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ABSTRACT. A superharmonic function # on a parabolic Riemannian manifold M is
shown to admit the Riesz decomposition u =/h+ (1/c4) [, e(-, y)du(y) on M into the
harmonic function # on M and the Evans potential of an Evans kernel e(x, y) on M
and of the Borel measure 1 := —4u = 0 on M multiplied by a certain constant 1/¢; if
and only if m(£2,u) — 2m(t,u) = O(1) (t — +o0), where m(t,u) is the spherical mean
over the sphere of radius ¢ all induced by the above chosen Evans kernel e(x, y) on M.

1. Introduction

Any superharmonic function u on the plane R? has the positive distri-
bution —4u > 0 on R? so that x4 := —Au is a Borel measure on R>. When and
only when the above u satisfies

(1) |, 1oe(1 + Iy)dut) <+,

the logarithmic potential /(-,u) := 2 (-, y)du(y) is well defined and gives a
special superharmonic function on R?, where [(x,y) is the logarithmic kernel
on R? given by I(x, y) = log(1/|x — y|) (x,y € R?), and in this case u is said to
admit the Riesz decomposition u=h+ (1/c;)l(-, 1) on R?, i.e.

du(y)  (xeR?),

(1.2) u(x) = h(x) + lJRz log

() |x — ¥l

where /1 is a harmonic function on R?> and ¢ =0, =27 and, in general,
cg=(d—2)o; (d=3) with the Euclidean area o; of the d-dimensional
Euclidean unit sphere. A few years ago Premalatha [6] gave a characterization
for u to admit the Riesz decomposition on R? in terms of the circle means of u
as follows: u admits the Riesz decomposition (1.2) on R? if and only if

(1.3) m(?, u) —2m(t,u) = O(1)  (t — +o0),
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where m(t, ) = (1/¢2) f\«*\:t f(x)dO(x) is the circle mean of a function f over
the circle |x| = 7> 0 with #d6 the arc length on the circle |x| =¢ Recently
Kitaura and Mizuta [2] generalized the Premalatha result to superbiharmonic
functions on RY (d =z 2) from the view points of the interplay between the
Riesz decomposition and the spherical mean. In the same paper [2] they gave
another proof to the Premalatha theorem and also gave a result of the same
intention as the above Premalatha result to superharmonic functions on
R? (d = 3) as well on replacing the logarithmic kernel /(x, y) by Newtonian
kernel n(x, y) given by n(x,y):=1/|x— y|d_2. Specifically they prove that a
superharmonic function u on R? (d = 3) admits the Riesz decomposition
u=h+1/cg)n(-,u) on RY with a harmonic function 4 on R and with
the Borel measure u:= —Au =0 if and only if m(£?,u) — 2>~ “m(t,u) = O(1)
(t — 40).

The purpose of this paper is to generalize the above Premalatha theorem
on R? to parabolic Riemannian manifolds M of dimensions not only d = 2 but
also d > 3. Here a Riemannian manifold M is said to be hyperbolic (par-
abolic, resp.) if the Green kernel g(x, y) exists (does not exist, resp.) on M so
that R? is parabolic and all R? (d > 3) are hyperbolic. In compensation of
the nonexistence of the Green kernel the parabolicity of M is characterized by
the existence of an Evans kernel e(x,y) on M which reduces to the logarithmic
kernel when M = R%. The precise definition of e will be given in §2 below
but roughly e(x, y) is a symmetric function on M x M such that e(-,y) is a
harmonic function on M\{y} having the positive singularity at y and a negative
singularity at the point ooy, at infinity of M. The most simple examples of
parabolic manifolds are given by subtracting compact subsets of capacity zero
from compact manifolds, e.g., R? is obtained by subtracting one point from the
2-dimensional sphere so that it is a typical parabolic manifold with its Evans
kernel e(x, y) = [(x,y). We will give the following theorem as the main result
of this paper: a superharmonic function # on M admits the Riesz decompo-
sition

1
(14) u=ht | et duty)
Cd Jm
on M, where & is a harmonic function on M and u:= —4u =0 is a Borel

measure on M, if and only if
(L.5) m(£*,u) — 2m(t,u) = O(1) (t — +o0).

Here m(t, f) is the spherical mean of a function f over the sphere r =1t (¢ > 0)
induced by, what we call, the polar system (r,f) with center 0 € M of radius
function r and a measure ¢ determined by
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r=exp(—e(-,0)),
(1.6) {dﬁ——*de(',o)
so that the mean m(z,u) over the sphere C,:={xe M :r(x) =t} is given by
(1.7) m(t, u) ::ij u(x)d0(x).
Cd C

2. Preliminaries and the main result

Let M be an orientable and connected manifold of class C* whose
dimension d = 2. The local coordinate of a point xe M is denoted by
(x',x2,...,x%). Following the convention of the tensor analysis we use the
Einstein convention: whenever an index i € {1,...,d} appears both in the upper
and lower position, it is understood that summation for i = 1,...,d is carried
out (cf. e.g. [8]). To make M a Riemannian manifold we give the metric
squared by a; dx'dx’ on M by a C* covariant tensor (;;(x)) of order 2 which
is strictly positive definite symmetric matrix at each point x € M. The induced
volume is denoted by 4, i.e. di(x):=\/a(x)dx'...dx? with a(x) := det(a;),
and the Laplace-Beltrami operator —A4 = do + dd is

1 0 c L ou(x)
2.1 —A4 =—— v -
@) )=~ e (vt %)
in terms of local coordinate x = (x!,...,x%) with (a(x)) which is the

contravariant tensor (cz,~j()c))_l We denote by H(M) the class of harmonic

functions u on M, where u are C* functions satisfying —4u =0 on M. We
also denote by “H(M) the subspace of L} (M, ) consisting of u with —4u =0

on M in the distributional sense. It is clear that H(M) c ¢H(M) but actually
the Weyl lemma says that

(2.2) H(M)="H(M)

in the sense that for any u e “H(M) there is a it € H(M) such that u =i J-a.e.
on M (cf. e.g. [1]).

A function u on M is superharmonic on M if the following three conditions
are satisfied: wu is lower semicontinuous on M; u is a mapping from M to
(—o0,+00] but u# +o00 on M; wu is harmonically concave in the sense that
H) <u on every small parametric ball V', where H) is the Perron-Wiener-
Brelot solution of the Dirichlet problem for —4u =0 on V' with the boundary
data u on dV. We denote by S(M) the class of superharmonic functions on
M and by ?S(M) the subspace of L} .(M,2) consisting of u with —4u =0 on
M in the distributional sense. As already stated in §1 let g, be the surface
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area of the Euclidean unit sphere in the d-dimensional Euclidean space
R (d =z 2) and we set ¢; = (d —2)a, for d = 3 and ¢; = 0o =2n. The Green
kernel g(x, y; M) on M is the minimal positive solution of the Poisson equation

_Ag('7 Y3 M) = Cdéy

on M, where 0, is the Dirac measure supported by an arbitrarily fixed point
ye M so that g(-,y; M) € 4S(M). The Green kernel may or may not exist
on M. Hereafter we assume that M is not compact. Then M is said to be
hyperbolic (parabolic, resp.) if M carries (does not carry, resp.) the Green
kernel. If W is a regular subregion of M, then W, as a Riemannian manifold,
is hyperbolic and g(-, y; W) (y € W) has vanishing boundary values on 0W.

In this case we have the Poisson representation for ue H(W)N C(W):

1

(2.3) u(y) = —C—leum wdg(x,y: M) (yeW).

An important property of the class S(M) is
(2.4) S(M) = me(M),

where mc(M) is the class of mean continuous functions f on M characterized
by
1

f() :lrif{)l ABOL)

Y }")) JB(J/, r) f(X)d/L(X)

at any point y € M, where B(y,r) denotes the geodesic ball with radius r > 0
centered at y (cf. e.g. [5]). This implies that if u; = u, J-a.e. on M for u;
and w; in S(M), then u; =u, on M. It is not too difficult to see that
S(M) < “S(M). Pick a ue “S(M). Then u:=—Au =0 is a Borel measure
on M and in particular on any parametric ball V. Hence

1 1
A= L[ o Vdu)) == e =0
Cdly Ca
on V shows, by the Weyl lemma, there is an /s e H(V) such that
1
h=u——| g(,» V)du(y)
CdJv

A-ae. on V, or that two superharmonic functions u and
h+(1/ca) [, g(-, »; V)du(y) on V coincide i-a.e. on V and therefore they
are identical everywhere on V' and

u:mcij g, ; V)du(y) € S(V).
dJv
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Thus we deduce the Weyl lemma in the superharmonic version:
(2.5) S(M) =IS(M).

Since we use this repeatedly later, we once more here stress this fact: If u; and
uy are superharmonic on M and —A(u; —up) =0 on M in the distributional
sense, then u; —uy =:he H(M). Viewing ue S(M) (ue “S(M), resp.) as the
definition for u to be superharmonic it may be impressive to call the former
(the latter, resp.) the axiomatical (distributional, resp.) definition of super-
harmonicity, and (2.5) may be expressed as the equivalence of the axiomatic
and distributional definitions of superharmonicity. Let V7 be a parametric
ball around y € M and f be a harmonic funtion on V. We say that f has a
positive singularity at y if f —cg(-,y; V) e H(V) for a positive constant ¢ > 0
but in this paper we always take ¢ = 1. This definition does not depend upon
V. Let W be a regular subregion of M such that M\ W is connected. Here
regular subregions are supposed to be relatively compact. We say that a
function s on M\ W is said to be a positive singularity at co = o0y, the point at
infinity of M or in another term the Alexandroff point of M, if
lim s(x) = +oc0.
X— 001

The existence of such an s is assured if and only if M is parabolic ([3], cf. also
[9]). In the cited paper the existence result is only stated and proved for the
case d =2 but it can easily be generalised verbatim to the case d = 3. Then
we say that a harmonic function f on M\ W has a negative singularity —s at
wy if f+ s is a bounded harmonic function on M\W, with some regular
subregion W, containing . The definition does not depend upon the choice
of W once s is fixed. Suppose that M is parabolic. We fix a positive
singularity s throughout the paper.

An  FEvans kernel e(-,) on M is a continuous mapping from
MxM to (—oo,+o0] satisfying the following four conditions: e(-,y) €
H(M\{y}); e(-,y) has a positive singularity at y for every ye M; e(-, )
has a fixed negative singularity —s for every ye M; e(-,-) is symmetric, i.e.
e(x,y) =e(y,x) for every x and y in M ([4], cf. also [7], [8]). As remarked
above, the result in the reference just cited is stated and proved for the case of
dimension d =2 but again its generalization to any dimension d = 3 is easy
and straightforward. Let V' be a parametric ball about a point y € M. Then,
since e(-, y) —g(-,»; V) e H(V), its flux across dV is zero and hence by (2.3)
we have

J sde(-, y) = LV wdg(-, y; V) = —cq (iLV 1% dg(-, y; V)> — eyl

oV Cd
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so that for any ye M we have

(2.6) JW xde(-,y) = —cq.

For a parabolic Riemannian manifold M we fix a point 0 € M and an
Evans kernel e(x, y) on M. A polar system (r,df) of center o on M induced
by e(x, y) is the pair (r,d6) of the function r, called the radius function, given
by (1.6): r=-exp(—e(-,0)) and Borel measures df on every “‘sphere”

C={xeM:r(x)=t} (t>0)

given also by (1.6): d0 = — xde(-,0). In view of (2.6) we have
(2.7) J d0 = ¢, (t>0).
G

The “‘spherical mean” m(t, f) of a function f on C, over the ‘“sphere”
C; (t>0) is given by

1
(28) mit.f) = | o
Cq C
We denote by B, the “ball” B;:={xe M :r(x) <t} (t>0) so that
C, = 0B,. Since y+— [ e(x,y)dA(x) is a finitely continuous function on M
for any ¢ > 0, the Fubini theorem assures that, for any Borel measure v on M,

JB, <JB el y)|dv(y))d’1(x) = JBI (L le(x, y)ld/l(X))dv(y) <+

for every v >0 and therefore [, le(x,y)|dv(y) < +o0 A-ae. x€ M for every
t > 0. Observe that there is a constant K > 1 such that

K- JM\BZ, 0. )lav(y) = |

OIS K eto ()

M\BZI

for every xe B;. Thus [, |e(-,y)|dv(y) < +o0 A-ae. on M if and only if
Janig, le(0, )|dv(y) < +oo for some £ > 0. Clearly x — [, e(x, y)dv(y) defines
a superharmonic function on M if and only if [,, |e(-, y)|dv(y) < +o0 A-a.e. on
M. Hence we can say the following:

PROPOSITION 2.1.  The function [, e(-, y)dv(y) is superharmonic on M if
and only if

(2.9) JM log(1 4+ r(»))dv(y) < +o0.
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We call [, e(-, y)dv(y) an Evans potential with the measure v. If we write the
notation [, e(-, y)dv(y), then it is always understood that (2.9) is satisfied so
that [,, e(-, y)dv(y) is an Evans potential on M. The purpose of this paper is
to prove the following result.

THEOREM. A superharmonic function u on M admits the Riesz decompo-
sition

1
(2.10) W) =)+ | ew ) (xe )
where h is a harmonic function on M and p:= —Au = 0 is a Borel measure on

M, if and only if

(2.11) m(£*,u) — 2m(t,u) = O(1) (t — o).

3. The mean of Evans kernel

Before proceeding to the proof of the theorem we derive the following
formula which is a well known elementary knowledge for the case of the
logarithmic kernel on R?>. Namely, we prove the following formula.

PROPOSITION 3.1.  For any point y € M and any positive number t € (0, +c0)
it holds that

(3.1) m(t,e(-,y)) = —max{log r(y),log t}.
Proor. Let f,:={xe M :e(x,y) > 1/e} and y, =3p, (¢>0). For any

ue H(B,)NC(P,) we have the Poisson representation (2.3):

mmz—iju*@mnmy

dJy,

Since e(-, ) = g(-, »;8.) + 1 /e, we see that xde(-, y) = xdy(-, y; f,) and there-
fore, by the above, we have

(3.2) L uxde(-,y) = —cqu(y).

‘e

In particular we once more see (cf. (2.6)) on taking u =1 in (3.2) that

(3.3) J rde(-, y) = —c.

To prove (3.1) we first consider the case r(y) >t Then e(-,y)e
H(B,)NC(B,) and we can apply (3.2) to deduce that
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m(t,e(-, y)) = _Cl_dJc e(-,y)xde(-,0) = e(o,y) = e(y,0) = —logr(y).

Hence (3.1) is established for the case r(y) > t.
Next we consider the case r(y) <t We choose ¢ >0 so small as to
satisfy B, = B,\B; so that e(-,0) € H(f,)NC(f,). Hence by (3.2) we have

J, e(-,0) xde(-, y) = —cqe(y,0).

We also have

L e(-,y) xde(-,0) = %J «de(-,0) = 0.

P,
/

From the above two displayed identities it follows that

(3.4) J (e(-, y) xde(-,0) —e(-,0) xde(-, y)) = cqe(y,0).
Y%

Similarly, in view of e(-, y) € H(B,) N C(B;), we have
J (:‘(-, y) * d€(~, 0) = _Cde(07 y) = _cde(yv 0)
C,

and we also have

ch (o) de(-, ) = (-log) | el =0

G

From the above two displayed identities it follows that

(3.5) |, (€ v det,0) = ett,0) et ) = —cay.0)

By the definition (2.8) we have

Jc e(-,y) xde(-,0) = —cqm(t,e(-, y)).

Since (-, y) € H(B\B,) N C(B\p,), we have [, xde(-,y)=0 and thus by
using (3.3) '

J e(-,0) xde(-, y) = (—log Z)J xde(-, )
@

G

= (—log t)J xde(-, y) = cq log t.
Ve
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Therefore we can conclude that
(3:6) | (el xdelt,0) = el,0) el ) = cum(t el ) ~ ca log .
@

Put D := B,\(B;UB,). Then both of e(-, y) and e(-,0) are harmonic on D and
by applying Stokes formula we see that

chc,ﬂ, (e(-,y) xde(-,0) —e(-,0) x de(-, y))

= | (e(,y) xde(-,0) —e(:,0) x de(-, y))

Jop
= |, (el ) xde(:,0) = (-, 0) x de(:, y))
= | (el y)del;0) = (-, 0)de(:, y)) = 0.

Hence by replacing each of [, [. and [, of e(-, ) * de(-,0) —e(-,0) = de(-, y)
by each of (3.6), (3.5), and (3.4), respectively, we conclude that

_(cdm(l’e('v y) + ¢ca log t) - (—Cd€(~, y)) - cde('v y) = 07

or, m(t,e(-,y)) = —log t and a fortiori (3.1) is also valid for the case r(y) < t.

Finally we treat the case r(y) =t or equivalently ye C,. Before pro-
ceeding to the proof of (3.1): mf(t,e(-, y)) = —logr(y) = —log ¢ in this case,
we recall the following well known general result. Consider a regular sub-
region Q < M and fix a point y in the boundary 02 of Q. Let u be a
nonnegative harmoic function on Q2 such that u has vanishing boundary values
on 0Q\{y}. Then either u =0 on © or u is a minimal positive harmonic
function (i.e. a constant multiple of the Martin kernel associated with y). In
this situation the former (i.e. ¥ =0 on Q) is the case if and only if

(3.7) u(x) = 0(g(x, Q"))  (xeQ\{y},x—y)

for some regular region Q' containing y. There are many ways considered to
see this but one simple way is to use the fact that surface measures on regular
surfaces are measures of Kato class. Now we return to the proof of (3.1)
when r(y) =t To make notations simple let v:=e(-,y) with ye C, and
v, = min{v,n} for n=1,2,.... We denote by h, e H(B,)N C(B,) such that
hy|C; = v,|C,. Then

hi < hy

IA

o Ehy Sha S-S0
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on B, Thus w:=v—1lim,., h, =0 and belongs to H(B,)N C(B;) with
u|C\{y} =0. Since

O0wu=v—1lim h, Zv—"h Zg(-,y;By) +sup v+ hy

n—e %

on B\{y}, we see that
u(x) = 0(g(x, y;Bx))  (xe B\{y},x = y).

Then, by the above remark related to (3.7), we have u(x) =0 on B, so that
v =1lim,_, h, and in particular

(3.8) e(0,y) = lim /(o).

By (3.2) we see that
Jc hy x de(-,0) = —cqh,(0) (n=1,2,...).
By the Fatou lemma we deduce on making n T oo in the above that
Jc e(-,y)xde(-,0) = —cqe(0, y)

and a fortiori m(¢,e(-, y)) = e(o,y) =e(y,0) = —logr(y) = —log t.

4. Proof of the theorem

We now prove our main theorem of this paper stated at the end of §2. In
addition to the Evans kernel e(x, y) fixed in advance throughout this paper we
also consider the kernel eo(x, y) given by

e, p) —el0,y) () 21),
lx.y) = { e(x, 7) (r(y) < 1).

Observe that —A4e(-, y) = cq4d,, with the Dirac measure J,, supported at {y}, so
that —deo(-, y) = cady too. Fix a ue S(M) and we denote by p := —Au = 0 its
associated Borel measure on M. For any t > 0 we set B, := {xe M : r(x) < t}
and C,:= 0B; as before. Then we have

(4.1) ux) = | eolndu(n) +hlx)  (veB)

for every ¢ > 0, where h, € H(B,) depends upon the choice of t > 0. To see
(4.1), we set
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v(x) == u(x) — cl_dJ eo(x, y)du(y)

on B;. Then
1 1
—Av=—Au— (-4 *J eo(x, y)du(y) | ) =u——(can) =0
¢d J, Ca

shows, by (2.2), that v is harmonic on B,. Since it depends upon ¢, we denote
it by h, € H(B,) and thus (4.1) is deduced. We observe here that there is a
constant a¢ independent of 7 =1 such that

(4.2) (o) =a (t=1),

i.e. 1,(0) does not depend on ¢ = 1 although the function 4, itself does. This
can be seen as follows. Observe that

:@@—ihamwwuﬁ—ihm@mwwm

Cd

1

—mm—wLM@mw—dmm@w>

for any 1 =1 and for any xe€ B;. In view of the continuity of e(x,y) for
(x,y) € By x (B\B), on taking the limit as x — o in

mm—mm:—le@mw—dmmwwx

Cd
we deduce that A,(0) — hy(0) =0 so that i, (o) = hy(0) does not depend upon
t =2 1. Hence we have established (4.2) and thus we see that

1
(43) (e = [t el Dduy) v (2 1)
for a constant a independent of 7 = 1. In fact, on taking m(z,-) of both sides
of (4.1) and using the Fubini theorem we obtain

1

m(t, ) :EJ m(t, eo(-, y))du(y) + m(th) (2 1).
B,

By the Gauss mean value theorem (cf. (3.2)), m(¢t,h;) = h,(0) and hence (4.2)

assures that m(¢,h;) = a is a constant independent of ¢ > 1, which proves (4.3)

as desired.
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First we assume (2.11): m(£2,u) — 2m(t,u) = O(1) (¢t — o) and we will
prove (2.10): the Riesz decomposition of u. Now we maintain the validity of

B 1 1 1 r(y)
@l = (log ) u(B) + ajm tog " du(y) +a

for t = 1. In fact, we divide the integration over B, on the right hand side of
(4.3) into those over B; and B,\B; so that

1 1
mit,u) = dj m(t,eo(-, »))du(y) *aJB,\BI m(t,eo(, 7))du(y) + a.

By (3.1), we see that

mit,eol ) = mlt, e, y) =log 1 (v B)

and also we see that

1 1
WZ(Z, 60(', y)) = m(ta 6’(', y)) - m(t,e(o, y)) = lOg ?_ IOg m (y € Bl\Bl)
Thus we infer that

m(t,u) = iJ log ! du(y) + L log @ du(y) +a

B t Cd J B/\B,

1 1 1 r
— L (logJute + | tox ™ du) +a
Cq t Cq B/\B t

ie. (4.4) is deduced. Replacing ¢ by #? in (4.4) we obtain

2 1 1 r
) = 2 (1og { Jue) + - | o™ dut) +a
Cq t Cd B, \B t

Subtracting sides by sides from the above, the following

2 1 1 :
2m(t,u) = — <log —),U(Bl) + —J log r(yz) du(y) +2a
¢d t ¢d JB\B, t

implies, by considering B.\B; = (B2\B,) U (B\By), that m(¢>,u) — 2m(t,u) is

1 1 2
<a JBIZ\B, log %;) uly) +5JBI\BI (‘10% r(y) +log r(;;) )dﬂ(y)>

1
_EJ log —5—du(y) — a.
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Therefore finally we see that

r 1 1
log %dﬂ(y) + —L » log o) du(y) —a.

1
m(£?,u) — 2m(t,u) = — .
d

Cd JB,Z\B,

Since both of the first and the second terms on the right hand side of the above
are negative, the assumption m(t?,u) — 2m(t,u) = O(1) (¢t — o) assures that

j log r(y)du(y) = 0(1) (1 — o),
Bt\Bl

which in turn implies (2.9) and, by Proposition 2.1, [, e(-, y)du(y) is super-
harmonic on M. Hence both of u and [, e(-, y)du(y) belong to S(M) and

1 1

—A{u— —J e, y)du(y) | = p——(cap) = 0.

CdIm Cd
Then by (2.2) we can conclude that

1

w | e onduly) = he HOM)

CaJm

which shows that (2.10) is assured.

Conversely, we derive (2.11): m(t*,u) — 2m(t,u) = O(1) (t — o) by
assuming (2.10). Namely, we will prove that if

1
(43) ) = o[ etondul) +hte)  (re M),
CdIm
where u:= —4 = 0 and we understand the first term on the right hand side of

the above is superharmonic on M or equivalently [, log(1+ r(y))du(y) <
+oo (cf. (2.9)) and he H(M), then it holds that m(¢?,u) —2m(t,u) = O(1)
(t — o0). 1ie. the condition (2.11). Actually we will prove a bit more:
(4.6) tlim (m(,u) — 2m(t,u)) = —h(o).

Hence the condition (2.11) is equivalent to the above (4.6). For any ¢ > 0 we
divide M into B, and M\B, in (4.5):

1 1
"= EL, (-, y)du(y) + EJM\B, (-, Y)du(y) +

on M. Integrate both sides of the above with respect to df over C; and apply
the Fubini theorem. Then we obtain

1 1
m(t,u) = —dj m(t,e(-, y))du(y) @JM\& m(t,e(-, y))duly) + e, h).
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By (3.1) and the Gauss mean value theorem (cf. (2.3)) we deduce
(4.7) (t,u) 1(lo 1) (B)+1J lo ! du(y) + h(o)
. m(t,u) = — - — — 0).
Cd gf o Cd JMm\B, g”()’) Y
In particular, choosing ¢ > 1 arbitrarily, the above (4.7) gives
m(t? u)2(10g1> (B )Jrij logid (¥) + h(o)
’ Cd i) Cd Jm\B,; r(y) . .
On dividing M\B, into M\B,, and B.\B, in (4.7), we see that
2 1 2 |
2m(t,u) = — | log — | u(B +—J log——d
= o (1o a2 [ roe o )
1

2
+— log —d + 2h(0).
- j\ 8 7oy du(2) + 2400

From the above two displayed identities it follows that

2 u) — 2m(t,u :3 l > _i L
m(1”,u) — 2m(t, u) » <log l)ﬂ(Bf \B;) chM\BIZ log 0 du(y)

+2 | togr()dut) - o).
dJB,\B,

Putting the first and the third terms on the right hand side of the above identity
together we deduce

m(t*,u) — 2m(t,u) — (~h(0))

@ du(y).

1 2
=—j log r(y)du(yH,—J log
Cd Im\B, Cd JB\B,

Since r(y)/t <r(y) by t>1, we see that 1 <r(y)/t<r(y) on (M\B,:)U
(B2\B;) @ M\B, and a fortiori

m (2%, u) — 2m(t,u) — (~h(0))|

[IA

1 2 r
= vogrmaun + 2 10" duiy)
dJm\B, Cd JB,\B, t

lIA

ij log r(y)du(y) < ij log(1 + r(»))du(y).
¢d J m\B, Cd Jm\B,

Here [, log(1+r(y))du(y) <+oo  implies [, 5 log(1 +r(»))du(y) — 0
(t — o) and thus the above displayed inequalities imply the limit (4.6).
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