition 2.

r

4. Curvatures of base spaces

Using the lifts studied in the previous section, we show in this section that

ðM; gÞ is a space of constant curvature 1=l2, which is the necessary condition

for (ii) in Theorem 1. For this purpose, we first study a relation between the

lift ZLQ and the standard horizontal vector fields.

Lemma 6. The norms of the horizontal vector fields Wi and ½A�
i ;Wj�,

1a i; ja 2, are constants on each fiber of P.

Proof. The functions Gij, 1a i; ja 2; are constants on each fiber of U

from Lemma 4 and the formulas (3.19), (3.20), and (3.21). Therefore we know
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that U ¼ p�1
P ðpPðUÞÞ by the continuity of the functions Gij , and that the norms

of Wi are constants on each fiber. On the other hand, since the lift ZLQ is

an infinitesimal isometry from Proposition 2, the brackets ½A�
i ;Wj� are also

infinitesimal isometries on SOðMÞ. For any A A oð3Þ, we have

A�Gð½A�
i ;Wj�; ½A�

i ;Wj�Þ

¼ 2Gð½A�; ½A�
i ;Wj ��; ½A�

i ;Wj�Þ

¼ �2½A�
i ;Wj�GðA�; ½A�

i ;Wj �Þ þ 2GðA�; ½½A�
i ;Wj �; ½A�

i ;Wj��Þ ¼ 0:

Hence, the norms of ½A�
i ;Wj � are also constants on each fiber. r

Lemma 7. For the brackets ½A�
i ;Wj�, 1a i; ja 3, we have the following.

(i) ½A�
1 ;W2� ¼ ½A�

2 ;W1� ¼ 0, (ii) ½A�
1 ;W1� ¼ ½A�

2 ;W2� ¼ �W3, (iii) ½A�
1 ;W3� ¼ W1,

(iv) ½A�
2 ;W3� ¼ W2, (v) ½A�

3 ;W1� ¼ W2, (vi) ½A�
3 ;W2� ¼ �W1, (vii) ½A�

3 ;W3� ¼ 0:

Proof. (i) The formula ½A�
1 ;W2� ¼ ½A�

2 ;W1� was given by (3.3). Let U

be the open set defined in Lemma 2. If the interior of the complement of U

is not empty, where W1 vanishes identically at each point, then the equality

½A�
1 ;W2� ¼ 0 holds on the set ðSOðMÞnUÞ� by virtue of

2½A�
1 ;W2� ¼ ½A�

2 ;W1� þ ½A�
1 ;W2�

¼ ½½A�
3 ;A

�
1 �;W1� þ ½A�

1 ; ½A�
3 ;W1��

¼ ½A�
3 ; ½A�

1 ;W1��:

Therefore, it is su‰cient to verify that the equality ½A�
1 ;W2� ¼ 0 holds on U .

At each point of U , the vector field ½A�
1 ;W2� is perpendicular to both W1 and

W2, because we have from (3.3) and (3.19) that

Gð½A�
1 ;W2�;W1Þ ¼ Gð½A�

2 ;W1�;W1Þ ¼
1

2
A�

2GðW1;W1Þ ¼ 0;

Gð½A�
1 ;W2�;W2Þ ¼

1

2
A�

1GðW2;W2Þ ¼ 0:

By Lemma 5 and Lemma 6, we know that W3 0 0 at each point of the open

set U . Hence, we can write ½A�
1 ;W2� ¼ a½A�

1 ;W1� on U , where a A FðUÞ is

constant on each fiber of P by Lemma 6. Then, we have

½A�
3 ; ½A�

1 ;W2�� ¼ a½A�
3 ; ½A�

1 ;W1��: ð4:1Þ

The left hand side of the above equality is calculated by the Jacobi identity and

(3.5) as follows:

½A�
3 ; ½A�

1 ;W2�� ¼ ½½A�
3 ;A

�
1 �;W2� þ ½A�

1 ; ½A�
3 ;W2�� ¼ ½A�

2 ;W2� � ½A�
1 ;W1�: ð4:2Þ
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The right hand side of the equality (4.1) is calculated by the Jacobi identity,

(3.3), and (3.5) as follows:

a½A�
3 ; ½A�

1 ;W1�� ¼ að½½A�
3 ;A

�
1 �;W1� þ ½A�

1 ; ½A�
3 ;W1��Þ ¼ 2a½A�

1 ;W2�: ð4:3Þ

We have by (4.2) and (4.3) that

½A�
2 ;W2� ¼ 2a½A�

1 ;W2� þ ½A�
1 ;W1�: ð4:4Þ

By (4.2), we further have

½A�
3 ; ½A�

3 ; ½A�
1 ;W2��� ¼ ½A�

3 ; ½A�
2 ;W2�� � ½A�

3 ; ½A�
1 ;W1��

¼ ½½A�
3 ;A

�
2 �;W2� þ ½A�

2 ; ½A�
3 ;W2��

� ½½A�
3 ;A

�
1 �;W1� � ½A�

1 ; ½A�
3 ;W1��

¼ �½A�
1 ;W2� � ½A�

2 ;W1� � ½A�
2 ;W1� � ½A�

1 ;W2�

¼ �4½A�
1 ;W2�:

On the other hand, by (4.3) and (4.4), we also have

½A�
3 ; a½A�

3 ; ½A�
1 ;W1��� ¼ 2a½½A�

3 ;A
�
1 �;W2� þ 2a½A�

1 ; ½A�
3 ;W2��

¼ 2a½A�
2 ;W2� � 2a½A�

1 ;W1�

¼ 2að2a½A�
1 ;W2� þ ½A�

1 ;W1�Þ � 2a½A�
1 ;W1�

¼ 4a2½A�
1 ;W2�:

Consequently, we obtain the formula �4½A�
1 ;W2� ¼ 4a2½A�

1 ;W2� from the above

formulas, which implies that ½A�
1 ;W2� ¼ 0.

(ii) From the Jacobi identity and (i), we have

½A�
2 ;W2� � ½A�

1 ;W1� ¼ ½½A�
3 ;A

�
1 �;W2� þ ½A�

1 ; ½A�
3 ;W2�� ¼ ½A�

3 ; ½A�
1 ;W2�� ¼ 0:

Since the definition of W3 is W3 ¼ �½A�
1 ;W1�, we obtain (ii) by the formula

above.

(iii), (iv), (vii) By using (ii), the Jacobi identity, (i), and (3.5) in turn, we

have that

½A�
1 ;W3� ¼ ½A�

1 ;�½A�
2 ;W2��

¼ �½½A�
1 ;A

�
2 �;W2� � ½A�

2 ; ½A�
1 ;W2�� ¼ �½A�

3 ;W2� ¼ W1;

½A�
2 ;W3� ¼ ½A�

2 ;�½A�
1 ;W1��

¼ �½½A�
2 ;A

�
1 �;W1� � ½A�

1 ; ½A�
2 ;W1�� ¼ ½A�

3 ;W1� ¼ W2;
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½A�
3 ;W3� ¼ ½A�

3 ;�½A�
1 ;W1��

¼ �½½A�
3 ;A

�
1 �;W1� � ½A�

1 ; ½A�
3 ;W1�� ¼ �2½A�

2 ;W1� ¼ 0:

The formulas (v) and (vi) had already been given by (3.5). r

Lemma 8. The norms of the P-horizontal vector fields W1, W2, and W3 are

the same nonzero-constants on SOðMÞ.

Proof. Since W1, W2, and W3 are infinitesimal isometries on SOðMÞ, we
have that

W1GðW1;W1Þ ¼ 2Gð½W1;W1�;W1Þ ¼ 0;

W2GðW1;W1Þ ¼ 2Gð½W2;W1�;W1Þ ¼ �2W1GðW2;W1Þ þ 2GðW2; ½W1;W1�Þ ¼ 0;

W3GðW1;W1Þ ¼ 2Gð½W3;W1�;W1Þ ¼ �2W1GðW3;W1Þ þ 2GðW3; ½W1;W1�Þ ¼ 0;

where Lemma 5 was applied. Therefore, the norm of W1 is a constant on the

open set U defined in Lemma 2. Since the norm of W1 is a continuous

function on SOðMÞ, the domain U must equal SOðMÞ. By (3.21), the norm

of W2 is the same as that of W1. As for the norm of W3, it also coincides

with that of W1 from the following calculation.

GðW3;W3Þ ¼ Gð½A�
1 ;W1�; ½A�

2 ;W2�Þ

¼ A�
1GðW1; ½A�

2 ;W2�Þ � GðW1; ½A�
1 ; ½A�

2 ;W2��Þ

¼ �A�
1GðW1;W3Þ � GðW1; ½½A�

1 ;A
�
2 �;W2� þ ½A�

2 ; ½A�
1 ;W2��Þ

¼ �GðW1; ½A�
3 ;W2�Þ

¼ GðW1;W1Þ;

where Lemma 7, Fact 1, the Jacobi identity, and Lemma 5 were applied.

r

Dividing Z by the constant norm kW1k, we assume kWik ¼ 1 for i ¼ 1;

2; 3 in the remainder of this section. The following proposition shows that the

vector fields W1, W2, and W3 are equivalent to standard horizontal vector

fields.

Proposition 3. Let ðM; gÞ be a connected, orientable three-dimensional

Riemannian manifold of class Cy and l a positive number. If the bundle

ðT lM; gSÞ admits a non-fiber-preserving infinitesimal isometry Z, then there

exists a nonzero constant m such that

½A�
i ;Z

LQ � ¼ mBðeiÞ and ½A�
i ; ½A�

i ;Z
LQ �� ¼ �mBðe3Þ for i ¼ 1; 2:
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Proof. By normalizing W1 appropriately, we shall show that

X3
i¼1

GðWi;BðeiÞÞ ¼ 3

on SOðMÞ. Set K ¼
P3

i¼1 GðWi;BðeiÞÞ. We first show that the function K is

constant on each fiber of the bundle P. We have by (2.5) and Lemma 7 that

A�
1K ¼ Gð½A�

1 ;W1�;Bðe1ÞÞ þ GðW1; ½A�
1 ;Bðe1Þ�Þ þ Gð½A�

1 ;W2�;Bðe2ÞÞ

þ GðW2; ½A�
1 ;Bðe2Þ�Þ þ Gð½A�

1 ;W3�;Bðe3ÞÞ þ GðW3; ½A�
1 ;Bðe3Þ�Þ

¼ �GðW3;Bðe1ÞÞ � GðW1;Bðe3ÞÞ þ 0þ 0þ GðW1;Bðe3ÞÞ þ GðW3;Bðe1ÞÞ

¼ 0;

A�
2K ¼ Gð½A�

2 ;W1�;Bðe1ÞÞ þ GðW1; ½A�
2 ;Bðe1Þ�Þ þ Gð½A�

2 ;W2�;Bðe2ÞÞ

þ GðW2; ½A�
2 ;Bðe2Þ�Þ þ Gð½A�

2 ;W3�;Bðe3ÞÞ þ GðW3; ½A�
2 ;Bðe3Þ�Þ

¼ 0þ 0� GðW3;Bðe2ÞÞ � GðW2;Bðe3ÞÞ þ GðW2;Bðe3ÞÞ þ GðW3;Bðe2ÞÞ

¼ 0:

By using these equalities, we also have that A�
3K ¼ ½A�

1 ;A
�
2 �K ¼ 0. Hence, K

is constant on each fiber of P.

We next fix an arbitrary fiber of T lM. We denote this fixed fiber by S,

which is a sphere of radius l. By the fixed point theorem, we can choose u0 in

p�1
P ðpT lMðSÞÞ such that ðW3Þu0

¼ Bðe3Þu0 holds, where, if necessary, we adopt

�Z in iðT lM; gSÞ from the beginning instead of Z. Let ðx1; x2; x3Þ be the

canonical coordinate system with respect to the frame u0 A SOðMÞ. In this

setting, we define a local coordinate system ðx; yÞ for S given by (3.9) and

(3.10). Since

A�
3GðW1;Bðe3ÞÞ ¼ GðW2;Bðe3ÞÞ; A�

3GðW2;Bðe3ÞÞ ¼ �GðW1;Bðe3ÞÞ;

the functions GðW1;Bðe3ÞÞ and GðW2;Bðe3ÞÞ can be written as follows using

the same local coordinate system ðx; y; yÞ for the fiber of SOðMÞ as in the

proof of Lemma 5.

GðW1;Bðe3ÞÞ ¼ c sinðyþ rÞ; GðW2;Bðe3ÞÞ ¼ c cosðyþ rÞ; ð4:5Þ

where c and r are functions on the sphere S. We have by Fact 1, (2.5), and

Lemma 7 that

A�
1GðW1;Bðe3ÞÞ þ A�

2GðW2;Bðe3ÞÞ

¼ GðW1;Bðe1ÞÞ þ GðW2;Bðe2ÞÞ � 2GðW3;Bðe3ÞÞ: ð4:6Þ
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By substituting (4.5) in the left hand side of the equality (4.6), we have

A�
1GðW1;Bðe3ÞÞ þ A�

2GðW2;Bðe3ÞÞ

¼ qc

qx
� c

sin x

qr

qy

� �
sinðyþ rÞ þ c

qr

qx
þ 1

sin x

qc

qy

� �
cosðyþ rÞ:

However, the right hand side of the equality (4.6) is independent of the value of

y owing to the calculation that

A�
3fGðW1;Bðe1ÞÞ þ GðW2;Bðe2ÞÞ � 2GðW3;Bðe3ÞÞg

¼ GðW2;Bðe1ÞÞ þ GðW1;Bðe2ÞÞ � GðW1;Bðe2ÞÞ � GðW2;Bðe1ÞÞ

� 2Gð0;Bðe3ÞÞ � 2GðW3; 0Þ

¼ 0;

where Fact 1, (2.5), and Lemma 7 have been used. Hence, from the

orthogonality of the trigonometric functions, we know that both sides of

the equality (4.6) vanish. Hence, we have K ¼ 3GðW3;Bðe3ÞÞ. Since the

restricted function K jS is a constant function, we know the value at the point

pQðu0Þ, that is K jS ¼ 3GðW3;Bðe3ÞÞu0
¼ 3GðBðe3Þ;Bðe3ÞÞu0 ¼ 3. ThereforeP3

i¼1 GðWi;BðeiÞÞ ¼ 3. This formula implies Wi ¼ BðeiÞ for i ¼ 1; 2; 3. r

Now we prove the necessary condition for (ii) in Theorem 1 by calculating

the curvature of the base space ðM; gÞ. Applying the Jacobi identity, Fact 1,

Proposition 2, Proposition 1, and Proposition 3 in turn, we have

Gð½ZLQ ; ½A�
2 ;W1��;A�

3 Þ

¼ Gð½½ZLQ ;A�
2 �;W1�;A�

3 Þ þ Gð½A�
2 ; ½ZLQ ;W1��;A�

3 Þ

¼ Gð½�W2;W1�;A�
3 Þ þ A�

2Gð½ZLQ ;W1�;A�
3 Þ � Gð½ZLQ ;W1�; ½A�

2 ;A
�
3 �Þ

¼ Gð½W1;W2�;A�
3 Þ þ A�

2fZLQGðW1;W3Þ � GðW1; ½ZLQ ;A�
3 �Þg

� Gð½ZLQ ;W1�;A�
1 Þ

¼ Gð½W1;W2�;A�
3 Þ þ A�

2fZLQ0� GðW1; 0Þg � ZLQGðW1;A
�
1 Þ

þ GðW1; ½ZLQ ;A�
1 �Þ

¼ Gð½W1;W2�;A�
3 Þ � ZLQ0þ GðW1;�W1Þ

¼ Gð½Bðe1Þ;Bðe2Þ�;A�
3 Þ � GðBðe1Þ;Bðe1ÞÞ

¼ Gð½Bðe1Þ;Bðe2Þ�;A�
3 Þ � 1:
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From the above formula, (i) of Lemma 7, and (2.4), we have

hWðBðe1Þ;Bðe2ÞÞ;A3i ¼ � 1

l2
: ð4:7Þ

Let X1 and X2 be any orthonormal pair of tangent vectors at a point of M,

and X3 ¼ X1 � X2 the vector product as the part of a frame u A SOðMÞ given

by u ¼ ðX1;X2;X3Þ. Let R denote the Riemannian curvature tensor of ðM; gÞ.
The sectional curvature for the tangent plane spanned by X1 and X2 is

calculated by (4.7):

gðRðX1;X2ÞX2;X1Þ ¼ ð2WðBðe1Þu;Bðe2ÞuÞe2; e1Þ

¼ �hWðBðe1Þ;Bðe2ÞÞ;A3i ¼ 1

l2
;

where ð� ; �Þ denotes the canonical inner product on the three-dimensional

Euclidian space. Consequently, we assert that ðM; gÞ is a space of constant

curvature 1=l2. We have proved the necessary condition for (ii) in Theo-

rem 1.

The proof of the converse part of (ii) in Theorem 1 is based on a fact in

[8], which gives a condition for the standard horizontal vector fields to be

infinitesimal isometries of the frame bundle. In fact, when ðM; gÞ is a space of

constant curvature 1=l2, we can see that the Lie derivative LBðe3ÞG vanishes by

(2.4), (2.5), and (2.7) as follows:

ðLBðe3ÞGÞðBðeiÞ;BðejÞÞ ¼ 0; ðLBðe3ÞGÞðA�
i ;A

�
j Þ ¼ 0;

ðLBðe3ÞGÞðBðeiÞ;A�
j Þ ¼ 0;

for 1a i; ja 3. Hence, Bðe3Þ is an element of iðSOðMÞ;GÞ in this case, and

hence the geodesic flow G ¼ ðpQÞ�ðlBðe3ÞÞ is in iðT lM; gSÞ because the

mapping pQ is a Riemannian submersion. As the geodesic flow is not fiber

preserving, we have completed the proof of (ii) in Theorem 1.

5. The classification

The Lie algebra iðT lM; gSÞ is classified in this section; as a result we know

that the lifts are endowed with the homomorphism between iðT lM; gSÞ and

iðSOðMÞ;GÞ. We first review a fact for parallel two-forms.

Fact 3. Let ðN; hÞ be a three-dimensional Riemannian manifold which has

a point where no sectional curvature vanishes. Then, the Lie algebra of parallel

two-forms D2ðNÞ0 with respect to the Riemannian connection ‘h of ðN; hÞ is

trivial.
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Proof. The above fact is proved for spaces of nonzero constant curvature

of general dimension greater than two (cf. [8-II, Lemma 15]). Here, we review

this fact in a basic manner when dim N ¼ 3. We consider f A D2ðMÞ as a

skew-symmetric tensor field ~ff of type ð1; 1Þ by the formula hð ~ffðX Þ;YÞ ¼
fðX ;Y Þ, X ;Y A XðNÞ. Suppose that there exists nonzero f A D2ðMÞ0. Then,

there exists a parallel axis vector field A with respect to the rotation exp t ~ff,

t A R; for the tangent spaces such that ~ffðXÞ ¼ A� X . Since ‘hA is identically

zero, the sectional curvature for any tangent plane that contains A at the point

of N is equal to zero, which implies the contrapositive statement of Fact 3.

r

Now we classify the Lie algebra iðT lM; gSÞ to prove Theorem 2. Given

an infinitesimal isometry Z of ðT lM; gSÞ, set m ¼ k½A�
1 ;Z

LQ �k.
If m ¼ 0, then Z is fiber preserving. From the study in [2], there exist

X A iðM; gÞ and f A D2ðMÞ0 such that Z is uniquely decomposed as

Z ¼ X L þ fL: ð5:1Þ

The brackets relations

½X L;Y L� ¼ ½X ;Y �L; ½fL;cL� ¼ �½f;c�L; ½X L; fL� ¼ �½‘X ; f�L ð5:2Þ

for X ;Y A iðM; gÞ and f;c A D2ðMÞ are given in [3].

On the other hand, if m0 0, then Z is not fiber preserving. From (ii) of

Theorem 1, we know that the base space ðM; gÞ is a space of constant

curvature 1=l2. Set ZG ¼ ZG ml�1G. Since the geodesic flow G is an infini-

tesimal isometry in this case, the vector fields ZG are also in iðT lM; gSÞ.
Note that GLQ ¼ lBðe3Þ. Then, we have

½A�
i ;Z

LQ

G � ¼ ½A�
i ;Z

LQ G mBðe3Þ� ¼ ½A�
i ;Z

LQ �G mBðeiÞ for i ¼ 1; 2:

Applying Proposition 3 to the formula above, we know that either ½A�
i ;Z

LQ

þ � or
½A�

i ;Z
LQ
� � vanishes, which implies that either Zþ or Z� preserves the fibers of

T lM (cf. Lemma 2). Hence, there exist X A iðM; gÞ and f A D2ðMÞ0 such

that either Zþ or Z� is written as X L þ fL, where we know f ¼ 0 from Fact

3. Consequently, we obtain the decomposition, either

Z ¼ X L � ml�1G or Z ¼ X L þ ml�1G: ð5:3Þ

Since the local transformations generated by X A iðM; gÞ are local iso-

metries, each of them maps a geodesic to a geodesic, so the local transforma-

tions generated by X and those of the geodesic flow commute. Hence, we

have

½X L;G� ¼ 0: ð5:4Þ
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Since CðX LÞ is a fiber preserving infinitesimal isometry on P, the horizontal

subspaces HP and the vertical subspaces VP are invariant by the di¤erentials

of the local isometries generated by CðX LÞ. Therefore, we know that

½CðX LÞ;Bðe3Þ� is P-horizontal. At the same time we have

ðpQÞ�ð½CðX LÞ;Bðe3Þ�Þ ¼ ðpQÞ�ð½ðX LÞHQ ; ðl�1GÞHQ �Þ ¼ l�1½X L;G� ¼ 0;

which implies that ½CðX LÞ;Bðe3Þ� is Q-vertical. Hence, ½CðX LÞ;Bðe3Þ� ¼ 0

holds on SOðMÞ. Consequently, we have that ½CðX LÞ;CðGÞ� ¼ ½CðX LÞ;
lBðe3Þ� ¼ 0, and hence we obtain the brackets relation

½CðX LÞ;CðGÞ� ¼ Cð½X L;G�Þ: ð5:5Þ

With the assertion (ii) in Theorem 1, formulas (5.1), (5.2), (5.3), and (5.4)

give the classification for the Lie algebras of infinitesimal isometries on the

tangent sphere bundles, which completes the proof of Theorem 2.

According to this classification, Proposition 2 and formula (5.5) imply that

the mapping C defined in Fact 2 gives a homomorphism of iðT lM; gSÞ into

iðSOðMÞ;GÞ. The proof of (i) in Theorem 1 is also completed.
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