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Abstract. A superharmonic function u on a parabolic Riemannian manifold M is

shown to admit the Riesz decomposition u ¼ hþ ð1=cdÞ
Ð
M
eð�; yÞdmðyÞ on M into the

harmonic function h on M and the Evans potential of an Evans kernel eðx; yÞ on M

and of the Borel measure m :¼ �Duf 0 on M multiplied by a certain constant 1=cd if

and only if mðt2; uÞ � 2mðt; uÞ ¼ Oð1Þ ðt ! þyÞ, where mðt; uÞ is the spherical mean

over the sphere of radius t all induced by the above chosen Evans kernel eðx; yÞ on M.

1. Introduction

Any superharmonic function u on the plane R2 has the positive distri-

bution �Duf 0 on R2 so that m :¼ �Du is a Borel measure on R2. When and

only when the above m satisfiesð
R2

logð1þ jyjÞdmðyÞ < þy;ð1:1Þ

the logarithmic potential lð�; mÞ :¼
Ð
R2 lð�; yÞdmðyÞ is well defined and gives a

special superharmonic function on R2, where lðx; yÞ is the logarithmic kernel

on R2 given by lðx; yÞ ¼ logð1=jx� yjÞ ðx; y A R2Þ, and in this case u is said to

admit the Riesz decomposition u ¼ hþ ð1=c2Þlð�; mÞ on R2, i.e.

uðxÞ ¼ hðxÞ þ 1

c2

ð
R2

log
1

jx� yj dmðyÞ ðx A R2Þ;ð1:2Þ

where h is a harmonic function on R2 and c2 ¼ s2 ¼ 2p and, in general,

cd ¼ ðd � 2Þsd ðdf 3Þ with the Euclidean area sd of the d-dimensional

Euclidean unit sphere. A few years ago Premalatha [6] gave a characterization

for u to admit the Riesz decomposition on R2 in terms of the circle means of u

as follows: u admits the Riesz decomposition (1.2) on R2 if and only if

mðt2; uÞ � 2mðt; uÞ ¼ Oð1Þ ðt ! þyÞ;ð1:3Þ
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where mðt; f Þ ¼ ð1=c2Þ
Ð
jxj¼t

f ðxÞdyðxÞ is the circle mean of a function f over

the circle jxj ¼ t > 0 with t dy the arc length on the circle jxj ¼ t. Recently

Kitaura and Mizuta [2] generalized the Premalatha result to superbiharmonic

functions on Rd ðdf 2Þ from the view points of the interplay between the

Riesz decomposition and the spherical mean. In the same paper [2] they gave

another proof to the Premalatha theorem and also gave a result of the same

intention as the above Premalatha result to superharmonic functions on

Rd ðdf 3Þ as well on replacing the logarithmic kernel lðx; yÞ by Newtonian

kernel nðx; yÞ given by nðx; yÞ :¼ 1=jx� yjd�2. Specifically they prove that a

superharmonic function u on Rd ðdf 3Þ admits the Riesz decomposition

u ¼ hþ ð1=cdÞnð�; mÞ on Rd with a harmonic function h on Rd and with

the Borel measure m :¼ �Duf 0 if and only if mðt2; uÞ � 22�dmðt; uÞ ¼ Oð1Þ
ðt ! þyÞ.

The purpose of this paper is to generalize the above Premalatha theorem

on R2 to parabolic Riemannian manifolds M of dimensions not only d ¼ 2 but

also df 3. Here a Riemannian manifold M is said to be hyperbolic ( par-

abolic, resp.) if the Green kernel gðx; yÞ exists (does not exist, resp.) on M so

that R2 is parabolic and all Rd ðdf 3Þ are hyperbolic. In compensation of

the nonexistence of the Green kernel the parabolicity of M is characterized by

the existence of an Evans kernel eðx; yÞ on M which reduces to the logarithmic

kernel when M ¼ R2. The precise definition of e will be given in § 2 below

but roughly eðx; yÞ is a symmetric function on M �M such that eð�; yÞ is a

harmonic function on Mnfyg having the positive singularity at y and a negative

singularity at the point yM at infinity of M. The most simple examples of

parabolic manifolds are given by subtracting compact subsets of capacity zero

from compact manifolds, e.g., R2 is obtained by subtracting one point from the

2-dimensional sphere so that it is a typical parabolic manifold with its Evans

kernel eðx; yÞ ¼ lðx; yÞ. We will give the following theorem as the main result

of this paper: a superharmonic function u on M admits the Riesz decompo-

sition

u ¼ hþ 1

cd

ð
M

eð�; yÞdmðyÞð1:4Þ

on M, where h is a harmonic function on M and m :¼ �Duf 0 is a Borel

measure on M, if and only if

mðt2; uÞ � 2mðt; uÞ ¼ Oð1Þ ðt ! þyÞ:ð1:5Þ

Here mðt; f Þ is the spherical mean of a function f over the sphere r ¼ t ðt > 0Þ
induced by, what we call, the polar system ðr; yÞ with center o A M of radius

function r and a measure y determined by
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r ¼ expð�eð�; oÞÞ;
dy ¼ � � deð�; oÞ

�
ð1:6Þ

so that the mean mðt; uÞ over the sphere Ct :¼ fx A M : rðxÞ ¼ tg is given by

mðt; uÞ :¼ 1

cd

ð
Ct

uðxÞdyðxÞ:ð1:7Þ

2. Preliminaries and the main result

Let M be an orientable and connected manifold of class Cy whose

dimension df 2. The local coordinate of a point x A M is denoted by

ðx1; x2; . . . ; xdÞ. Following the convention of the tensor analysis we use the

Einstein convention: whenever an index i A f1; . . . ; dg appears both in the upper

and lower position, it is understood that summation for i ¼ 1; . . . ; d is carried

out (cf. e.g. [8]). To make M a Riemannian manifold we give the metric

squared by aij dx
idx j on M by a Cy covariant tensor ðaijðxÞÞ of order 2 which

is strictly positive definite symmetric matrix at each point x A M. The induced

volume is denoted by l, i.e. dlðxÞ :¼
ffiffiffiffiffiffiffiffiffi
aðxÞ

p
dx1 . . . dxd with aðxÞ :¼ detðaijÞ,

and the Laplace-Beltrami operator �D ¼ ddþ dd is

�DuðxÞ :¼ � 1ffiffiffiffiffiffiffiffiffi
aðxÞ

p q

qxi

ffiffiffiffiffiffiffiffiffi
aðxÞ

p
aijðxÞ quðxÞ

qx j

� �
ð2:1Þ

in terms of local coordinate x ¼ ðx1; . . . ; xdÞ with ðaijðxÞÞ which is the

contravariant tensor ðaijðxÞÞ�1. We denote by HðMÞ the class of harmonic

functions u on M, where u are Cy functions satisfying �Du ¼ 0 on M. We

also denote by dHðMÞ the subspace of L1
locðM; lÞ consisting of u with �Du ¼ 0

on M in the distributional sense. It is clear that HðMÞH dHðMÞ but actually
the Weyl lemma says that

HðMÞ ¼ dHðMÞð2:2Þ

in the sense that for any u A dHðMÞ there is a ûu A HðMÞ such that u ¼ ûu l-a.e.

on M (cf. e.g. [1]).

A function u on M is superharmonic on M if the following three conditions

are satisfied: u is lower semicontinuous on M; u is a mapping from M to

ð�y;þy� but uDþy on M; u is harmonically concave in the sense that

HV
u e u on every small parametric ball V , where HV

u is the Perron-Wiener-

Brelot solution of the Dirichlet problem for �Du ¼ 0 on V with the boundary

data u on qV . We denote by SðMÞ the class of superharmonic functions on

M and by dSðMÞ the subspace of L1
locðM; lÞ consisting of u with �Duf 0 on

M in the distributional sense. As already stated in § 1 let sd be the surface
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area of the Euclidean unit sphere in the d-dimensional Euclidean space

Rd ðdf 2Þ and we set cd ¼ ðd � 2Þsd for df 3 and c2 ¼ s2 ¼ 2p. The Green

kernel gðx; y;MÞ on M is the minimal positive solution of the Poisson equation

�Dgð�; y;MÞ ¼ cddy

on M, where dy is the Dirac measure supported by an arbitrarily fixed point

y A M so that gð�; y;MÞ A dSðMÞ. The Green kernel may or may not exist

on M. Hereafter we assume that M is not compact. Then M is said to be

hyperbolic ( parabolic, resp.) if M carries (does not carry, resp.) the Green

kernel. If W is a regular subregion of M, then W , as a Riemannian manifold,

is hyperbolic and gð�; y;WÞ ðy A WÞ has vanishing boundary values on qW .

In this case we have the Poisson representation for u A HðWÞVCðWÞ:

uðyÞ ¼ � 1

cd

ð
qW

uðxÞ � dgðx; y;MÞ ðy A WÞ:ð2:3Þ

An important property of the class SðMÞ is

SðMÞHmcðMÞ;ð2:4Þ

where mcðMÞ is the class of mean continuous functions f on M characterized

by

f ðyÞ ¼ lim
r#0

1

lðBðy; rÞÞ

ð
Bðy; rÞ

f ðxÞdlðxÞ

at any point y A M, where Bðy; rÞ denotes the geodesic ball with radius r > 0

centered at y (cf. e.g. [5]). This implies that if u1 ¼ u2 l-a.e. on M for u1
and u2 in SðMÞ, then u1 1 u2 on M. It is not too di‰cult to see that

SðMÞH dSðMÞ. Pick a u A dSðMÞ. Then m :¼ �Duf 0 is a Borel measure

on M and in particular on any parametric ball V . Hence

�D u� 1

cd

ð
V

gð�; y;VÞdmðyÞ
� �

¼ m� 1

cd
ðcdmÞ ¼ 0

on V shows, by the Weyl lemma, there is an h A HðVÞ such that

h ¼ u� 1

cd

ð
V

gð�; y;VÞdmðyÞ

l-a.e. on V , or that two superharmonic functions u and

hþ ð1=cdÞ
Ð
V
gð�; y;VÞdmðyÞ on V coincide l-a.e. on V and therefore they

are identical everywhere on V and

u ¼ hþ 1

cd

ð
V

gð�; y;VÞdmðyÞ A SðVÞ:
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Thus we deduce the Weyl lemma in the superharmonic version:

SðMÞ ¼ dSðMÞ:ð2:5Þ

Since we use this repeatedly later, we once more here stress this fact: If u1 and

u2 are superharmonic on M and �Dðu1 � u2Þ ¼ 0 on M in the distributional

sense, then u1 � u2 ¼: h A HðMÞ. Viewing u A SðMÞ (u A dSðMÞ, resp.) as the

definition for u to be superharmonic it may be impressive to call the former

(the latter, resp.) the axiomatical (distributional, resp.) definition of super-

harmonicity, and (2.5) may be expressed as the equivalence of the axiomatic

and distributional definitions of superharmonicity. Let V be a parametric

ball around y A M and f be a harmonic funtion on V . We say that f has a

positive singularity at y if f � cgð�; y;VÞ A HðVÞ for a positive constant c > 0

but in this paper we always take c ¼ 1. This definition does not depend upon

V . Let W be a regular subregion of M such that MnW is connected. Here

regular subregions are supposed to be relatively compact. We say that a

function s on MnW is said to be a positive singularity at y ¼ yM , the point at

infinity of M or in another term the Alexandro¤ point of M, if

lim
x!yM

sðxÞ ¼ þy:

The existence of such an s is assured if and only if M is parabolic ([3], cf. also

[9]). In the cited paper the existence result is only stated and proved for the

case d ¼ 2 but it can easily be generalised verbatim to the case df 3. Then

we say that a harmonic function f on MnW has a negative singularity �s at

yM if f þ s is a bounded harmonic function on MnW0 with some regular

subregion W0 containing W . The definition does not depend upon the choice

of W once s is fixed. Suppose that M is parabolic. We fix a positive

singularity s throughout the paper.

An Evans kernel eð� ; �Þ on M is a continuous mapping from

M �M to ð�y;þy� satisfying the following four conditions: eð�; yÞ A
HðMnfygÞ; eð�; yÞ has a positive singularity at y for every y A M; eð�; yÞ
has a fixed negative singularity �s for every y A M; eð� ; �Þ is symmetric, i.e.

eðx; yÞ ¼ eðy; xÞ for every x and y in M ([4], cf. also [7], [8]). As remarked

above, the result in the reference just cited is stated and proved for the case of

dimension d ¼ 2 but again its generalization to any dimension df 3 is easy

and straightforward. Let V be a parametric ball about a point y A M. Then,

since eð�; yÞ � gð�; y;VÞ A HðVÞ, its flux across qV is zero and hence by (2.3)

we haveð
qV

�deð�; yÞ ¼
ð
qV

�dgð�; y;VÞ ¼ �cd
1

cd

ð
qV

1 � dgð�; y;VÞ
� �

¼ �cd1
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so that for any y A M we haveð
qV

�deð�; yÞ ¼ �cd :ð2:6Þ

For a parabolic Riemannian manifold M we fix a point o A M and an

Evans kernel eðx; yÞ on M. A polar system ðr; dyÞ of center o on M induced

by eðx; yÞ is the pair ðr; dyÞ of the function r, called the radius function, given

by (1.6): r ¼ expð�eð�; oÞÞ and Borel measures dy on every ‘‘sphere’’

Ct :¼ fx A M : rðxÞ ¼ tg ðt > 0Þ

given also by (1.6): dy ¼ � � deð�; oÞ. In view of (2.6) we haveð
Ct

dy ¼ cd ðt > 0Þ:ð2:7Þ

The ‘‘spherical mean’’ mðt; f Þ of a function f on Ct over the ‘‘sphere’’

Ct ðt > 0Þ is given by

mðt; f Þ ¼ 1

cd

ð
Ct

f ðxÞdy:ð2:8Þ

We denote by Bt the ‘‘ball’’ Bt :¼ fx A M : rðxÞ < tg ðt > 0Þ so that

Ct ¼ qBt. Since y 7!
Ð
Ct
eðx; yÞdlðxÞ is a finitely continuous function on M

for any t > 0, the Fubini theorem assures that, for any Borel measure n on M,ð
Bt

ð
Bt

jeðx; yÞjdnðyÞ
� �

dlðxÞ ¼
ð
Bt

ð
Bt

jeðx; yÞjdlðxÞ
� �

dnðyÞ < þy

for every t > 0 and therefore
Ð
Bt
jeðx; yÞjdnðyÞ < þy l-a.e. x A M for every

t > 0. Observe that there is a constant K > 1 such that

K�1

ð
MnB2t

jeðo; yÞjdnðyÞe
ð
MnB2t

jeðx; yÞjdnðyÞeK

ð
MnB2t

jeðo; yÞjdnðyÞ

for every x A Bt. Thus
Ð
M
jeð�; yÞjdnðyÞ < þy l-a.e. on M if and only ifÐ

MnBt
jeðo; yÞjdnðyÞ < þy for some t > 0. Clearly x 7!

Ð
M
eðx; yÞdnðyÞ defines

a superharmonic function on M if and only if
Ð
M
jeð�; yÞjdnðyÞ < þy l-a.e. on

M. Hence we can say the following:

Proposition 2.1. The function
Ð
M
eð�; yÞdnðyÞ is superharmonic on M if

and only if ð
M

logð1þ rðyÞÞdnðyÞ < þy:ð2:9Þ
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We call
Ð
M
eð�; yÞdnðyÞ an Evans potential with the measure n. If we write the

notation
Ð
M
eð�; yÞdnðyÞ, then it is always understood that (2.9) is satisfied so

that
Ð
M
eð�; yÞdnðyÞ is an Evans potential on M. The purpose of this paper is

to prove the following result.

Theorem. A superharmonic function u on M admits the Riesz decompo-

sition

uðxÞ ¼ hðxÞ þ 1

cd

ð
M

eðx; yÞdmðyÞ ðx A MÞ;ð2:10Þ

where h is a harmonic function on M and m :¼ �Duf 0 is a Borel measure on

M, if and only if

mðt2; uÞ � 2mðt; uÞ ¼ Oð1Þ ðt ! yÞ:ð2:11Þ

3. The mean of Evans kernel

Before proceeding to the proof of the theorem we derive the following

formula which is a well known elementary knowledge for the case of the

logarithmic kernel on R2. Namely, we prove the following formula.

Proposition 3.1. For any point y A M and any positive number t A ð0;þyÞ
it holds that

mðt; eð�; yÞÞ ¼ �maxflog rðyÞ; log tg:ð3:1Þ

Proof. Let be :¼ fx A M : eðx; yÞ > 1=eg and ge ¼ qbe ðe > 0Þ. For any

u A HðbeÞVCðbeÞ we have the Poisson representation (2.3):

uðyÞ ¼ � 1

cd

ð
ge

u � dgð�; y; beÞ:

Since eð�; yÞ ¼ gð�; y; beÞ þ 1=e, we see that �deð�; yÞ ¼ �dgð�; y; beÞ and there-

fore, by the above, we haveð
ge

u � deð�; yÞ ¼ �cduðyÞ:ð3:2Þ

In particular we once more see (cf. (2.6)) on taking u ¼ 1 in (3.2) thatð
ge

�deð�; yÞ ¼ �cd :ð3:3Þ

To prove (3.1) we first consider the case rðyÞ > t. Then eð�; yÞ A
HðBtÞVCðBtÞ and we can apply (3.2) to deduce that
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mðt; eð�; yÞÞ ¼ � 1

cd

ð
Ct

eð�; yÞ � deð�; oÞ ¼ eðo; yÞ ¼ eðy; oÞ ¼ �log rðyÞ:

Hence (3.1) is established for the case rðyÞ > t.

Next we consider the case rðyÞ < t. We choose e > 0 so small as to

satisfy be HBtnBe so that eð�; oÞ A HðbeÞVCðbeÞ. Hence by (3.2) we haveð
ge

eð�; oÞ � deð�; yÞ ¼ �cdeðy; oÞ:

We also have ð
ge

eð�; yÞ � deð�; oÞ ¼ 1

e

ð
ge

�deð�; oÞ ¼ 0:

From the above two displayed identities it follows thatð
ge

ðeð�; yÞ � deð�; oÞ � eð�; oÞ � deð�; yÞÞ ¼ cdeðy; oÞ:ð3:4Þ

Similarly, in view of eð�; yÞ A HðBeÞVCðBeÞ, we haveð
Ce

eð�; yÞ � deð�; oÞ ¼ �cdeðo; yÞ ¼ �cdeðy; oÞ

and we also haveð
Ce

eð�; oÞ � deð�; yÞ ¼ ð�log eÞ
ð
Ce

�deð�; yÞ ¼ 0:

From the above two displayed identities it follows thatð
Ce

ðeð�; yÞ � deð�; oÞ � eð�; oÞ � deð�; yÞÞ ¼ �cdeðy; oÞ:ð3:5Þ

By the definition (2.8) we haveð
Ct

eð�; yÞ � deð�; oÞ ¼ �cdmðt; eð�; yÞÞ:

Since eð�; yÞ A HðBtnbeÞVCðBtnbeÞ, we have
Ð
Ct�ge

�deð�; yÞ ¼ 0 and thus by

using (3.3) ð
Ct

eð�; oÞ � deð�; yÞ ¼ ð�log tÞ
ð
Ct

�deð�; yÞ

¼ ð�log tÞ
ð
ge

�deð�; yÞ ¼ cd log t:

462 Mitsuru Nakai



Therefore we can conclude thatð
Ct

ðeð�; yÞ � deð�; oÞ � eð�; oÞ � deð�; yÞÞ ¼ �cdmðt; eð�; yÞÞ � cd log t:ð3:6Þ

Put D :¼ BtnðBe U beÞ. Then both of eð�; yÞ and eð�; oÞ are harmonic on D and

by applying Stokes formula we see thatð
Ct�Ce�ge

ðeð�; yÞ � deð�; oÞ � eð�; oÞ � deð�; yÞÞ

¼
ð
qD

ðeð�; yÞ � deð�; oÞ � eð�; oÞ � deð�; yÞÞ

¼
ð
D

dðeð�; yÞ � deð�; oÞ � eð�; oÞ � deð�; yÞÞ

¼
ð
D

ðeð�; yÞDeð�; oÞ � eð�; oÞDeð�; yÞÞ ¼ 0:

Hence by replacing each of
Ð
Ct
,
Ð
Ce
, and

Ð
ge
of eð�; yÞ � deð�; oÞ � eð�; oÞ � deð�; yÞ

by each of (3.6), (3.5), and (3.4), respectively, we conclude that

�ðcdmðt; eð�; yÞ þ cd log tÞ � ð�cdeð�; yÞÞ � cdeð�; yÞ ¼ 0;

or, mðt; eð�; yÞÞ ¼ �log t and a fortiori (3.1) is also valid for the case rðyÞ < t.

Finally we treat the case rðyÞ ¼ t or equivalently y A Ct. Before pro-

ceeding to the proof of (3.1): mðt; eð�; yÞÞ ¼ �log rðyÞ ¼ �log t in this case,

we recall the following well known general result. Consider a regular sub-

region WHM and fix a point y in the boundary qW of W. Let u be a

nonnegative harmoic function on W such that u has vanishing boundary values

on qWnfyg. Then either u1 0 on W or u is a minimal positive harmonic

function (i.e. a constant multiple of the Martin kernel associated with y). In

this situation the former (i.e. u1 0 on W) is the case if and only if

uðxÞ ¼ Oðgðx; y;W 0ÞÞ ðx A Wnfyg; x ! yÞð3:7Þ

for some regular region W 0 containing y. There are many ways considered to

see this but one simple way is to use the fact that surface measures on regular

surfaces are measures of Kato class. Now we return to the proof of (3.1)

when rðyÞ ¼ t. To make notations simple let v :¼ eð�; yÞ with y A Ct and

vn ¼ minfv; ng for n ¼ 1; 2; . . . . We denote by hn A HðBtÞVCðBtÞ such that

hnjCt ¼ vnjCt. Then

h1 e h2 e � � �e hn e hnþ1 e � � �e v
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on Bt. Thus u :¼ v� limn!y hn f 0 and belongs to HðBtÞVCðBtÞ with

ujCtnfyg ¼ 0. Since

0e u ¼ v� lim
n!y

hn e v� h1 e gð�; y;B2tÞ þ sup
C2t

vþ h1

on Btnfyg, we see that

uðxÞ ¼ Oðgðx; y;B2tÞÞ ðx A Btnfyg; x ! yÞ:

Then, by the above remark related to (3.7), we have uðxÞ1 0 on Bt so that

v ¼ limn!y hn and in particular

eðo; yÞ ¼ lim
n!y

hnðoÞ:ð3:8Þ

By (3.2) we see thatð
Ct

hn � deð�; oÞ ¼ �cdhnðoÞ ðn ¼ 1; 2; . . .Þ:

By the Fatou lemma we deduce on making n " y in the above thatð
Ct

eð�; yÞ � deð�; oÞ ¼ �cdeðo; yÞ

and a fortiori mðt; eð�; yÞÞ ¼ eðo; yÞ ¼ eðy; oÞ ¼ �log rðyÞ ¼ �log t.

4. Proof of the theorem

We now prove our main theorem of this paper stated at the end of § 2. In

addition to the Evans kernel eðx; yÞ fixed in advance throughout this paper we

also consider the kernel e0ðx; yÞ given by

e0ðx; yÞ :¼
eðx; yÞ � eðo; yÞ ðrðyÞf 1Þ;
eðx; yÞ ðrðyÞ < 1Þ:

�

Observe that �Deð�; yÞ ¼ cddy, with the Dirac measure dy supported at fyg, so
that �De0ð�; yÞ ¼ cddy too. Fix a u A SðMÞ and we denote by m :¼ �Duf 0 its

associated Borel measure on M. For any t > 0 we set Bt :¼ fx A M : rðxÞ < tg
and Ct :¼ qBt as before. Then we have

uðxÞ ¼ 1

cd

ð
Bt

e0ðx; yÞdmðyÞ þ htðxÞ ðx A BtÞð4:1Þ

for every t > 0, where ht A HðBtÞ depends upon the choice of t > 0. To see

(4.1), we set
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vðxÞ :¼ uðxÞ � 1

cd

ð
Bt

e0ðx; yÞdmðyÞ

on Bt. Then

�Dv ¼ �Du� �D
1

cd

ð
Bt

e0ðx; yÞdmðyÞ
� �� �

¼ m� 1

cd
ðcdmÞ ¼ 0

shows, by (2.2), that v is harmonic on Bt. Since it depends upon t, we denote

it by ht A HðBtÞ and thus (4.1) is deduced. We observe here that there is a

constant a independent of tf 1 such that

htðoÞ ¼ a ðtf 1Þ;ð4:2Þ

i.e. htðoÞ does not depend on tf 1 although the function ht itself does. This

can be seen as follows. Observe that

htðxÞ ¼ uðxÞ � 1

cd

ð
Bt

e0ðx; yÞdmðyÞ

¼ uðxÞ � 1

cd

ð
B1

e0ðx; yÞdmðyÞ
� �

� 1

cd

ð
BtnB1

e0ðx; yÞdmðyÞ

¼ h1ðxÞ �
1

cd

ð
BtnB1

ðeðx; yÞ � eðo; yÞÞdmðyÞ

for any tf 1 and for any x A B1. In view of the continuity of eðx; yÞ for

ðx; yÞ A B1 � ðBtnB1Þ, on taking the limit as x ! o in

htðxÞ � h1ðxÞ ¼ � 1

cd

ð
BtnB1

ðeðx; yÞ � eðo; yÞÞdmðyÞ;

we deduce that htðoÞ � h1ðoÞ ¼ 0 so that htðoÞ ¼ h1ðoÞ does not depend upon

tf 1. Hence we have established (4.2) and thus we see that

mðt; uÞ ¼ 1

cd

ð
Bt

mðt; e0ð�; yÞÞdmðyÞ þ a ðtf 1Þð4:3Þ

for a constant a independent of tf 1. In fact, on taking mðt; �Þ of both sides

of (4.1) and using the Fubini theorem we obtain

mðt; uÞ ¼ 1

cd

ð
Bt

mðt; e0ð�; yÞÞdmðyÞ þmðt; htÞ ðtf 1Þ:

By the Gauss mean value theorem (cf. (3.2)), mðt; htÞ ¼ htðoÞ and hence (4.2)

assures that mðt; htÞ ¼ a is a constant independent of tf 1, which proves (4.3)

as desired.
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First we assume (2.11): mðt2; uÞ � 2mðt; uÞ ¼ Oð1Þ ðt ! yÞ and we will

prove (2.10): the Riesz decomposition of u. Now we maintain the validity of

mðt; uÞ ¼ 1

cd
log

1

t

� �
mðBtÞ þ

1

cd

ð
BtnB1

log
rðyÞ
t

dmðyÞ þ a;ð4:4Þ

for tf 1. In fact, we divide the integration over Bt on the right hand side of

(4.3) into those over B1 and BtnB1 so that

mðt; uÞ ¼ 1

cd

ð
B1

mðt; e0ð�; yÞÞdmðyÞ þ
1

cd

ð
BtnB1

mðt; e0ð�; yÞÞdmðyÞ þ a:

By (3.1), we see that

mðt; e0ð�; yÞÞ ¼ mðt; eð�; yÞÞ ¼ log
1

t
ðy A B1Þ

and also we see that

mðt; e0ð�; yÞÞ ¼ mðt; eð�; yÞÞ �mðt; eðo; yÞÞ ¼ log
1

t
� log

1

rðyÞ ðy A BtnB1Þ:

Thus we infer that

mðt; uÞ ¼ 1

cd

ð
B1

log
1

t
dmðyÞ þ 1

cd

ð
BtnB1

log
rðyÞ
t

dmðyÞ þ a

¼ 1

cd
log

1

t

� �
mðB1Þ þ

1

cd

ð
BtnB1

log
rðyÞ
t

dmðyÞ þ a;

i.e. (4.4) is deduced. Replacing t by t2 in (4.4) we obtain

mðt2; uÞ ¼ 2

cd
log

1

t

� �
mðB1Þ þ

1

cd

ð
B
t2
nB1

log
rðyÞ
t2

dmðyÞ þ a:

Subtracting sides by sides from the above, the following

2mðt; uÞ ¼ 2

cd
log

1

t

� �
mðB1Þ þ

1

cd

ð
BtnB1

log
rðyÞ2

t2
dmðyÞ þ 2a

implies, by considering Bt2nB1 ¼ ðBt2nBtÞU ðBtnB1Þ, that mðt2; uÞ � 2mðt; uÞ is

1

cd

ð
B
t2
nBt

log
rðyÞ
t2

dmðyÞ þ 1

cd

ð
BtnB1

�log rðyÞ þ log
rðyÞ2

t2

 !
dmðyÞ

 !

� 1

cd

ð
BtnB1

log
rðyÞ2

t2
dmðyÞ � a:
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Therefore finally we see that

mðt2; uÞ � 2mðt; uÞ ¼ 1

cd

ð
B
t2
nBt

log
rðyÞ
t2

dmðyÞ þ 1

cd

ð
BtnB1

log
1

rðyÞ dmðyÞ � a:

Since both of the first and the second terms on the right hand side of the above

are negative, the assumption mðt2; uÞ � 2mðt; uÞ ¼ Oð1Þ ðt ! yÞ assures thatð
BtnB1

log rðyÞdmðyÞ ¼ Oð1Þ ðt ! yÞ;

which in turn implies (2.9) and, by Proposition 2.1,
Ð
M
eð�; yÞdmðyÞ is super-

harmonic on M. Hence both of u and
Ð
M
eð�; yÞdmðyÞ belong to SðMÞ and

�D u� 1

cd

ð
M

eð�; yÞdmðyÞ
� �

¼ m� 1

cd
ðcdmÞ ¼ 0:

Then by (2.2) we can conclude that

u� 1

cd

ð
M

eð�; yÞdmðyÞ ¼: h A HðMÞ;

which shows that (2.10) is assured.

Conversely, we derive (2.11): mðt2; uÞ � 2mðt; uÞ ¼ Oð1Þ ðt ! yÞ by

assuming (2.10). Namely, we will prove that if

uðxÞ ¼ 1

cd

ð
M

eð�; yÞdmðyÞ þ hðxÞ ðx A MÞ;ð4:5Þ

where m :¼ �Df 0 and we understand the first term on the right hand side of

the above is superharmonic on M or equivalently
Ð
M
logð1þ rðyÞÞdmðyÞ <

þy (cf. (2.9)) and h A HðMÞ, then it holds that mðt2; uÞ � 2mðt; uÞ ¼ Oð1Þ
ðt ! yÞ. i.e. the condition (2.11). Actually we will prove a bit more:

lim
t!y

ðmðt2; uÞ � 2mðt; uÞÞ ¼ �hðoÞ:ð4:6Þ

Hence the condition (2.11) is equivalent to the above (4.6). For any t > 0 we

divide M into Bt and MnBt in (4.5):

u ¼ 1

cd

ð
Bt

eð�; yÞdmðyÞ þ 1

cd

ð
MnBt

eð�; yÞdmðyÞ þ h

on M. Integrate both sides of the above with respect to dy over Ct and apply

the Fubini theorem. Then we obtain

mðt; uÞ ¼ 1

cd

ð
Bt

mðt; eð�; yÞÞdmðyÞ þ 1

cd

ð
MnBt

mðt; eð�; yÞÞdmðyÞ þmðt; hÞ:
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By (3.1) and the Gauss mean value theorem (cf. (2.3)) we deduce

mðt; uÞ ¼ 1

cd
log

1

t

� �
mðBtÞ þ

1

cd

ð
MnBt

log
1

rðyÞ dmðyÞ þ hðoÞ:ð4:7Þ

In particular, choosing t > 1 arbitrarily, the above (4.7) gives

mðt2; uÞ ¼ 2

cd
log

1

t

� �
mðBt2Þ þ

1

cd

ð
MnB

t2

log
1

rðyÞ dmðyÞ þ hðoÞ:

On dividing MnBt into MnBt2 and Bt2nBt in (4.7), we see that

2mðt; uÞ ¼ 2

cd
log

1

t

� �
mðBtÞ þ

2

cd

ð
MnB

t2

log
1

rðyÞ dmðyÞ

þ 2

cd

ð
B
t2
nBt

log
1

rðyÞ dmðyÞ þ 2hðoÞ:

From the above two displayed identities it follows that

mðt2; uÞ � 2mðt; uÞ ¼ 2

cd
log

1

t

� �
mðBt2nBtÞ �

1

cd

ð
MnB

t2

log
1

rðyÞ dmðyÞ

þ 2

cd

ð
B
t2
nBt

log rðyÞdmðyÞ � hðoÞ:

Putting the first and the third terms on the right hand side of the above identity

together we deduce

mðt2; uÞ � 2mðt; uÞ � ð�hðoÞÞ

¼ 1

cd

ð
MnB

t2

log rðyÞdmðyÞ þ 2

cd

ð
B
t2
nBt

log
rðyÞ
t

dmðyÞ:

Since rðyÞ=t < rðyÞ by t > 1, we see that 1 < rðyÞ=t < rðyÞ on ðMnBt2ÞU
ðBt2nBtÞHMnBt and a fortiori

jmðt2; uÞ � 2mðt; uÞ � ð�hðoÞÞj

e
1

cd

ð
MnB

t2

log rðyÞdmðyÞ þ 2

cd

ð
B
t2
nBt

log
rðyÞ
t

dmðyÞ

e
3

cd

ð
MnBt

log rðyÞdmðyÞe 3

cd

ð
MnBt

logð1þ rðyÞÞdmðyÞ:

Here
Ð
M
logð1þ rðyÞÞdmðyÞ < þy implies

Ð
MnBt

logð1þ rðyÞÞdmðyÞ ! 0

ðt ! yÞ and thus the above displayed inequalities imply the limit (4.6).
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