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ABSTRACT. We consider Riesz decomposition theorem for superbiharmonic functions in
the punctured ball. In fact, we show that under certain growth condition on surface
integrals, superbiharmonic functions are represented as a sum of potentials and
biharmonic functions.

1. Introduction

A function u on an open set Q < R” (n>2) is called biharmonic if
(—A)Zu:() on . We say that a locally integrable function u# on £ is
superbiharmonic in Q (in the weak sense) if (—A)zu is a nonnegative measure
on Q, that is,

J u(x)(=4)*p(x)dx > 0 for all nonnegative ¢ € C;°(£).
Q

We denote by #2(Q) and #*(Q) the space of biharmonic functions on Q
and the space of superbiharmonic functions on Q) respectively. For funda-
mental properties of biharmonic functions, we refer to [1] and [8].

The open ball and the sphere centered at x with radius r are denoted
by B(x,r) and S(x,r). We write B(r) = B(0,r) and S(r) = S(0,r). We also
denote by B and By the unit ball B(1) and the punctured unit ball B\{0},
respectively.

For a multi-index 4= (41,42,...,4,) and a point x = (x1,x2,...,Xx,), We
set

A=A +2+ -+ 4,
A =20000 0),

A

A A2 n
X" =X X700

n
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pio (Y S (AN (A (Y
T \ax/) T \ox 0xy) T \ox,)

Following the book by Hayman-Kennedy [4], we consider the Riesz kernel of
order 2m defined by

and

o () | x| if nis odd or n > 2m,
Im -

x| log(1/|x|) if nis even and n < 2m,
and the remainder term in the Taylor expansion of %5, given by

).’ Py
%2/11,L<ya X) = Rom(y — X) - Z y«_|(DA%2m)(_x)a

=L
where L is a real number. Here note that (—4)" %, = o,,'5 and
(—=A)" P, (-, %) = 2,6

with the Dirac measure J, at x and a constant a,, # 0; in fact,

—4 when n = 2,

. -2 when n = 3,
o, =

2 ") 4 when n = 4,

2(4—n)(2—n) whenn>>5,

where , denotes the surface area of S(1).

For a Borel measurable function # on R", we define the average integral
over S(x,r) by

1
M(u,x,r) = ——— uds.
Wyt S(x,r)

If x is the origin, then we write M (u,r) for M(u,0,r).

Let G be a bounded open set in R”. If u is superbiharmonic in a
neighborhood of G, then Riesz decomposition theorem implies that

u(x) = JG Ra(x — y)du(y) + he(x)

for almost every x € G, where u = (—4)*u and hg is biharmonic in G. Re-
mark that the function u* defined by the right-hand side is lower semicontinuous
and locally integrable on G; further it satisfies

u*(x) =1lim M(u*, x,r) (1)

r—
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for every x € G. In what follows, superbiharmonic functions are always as-
sumed to be locally integrable, Borel measurable and satisfy the mean value
property (1).

Our main result in the present note is the following.

THEOREM 1. Let ue SA#*(2By) and u= (—A)*u, where 2By =

B(0,2)\{0}.
(1) If n=2 and M(u,r*) —2M (u,r) is bounded above for re (0,1), then

u(x) = o3 J Ra1 (3, x)dp(y) + h(x)

holds for x € By, where h e #*(By).
(2) Ifn=3 and M(u,r/2) —2M (u,r) is bounded above for r € (0,1), then

u(x) = o J P oy, X)du(y) + h(x)

holds for x € By, where he #*(By).

() If n=4 and M(u,r/2) —4M(u,r) < O(log(1/r)) for re(0,1/2),
then

u(x) = o3 j Raly — x)duly) + h(x)

holds for x € By, where he #*(By).
@) If n=5 and M(u,r/2) — 2" 2M(u,r) < O(r*™) for re (0,1), then

u(x) = a3 J Raly — x)du(y) + h(x)

holds for x € By, where h e #*(By).

When u is superbiharmonic in R”, a global representation theorem was
given by Kitaura-Mizuta [5], which is an extension of a result by Premalatha

[9].

REMARK 2. If ue ¥#%(2By) and u= (—4)u, then, as in the book of
Hayman-Kennedy [4], Futamura-Kishi-Mizuta [2] and Futamura-Mizuta [3], u
can be represented as

u(x) = o j R 103 (2 X)du(y) + h(x),

0

for x € By, where i € #%*(By) and L(r) is a nonincreasing positive function on
(0,1] such that L(r) >4 —n.
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2. Spherical means for superbiharmonic functions

We write 4*%y,,(t) = 4* Ry, (x) when ¢ = |x|. First, in view of Lemma 1
in [2], we note the following result.

LemMa 3. If ue #*(By), then
M (u,r) = a+ br* + cR4(r) + dR>(r)
for 0 <r<1, where a, b, ¢, d are constants independent of r.

COROLLARY 4. If ue #? (Bo), then:

(1) in case n =2, M(u,r*) —2M(u,r) = O(1) as r — 0+;

(2) in case n=3, M(u,r/2) —2M(u,r) = O(1) as r — 0+;

(3) in case n=4, M(u,r/2) —4M(u,r) = O(log(1/r)) as r — 0+;
(4) in case n>5, M(u,r/2) —2"2M(u,r) = O(r*™") as r — O+.

For t >0 and r > 0, set

G(t,r) = Ra(1) — Ra(r) + %(ﬂg%(;) — AR (1)),

that is,
G(t,r)
> log(1/1) — r* log(1/r) + r*(log(1/¢) — 1) — 2(log(1/r) = 1) if n =2,
log(l/t)—log(l/r)—%(rz/tz—tz/rz) if n=4,
A 4n;n (P22 — 22 otherwise.

We know that G(¢,r) is strictly monotone as a function of ¢ (see [3, Lemma
4.4]).

LEMMA 5. Let ue S#*(2By) and p= (—A)u. Then for 0 <r < 1,

Aﬂmozaj’ Gy, du(y) +a+ br* + cAa(r) + da (1),
{yr<|yl<1}

where a, b, ¢, d are constants independent of r.

Proor. For fixed 0 <ry < 1, we write

um=wLH@mmwwm+mw
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for x € A(rg) = {x:r9 < |x| < 1}, where hq is biharmonic in A(rg). Then, as
in the proof of Lemma 3 (see [2] and Ligocka [6]), we see that

M(h(), r) =day+ b()}"z + 60%4(}’) + do%z(l’)

for ro < r < 1. Further, using Lemma 4.3 in [3], we find

M(u— hy,r) = azj Gy, r)du(y),

A(r)

so that

M(u,r) = o J G(3], () + do + bor? + coa(r) + doa(r)

A(r)

for ro < r < 1. This implies that the constants ag, by, ¢y, do are determined
independently of r. ]

Noting that |4 ,(y,x)| < C|y|*™" as y — 0 for fixed x € By, L > —1 and

some constant C > 0, we have the following result (cf. [7, Theorem 1]).

LEMMA 6. Let u be a nonnegative measure on By such that

J, 1ty < o @

for L>—1. Then

J |Ra,1(y,X)|du(y) # 0 on By,
By

so that u(x) = oy IBO Ra. (¥, x)du(y) is superbiharmonic in By.

3. Proof of Theorem 1 in case n =2

By Corollary 4 and Lemma 5, we have

M(u,r) — 2M(u,r) = j G(y), )du(y)

{yr2<|yl<r}
wj (G(3).7) = 2G(y), 1) }du(y) + O(1).
{yr<lyi<l)
Here we see that

G(t,r) <0 for 0<r<e<l1

and
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G(t,r*) —2G(t,r) = —t* log(1/t) — 2 + (r* — 2r?) log(1/1) — 2r* log(1/r)
+ 212 log(1/r) — rt 4+ 22
= ;’2{(s2 4+ 2) log s — (sz + r2) log(1/r) — s —rr+ 2}

for t=rs. If r>0 is so small that —(27' +r?) log(1/r) + 1 —r*> < 0, then

G(t,r*) = 2G(t,r) < — %ﬂ log(1/1)

for r<t< 1. (To show the last inequality, by change of variable s> = x,

consider
F(x) = (x/2—r* +2)(log x)/2 = (x/2 + 1) log(1/r) = x = r* + 2;

then F(1) = —(27! +r2?) log(1/r) + 1 — r?> < 0 by our assumption. We see that
F'(1) <0, F'(1/r2) < 0 and F"(x) = {x — 22 — )} /4x2 for 1 < x < 1/2, so
that F'(x) <0 and thus F(x) <0 for 1 < x < 1/r%)

Suppose M (u,r*) —2M (u,r) is bounded above. Then we see that

j {G(Iyl,) — 2G(|y],N}du(y)  is bounded,
{yr<|yl<l}

which implies that

[, 13F tox(1/13du(y) < .

In view of Lemma 6, v(x) = o «[Bo R4.1(y, x)du(y) is superbiharmonic in By, so
that A(x) = u(x) — oy \[Bo R4 1(y,x)dp(y) is biharmonic in By, as required. []

REMARK 7. Let ue S#*(2By) and i = (—4)%u, as before. If n =2 and
M(u,r) = O(log(1/r)) for re (0,1/2), then the above proof shows that

J Iy du(y) < oo,
By

so that u is represented as

u(x) = o> j Rar (3, X)dply) + h(x)

on By, where he . #?(By) (cf. [3, Theorem 1.3]). Further, if M(|u,r) =
O(log(1/r)) for re (0,1/2), then [3, Theorem 1.4] implies that

jB y2du(y) < o
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and

u(x) Z(sz %4,1()/, )dﬂ Z D 24

By 1] <2

on By, where /e #*(B) and C(1) are constants.

4. Proof of Theorem 1 in case n =3

By Lemma 5, we have

M(u,r/2) — 2M(u,r) = j Gy r/2)du(y)

{yr/2<]y|<r}
+a j (G(131,7/2) — 2G(1y], ) }Ydu(y) + O(1).
{yr<|yl<l}

We see that
G(t,r) <0 for r<it<1
and
G(t,r/2) = 2G(t,r) = —t + 3r/2 — Tr*/(121) < —1/28 < 0.
Suppose M (u,r/2) —2M (u,r) is bounded above. Then we see that

| 4G - 260 naut) s bounded,
{yr<lyl<l}

which implies that

j ld(y) < oo.
By

In view of Lemma 6, v(x) = oy J"BO R4.0(y, x)du(y) is superbiharmonic in By, so
that /(x) = u(x) — oz [ #a,0(y,x)dp(y) is biharmonic in By, as required.

REMARK 8. Let ue ##%(2By) and u = (—4)%u, as before. If n =3 and
M(u,r) = O(1/r) for re(0,1), then the above proof shows that

J [y du(y) < oo,
By

so that u is represented as

u(x) = j B (3, 2)du(y) + h(x)

By

on By, where /e #%(By) (cf. [3, Theorem 1.3]).
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5. Proof of Theorem 1 in case n =4

By Lemma 5, we have

M(u,r/2) — 4M(u,r) = J G(Iyl, r/2)du(y)

{yr/2<]yl<r}
+ J (G(3),7/2) — 4G(| ], ) hdu(y)
{yr<)yl<t}

O(log(1/r)).
We see that
G(t,r) >0 for t >r

and

15 (1)’
G(t1/2) = 46(tr) = 31og 43 (1) —Tog 2 > log £ 13 ~log 20

16

for r<t<1. Suppose {M(u,r/2)—4M(u,r)}/log(1/r) is bounded above.
Then

J {G(lyl,r/2) = 4G(|y], r)}du(y) = O(log(1/r)).
{rr<lyl<1}

Hence it follows that
| log(||/r)du(y) = O(log(1/1)),
{rr<|yl<1}

which implies that u(Bo) < co. Consequently, v(x) = oy [p Za(x — y)du(y) is
superbiharmonic in By, so that we see that /(x) = u(x) — o IBO Ra(x — y)du(y)
is biharmonic in By, as required.

REMARK 9. Let u e ##%(2By) and u = (—4)%u, as before. If n =4 and
M(u,r) = O(r2) for re(0,1), then the above proof shows that

j P du(y) < o,
By

so that u is represented as

o) = 2 [ Aaa(00du() + ()

on By, where /e #*(By) (cf. [3, Theorem 1.3]).
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6. Proof of Theorem 1 in case n>5
By Lemma 5, we have

M(u,r/2) — 2"’2M(u, r)= a2J G(|yl,r/2)du(y)
{yr/2<|yl<r}

+ OtzJ (G(3,7/2) = 272G (||, ) Y y)
{yr<|yl<1}

+ 0(r* ™).
We see that
G(t,r) >0 for t >r
and
G(t,r/2) —2"2G(1,r)
= —(2”*2 — 1)t4*” + (2”*2 — 2”*4)r4*” + ((n—4)/4n)(2" — 1)r2t2*”
== = (/)" 32" (- 4)/4n) (2" = D) (r/)" %}
> 2" 2(3n — 16) 4+ 3n+4}/(4n) > 0
for r<r< 1.

Suppose {M(u,r/2) —2"2M (u,r)}/r*" is bounded above. Then

L oy GULr/2) = 272G (51} d(3) = OG* )
yr<lyl<

Hence it follows that u(Bg) < oo, so that i(x) = u(x) — o IB(, Ra(x — y)du(y) is
biharmonic in By, as required.

REMARK 10. Let ue S#*(2By) and u= (—4)’u, as before. If n>5
and M(u,r) = O(r>™") for re (0,1), then the above proof shows that

J [y du(y) < oo,
By

so that u is represented as

u(x) = a3 j P 1 (3, 3)du(y) + h(x)

on By, where i e #*(By) (cf. [3, Theorem 1.3)).

7. The harmonic case

Let n =2 and suppose u e ¥#(2By). If we set v = (—4)u, then
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M(u,r) = ;—nL( )10g(r/\y|)dv(y) +a+blog(1/r)

for 0 <r < 1, where a and b are constants. Hence we have the following:
(1) If M(u,r) = O(log(l/r)) for re(0,1/2), then we can show that
v(By) < oo and

ux) = 5z | Tog(1/lx = y)v(») + ()

on By, where / is harmonic in By (see also [3, Theorem 1.3]). Fur-
ther, if M(|u|,r) = O(log(1/r)) for re (0,1/2), then, in view of |2,
Theorem 1] and [3, Theorem 1.4], we can show that v(Bj) < oo and

o) = 5 | 10g(1/1x = 1)) + h(x) + alog(1/1x)

on By, where / is harmonic in B and « is a constant.
(2) If M(u,r*) —2M(u,r) > O(log(1/r)) for re (0,1/2), then we can
show that

) = - | (1og(1/ = i) ~ Tog(1/x))dv(y) +(x
By

on By, where / is harmonic in By (cf. Premalatha [9]).
Let n >3 and suppose u € S#(2By). If we set v = (—A)u, then

M(u,r) = o J " = |y "dv(y) + a+ br* "
A(r)
for 0 <r <1, where ay = —1/((n — 2)w,), a and b are constants. Hence we
have the following:
(1) If M(u,r) = O(r*™") for re(0,1), then v(Bp) < oo and

) = = | v = 3P db() +
By

on By, where / is harmonic in By (see also [3, Theorem 1.3]). Fur-
ther, if M(|u|,r) = O(r*™") for r e (0,1), then [2, Theorem 1] or [3,
Theorem 1.4] implies that v(Bg) < co and

ulx) = = | e 3P dv(3) ) + el
By
on By, where £ is harmonic in B and « is a constant.
(2) If M(u,r/2) —2"2M(u,r) = O(r*™") for re (0,1), then we can show
that
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u(x) = —o j (I =y = |7 ")dv(y) + h(x)

By

on By, where / is harmonic in By.
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