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§1. Introduction

During the past several decades, reaction-diffusion equations have been
proposed to understand spatio-temporal structures of nonlinear phenomena
arising in population ecology (Cantrell and Cosner [2], Kan-on and Yanagida
[25], Levin [29], Mimura et al. [33]-[37]), neurobiology (Henry [19]), fission
reactors (Leung [28]), chemical reactions (Fife [15], Smoller [42]), combus-
tions (Ei et al. [11]-[13]) and other applied sciences. For the qualitative
study of solutions of these equations, fruitful mathematical methods have been
extensively developed in the field of applied analysis (Ei [9], Ei and Mimura
[10], Mimura et al. [34], for instance).

Most of reaction-diffusion equations are described by the following
semilinear parabolic system of equations:

(1.1) u, = div(D(x, uyV'u) + f(x, u), (t, x)e(0, o0) x Q,

where Q is a bounded domain in R", u=(u,,---,u,)eR™, D(x,u) is a
nonnegative definite matrix and f is a kinetic function from R"” x R™ into
R™. In most applications, D is a constant diagonal matrix and f is
independent of x. The resulting system is simply

(1.2) u, = DAu + f(u), (t, x)€(0, o0) x Q.

The variables u usually denote the quantities such as densities of biological
populations in ecology, concentrations of substances in chemical reaction, for
instance. In qualitatively understanding the behavior of solutions to (1.1) or
(1.2), the studies of existence and stability of equilibrium and periodic solutions
to (1.1) and (1.2) are very important. In fact, it is known that stable spatially
inhomogeneous equilibrium solutions play, among other things, an important
role in the formation of patterns arising in reacting and diffusing medium.

As for stable spatially inhomogeneous equilibrium solutions, we have the
following problem: How is the relation between the stability of spatially
inhomogeneous equilibrium solutions and the shape of domain 2. Along this
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line, Matano [31] and Casten and Holland [3] showed that any stable
equilibrium solution of the scalar equation of (1.2) with m =1 is constant
under the zero-flux boundary condition if Q is convex, that is, there exist no
stable spatially inhomogeneous equilibrium solutions. (We refer to Chafee [4]
in one dimension case). Under the same boundary conditions, Kishimoto and
Weinberger [27] extends this result to the system of (1.2) where f is restricted
to be (0/0u;) f; > 0 for i # j, under which (1.2) is called the cooperation-diffusion
system. The conclusion is also valid for (1.2) with m =2 where (0/0u)) f; <0
for i #j (i,j=1,2), under which (1.2) is called the competition-diffusion
system. On the other hand, Matano and Mimura [32] and Jimbo [23]
showed that for some appropriate f, stable spatially inhomogeneous equilibrium
solutions of the competition-diffusion system with m =2 exist in a suitable
dumbbell-shaped nonconvex domain under the zero-flux boundary conditions.
Since then, the dependency of spatial domains on equilibrium solutions of (1.2)
has been intensively investigated under the zero-flux or Dirichlet boundary
conditions (Dancer [7] and [8], Ei et al. [13], Keyfitz and Kuiper [26], Vegas
[44] and others). Hale and Vegas [16] and Vegas [43] first parametrized a
family of dumbbell-shaped domains which are introduced in [31] and
[32]. For this special type of domain, Hale and Vegas [16] and Jimbo [22]
studied the structure of equilibrium solutions of the scalar equation of (1.2)
when f takes ¢f with a small parameter ¢, and Morita [39] showed that the
origional system (1.2) can be reduced to a finite dimensional ordinary
differential equations on a Lipschitz continuous invariant manifold. Fang [14]
and Mimura, Ei and Fang [38] studied in detail the dependency of the domain
Q as well as the diffusion coefficients D on solutions of (1.2) and, as an
application, considered the bifurcation problem for the competition-diffusion
system with m = 2 when the shape of domain varies. Recently, Jimbo and
Morita [24] and Morita and Jimbo [40] have considered the system (1.2) on
a domain Q which consists of many dumbbells connected by narrow handles.

From the aspect of the dependency of domain-shape on solutions, the
effect of tubular domains on solutions has been recently investigated. Let
p(x), x€[0, L] satisfying |p.(x)| = 1 be a smooth curve which does not intersect
itself in RY*!, N_ an N-dimensional normal plane at p(x) and let ¢'(x) satisfying
|¢'(x)| =1 (i =1,---,N) be an orthonormal basis of N,. Also let D, = R" be
a simply connected bounded domain with smooth boundary. N, and D, are
assumed to depend on x smoothly. With a small parameter ¢ > 0, define
Qs = RN+1 by

Q,={p(x) + &Y y:d ™Iy =y, yeD,, xe(0, L)}

Yanagida [45] considered the following scalar equation in €,:
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u, = Au + f(u), (t, x)e(0, 0) x 2.,
(1.3) ou

— =0, (t, x)e(0, o0) x 02,.
on

Using the upper- and lower-solution methods, he showed that if ¥(x) is an
asymptotically stable equilibrium solution of the following equation:

v = L (@x)vy), + f()  for xe(0, L),
a(x)
(1.4)

@ =0 for x=0, L,

on
where a(x) is the N-dimensional volume of D,, then there exists a stable
equilibrium solution ¢(x, y) of (1.3) such that ¢(x, y) = y(x) as ¢ |0 uniformly
in 2,. This result suggests that when ¢ is sufficiently small, (1.4) is a nice
approximating equation to (1.3), but it was not justified.

However, from the view point of dynamical theory, Hale and Raugel [17]
quite recently have justified it for the scalar reaction-diffusion equation (1.3)
on 2, in R, N <2 But this problem remains to be unsolved for the
system version of (1.2).

The purpose of this paper is to study this problem for the following
reaction-diffusion system with two components:

(1.5) {u, =d,du+ f(u, v, x, y),

t; x, y)e(0, o0) x 2,
v, = d,4v + g(u, v, x, y), ( el )

on the symmetric thin tubular domain Q, « R¥*!, where d,, d, are positive
constants and 4 = 0?/0x? + 8?/dy? + ---+ 0*/dy%. The result of Yanagida
[45] suggests us that in the limit ¢ | 0, (1.5) is reduced to the following system
in one dimensional space:

d
i, = (—) (@(x)ii)s + f (@, B, x, 0),
a(x
(1.6) J (t, x)€(0, 00) x (0, L)
b= — = (a(x)0)c + g(i, 5, x, 0).
a(x)
What we want to do here is to verify the validity that the dynamics of
solutions to the system (1.5) is approximated by those of the system (1.6) when
¢ is sufficiently small. Furthermore, we want to show that if (1.6) has an
equilibrium solution (u,, v,) which is nondegenerate, then (1.5) has the
corresponding equilibrium solution (u,, v,) when ¢ > 0 is sufficiently small and
moreover, the stability of (u,, v,) in (1.5) is inherited to the stability of (ug, v,)



462 Qing FanG

in (1.6). The method which we use here is the inertial manifold approach
developed by Mallet-Paret and Sell [30] and Hale and Raugel [17].

Throughout the paper, we assume that (1.5) possesses a positively invariant
region, that is, there exists a region £ = R™ such that the solution of (1.5)
stays in X for its existing time interval if the initial and boundary values are
in X. If it is bounded, then it is well known that the global existence and
other dynamical properties such as the existence of compact attractors are
obtained [19]. For the construction of such invariant regions, we refer to
Chueh, Conley and Smoller [5], Smoller [42] and the references therein. In
practical applications, there is the situation where, with the initial and boundary
values in X, the solution globally exists and eventually enters into X although
it may be temporarily out of £. We call such ¥ an asymptotically invariant
region. In Section 2, we give the formulation of the problem and show some
examples of systems which possess bounded invariant regions or bounded
asymptotically invariant regions.

In Section 3, we formulate the systems (1.5) and (1.6) in an abstract setting
and give some preliminaries for these systems.

In Section 4, we consider the eigenvalue problems corresponding to the
systems (1.5) and (1.6). Let {4} (i=1,2,--) satisfying p,, < p,, <--- be
the eigenvalues of the operator B, in Q,, where B,(u,v)=(—d,du+ o, u,
—d,4v + a,v) with «,, a, > 0 such that «,/d, = a,/d,, and {g;} (i=1,2,-)
satisfying p, < p, <--- be the eigenvalues of B, in (0, L), where By(u, v) =
(—d;/a(x))(@(x)uy), + o;u, — (d,/a(x))(a(x)v,), + a,v). It is shown that

(17) llqsup (”n+1 - un) =00 and Hem — Uy AS € l 0

for any fixed meN. This fact, toghther with other conditions, allows us to
use the existence theorem of inertial manifolds in Mallet-Paret and Sell
[30]. In Section 5, inertial manifolds for (1.5) and (1.6), say, 9 and MO, are
constructed as graphes ®° and @° over the finite dimensional linear space,
which is determined by the span of the eigenfunctions corresponding to the
first N, eigenvalues of the operators B, and B,, respectively. By using (1.7),
the inertial manifolds 9% for (1.5) with sufficiently small ¢ >0 and 9M° for
(1.6) can be constructed in the same finite dimensions. In Section 6, using
the techniques developed by Hale and Raugel [17], we show that &°— @°
as ¢/ 0 in C!-topology. As a result, one can find that the dynamics of the
original system (1.5) with sufficiently small ¢ > 0 on the inertial manifold 9t
and the reduced system of (1.6) on the inertial manifold IM° are governed by
the same finite dimensional ordinary differential equations. Unfortunately, the
dimensions of M* and IM° can not be determined easily.
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Finally, in Section 7, we discuss the relation between equilibrium solutions
of (1.5) and those of (1.6). Our discussion may also be extended to periodic
solutions.

ACKNOWLEDGEMENTS. The author expresses his heartful gratitude to
Professors Masayasu Mimura and Shin-Ichiro Ei for their insightful
suggestions, warmly continuous encouragements and valuable advices. He
would also like to thank the State Education Committee of China and the
Kumahira Seisakusyo Co., Ltd. for their financial supports.

§2. Formulation of the problem and examples

We are concerned with the following reaction-diffusion system for two
components u, veR:

0
= =ddu+ f(u, v; x),
ot

2.1) (t; x)e(0, o0) x 2,
ov
— =d,dv + g(u, v; x),
ot

subject to one of the following three boundary conditions:

(2.2) —=—=0, (t; x)€(0, 00) x 02,
on  On
and
du
u=0 on (02,); and o =0 on (02,),,
n
(2.3)
@ =0 on 08,
on
and
ou
u=0 on (09Q,),; and o =0 on (09,),,
n
(2.4)

d
v=0 on (3Q,, and 53=o on (32,),.
n

Here, 2, is a bounded domain with piecewise smooth boundary which is
defined as follows: Let D < RM be a bounded simply connected convex
domain with 0eD. r(s): [0, L]— R, belongs to C?-class and there exist
positive constants r,, r, and r; such that
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rySr(s) <y, [F(8)] < g, [F(S)] <1y for se[0, L].
Let D, = {(z, -, zy)€RY|(z{,"+,zy)/r(s)€ D} for se[0, L]. Define 2, by
(25) 'Qe = {X = (S9 ,V) = (59 yla""yN)ERN+l|SE(Oa L)s y/EEDs}

with a small parameter ¢ satisfying 0 < ¢ < ¢, (see Figure 1). The boundaries
(0€2,); and (09,), are

y

2

I3

Figure 1. The domain shape of ,.

(02,); = {x = (s, »)eR"*![s =0, L, y/eeD,}
and

(02,), = {x=(s, )eR" "0 <s < L, y/cedD,},

respectively. 4 = 0%/0s* + 0?/0y? + --- + 0*/0dy%}. The functions f, g: R x R
x O — R belong to C? with respect to u, v and to W' ®(Q) with respect to
x, where Q is a bounded domain in R¥*! such that Q > cl(2,) for
0<ée<eg, If the boundary condition takes either (2.3) or (2.4), we also
assume the compatibility condition

(2.6) {f 0,050=0 " xe@q),.
g(0,0;x)=0

We make the following assumption to the system (2.1):

[A] [0, K,] x [0, K,] is an invariant region (or asymptotically invariant
region) of the system (2.1) with (2.2) or (2.3) or (2.4) for any suitable
large K, K, > 0.

That is, if the initial values u(0), v(0) satisfy 0 < u(0) < K; and 0 < v(0) < K,
then there exists t, > 0 (¢, = 0 in the case when invariant region holds) such
that the solutions u(z), v(t) of (2.1) satisfy 0 < u(¢f) < K, and 0 < v(t) < K, for
t 2 to.
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Let us show some examples.

ExaMPLE 1. (competition-diffusion system)
The first system is

% =d, du + (Ry(x) — a,(x)u — by (x)v)u,

2.7) ; (t, x)€(0, o0) x £2,,
a—i = dy v + (Ry(x) — by(x)u — ay(x)0)0,

which is called the competition-diffusion system with Gause-Lotka-Volterra
dynamics describing the dynamics of two competing species that move by
diffusion, where u(t, x), v(t, x) are the population densities of two competing
species at position x and time t, and d,, d, are the diffusion rates of two
species, respectively. a;(x) (i = 1, 2) are the intraspecific competition rates and
bi(x) (i=1,2) do the interspecific competition rates at position x. R;(x)
(i=1,2) are the intrinsic growth rates. All of the coefficients are positive
and bounded functions in 2, but if the environment is homogeneous, these
are constants (Ahmad and Lazer [1], Pao [41], for instance).

It is easily found that [0, K;] x [0, K,] is an invariant region of (2.7)
under the boundary conditions (2.2) for any large K,, K, > 0 (Smoller [42]
or Leung [28]).

EXAMPLE 2. (prey-predator system)
The second system is

mou

a—u=dlAu~|-r<1——u—>u—— ,
ot K(x) a+u
(2.8) (t, x)€(0, ) x £2,,

0
@ =d2Av+(—R+ gu>v,
ot v

where u, v are the densities of a prey species and its predator and d,, d, are
the diffusion rates. r is the intrinsic growth rate, K(x) is the carrying capacity,
and m is the maximum predation rate with intensity a. R is the death rate
and c is the growth rate by predation. All of the parameters are positive.
Then under the boundary conditions (2.2), it is obvious that [0, K] x [0, K,]
is an invariant region of (2.8) for any large K, K, > 0 satisfying K, > cK,/R.

ExaMpLE 3. (liquids superconductivity system)
The third system is
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0

(?i: =ddu+ (1 —u* — v?u,
(2.9) 5 (t, x)€(0, o0) x Q,

v

P dy4v + (1 — u? — v?),
which is proposed in the theory of superconductivity of liquids (Chueh, Conley
and Smoller [5]). Under the boundary conditions (2.2), it is known that
[0, K11 x [0, K,] is an invariant region for any large K,, K, > 0.

EXAMPLE 4. (combustion system)
The forth system is

% =40 + ¢f(6),

(2.10) (t, x)€(0, ) x Q,

ot
% =ddc — ocf(0) + I(x),

ot

which arises in the theory of combustion (Ei and Mimura [11] and the
references therein). Here, (¢, x) and c(t, x) denote the nondimensionalized
temperature and concentration of fuel at position x and time ¢, respectively.
The reaction term f(0) takes f(6) =exp(6/(1 + f6)) with  some positive
constant. d and & denote the diffusion rate of fuel and the thermal effect of
the reaction, respectively. I(x) (= 0) denotes the supply of fuel which satisfies
Ie W'=(Q). The boundary conditions for (2.10) often take the following forms

0=0 on (0RQ,), and ?20 on (09,),,
n

2.11)

% =0 on 0Q,.

on

It is not so trivial to check that the problem (2.10), (2.11) satisfies the
assumption [A]. Therefore, we will show that (2.10), (2.11) possesses an
asymptotically invariant region. We take the initial conditions for (2.10) as

2.12) 0(0, x) = 0,(x) = 0, ¢(0, x) = co(x) >0, xe€,,

where 6, and ¢, are bounded on Q,. Noting that 1 < f(0) < e'/? for 6 > 0,
we can obtain the global existence of the solution of (2.10) ~(2.12) in a
standard manner. Let I, = sup,,I(x) >0 and M, =1,/ and consider the
following auxiliary equations for (¢, 6):
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%i—:dAE—éé-}-]l, (t, x)e(0, o0) x Q,,
(2.13) gf —0, (t, x)€(0, ) x 02,
n

¢(0, x) = co(x) = 0
and

% _ 4G+ exp(1/BE (6 e, ) x 2.,

2.14 ~ f
@14) #=0 on (0RQ,,; and ? =0 on (022,),,
n

(0, x) = B,(x) = 0.

Lemma 2.1. 0 <6(t, x) < 6(t, x) and 0 < c(t, x) < &(t, x) for all t >0 and
xX€eQ,.

The proof is easily given by the minimum and maximum principles, so
we omit it.

LemMa 2.2. If 0<cy(x) <K, for some K, >0, then for any c* >0,
there exists ty = to(K,, ¢*) = 0 such that 0 < c(t, x) < c* fort > t, and xe Q,.

Proor. By Lemma 2.1, it is sufficient to show ¢(t, x) < ¢* for t > ¢, for
some t,. Let u(t, x) =c* —¢(t, x). Then u satisfies the following equation:

%L;=dAu—5u+5c*+11, (t, x)€(0, ) x Q,,
2.15
1) o, (t, x)€(0, ) x 02,
on
u(0, x) = ¢* — ¢y(x), xe,.

If u(0, x) > 0, then it follows from the minimum principle that u(t, x) > 0 and
so ¢(t, x) < c* for t >0 and xeQ,. On the other hand, if inf, .o u(0, x) <O,
we may consider the following equation:
du
dt
u(0) = inf .o, u(0, x).
Using the fact that #(0) <0 and # =0 is not an equilibrium of (2.16), we

= —d0u+dc*+1,,
(2.16)
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know that there exists a finite t, = t,(K,, c¢*) > 0 such that u(t) increases in
[0, t,] and u(ty) =0. Putting v(t, x) = u(t) — u(t, x), we find that v satisfies
the following equation:

9
% = dAv — o, (t, x)€(0, ) x 2,
2.17 F
(2.17) avv =0, (t, x)€(0, o0) x 09,
n

v(0, x) = u(0) — u(0, x) <0, xef,.

The maximum principle indicates that v(t, x) <0 for t >0 and xeQ,.
Therefore u(t) < u(t, x) for t > 0 and xe,, and u(ty, x) > u(t,) = 0. Applying
the minimum principle again to the following differential inequality:

0

5—': >ddu—du, (1, X)elty, ) X 2,
0

Mo, (t, X)€(to, 00) x 02,
on

u(to, X) > 0, XGQE,

we know that u(t, x) > 0 for t > ¢, and xeQ,. That is (¢, x) < c* for t > ¢,
and xe,.

LemMMA 2.3. Let ¢y, 6,€LP(R,) with p> N + 1, then there are K{ >0
independent of ¢, 0, and t, and ty = to(e, 0) > O such that 0 < 6(t, x) < K? for
t>t, and xeQ,.

Proor. By Lemmas 2.1 and 2.2, we know that there is a finite t, >0
s_uch that 0 < 6(t, x) < 0(t, x) and 0 < ¢(¢, x) < c* for t >t, and xeQ,. Let
0(t, x) be the solution of the following equation:

a0

o= A0 + exp(1/B)c*,  (t, x)e(ty, ©) X 2,

(2.18) 6=0 on (32,), and 2—6=0 on (09,),,
n

0(to, x) = 0(t,, X), xeQ,

and let 0* be the equilibrium solution of (2.18), which is unique. Then
0< é(t, x) < 0(t, x) follows for t >t, and xe®,. Therefore, it is sufficient to

estimate 6(t, x).
Define the operator %, by %.(u;, u,) = (— duy, — d4u,) with u; =0 on
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0 0
(0€2),, % =0 on (022,), and % =0 on 0Q,. Then it turns out that — %,
n n

generates a semigroup exp(— 4,t) in (LP(2,))*> (Henry [19]). Let 2(%,) be
2(%8,) = {(ul, u,)e(W?2(2,))*|u; = 0 on (02,),, %uni =0 on (02,), and %uf =0
on EQE} Then if (6, co)e(LP(2,))?, we know that (8(t), c(t)), (9(t), c(t)eD(A,).
Define the operator &/, by &/, u = — Adu with u =0 on (0£2,); and g% =0 on

(082,), in LP(R2,). Letting the eigenvalues of o7, be {1%} (i =1, 2,---) satisfying
0< Ay <5< and exp(— ,t) be the semigroup generated by — .o7,, we
write (2.18) into an integral form:

t

0(t) = exp(— o (t — 15))B(t0) + J exp(— ,(t — s)) exp(1/B)c*ds.

Letting &% = 2(/%) with ae((N + 1)/2p, 1) (Henry [19]), we have
10(0) L= < 18(0) |2z < ¢1exp(— 25t — t0)) 1 0(to) |2
.\ clf exp(— 75t = 9))
to (t - S)a

for some constants ¢; >0 and ¢, >0. Since (2.18) has the Lyapunov
functional

lexp(1/B)c*|lrds < c,

Vw) = | (IVul*>—exp(l/p)c*u)dx,
2.

the dynamical theory (for example, see Matano [31]) shows that 6(t) converges
to an equilibrium solution @, of (2.18) as t - co. On the other hand, as (2.18)
has the unique equilibrium solution 6*, we know that |8(f) — 6%, — 0 as
t - oo for any initial value 6,eL?(2,) of (2.12). Therefore, if we can obtain
the upper-bound of 6* which is independent of &, the proof of this lemma is
complete. If we can construct a bounded function U(x) independent of ¢,
which satisfies

AU + exp(1/B)c* <0 in Q,,
(2.19) P78

U>0 on (02,); and aa—UZO on (09,),,
n

it is a super-solution of (2.10), (2.11). The construction of U(x) is done in a
similar manner to the one in Yanagida [45]. Let «‘(¢) (i=1,---,N — 1) be
the orthogonal unit tangent vectors of d(eD,) in N-dimensional y-space at
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£ed(eDy) (se(0, L)). Choose &, €d(eDy,) for s, very close to s such that &; — ¢
is orthogonal to x(¢) (i=1,---,N —1). Let
¢ =<

S, —s

K"N(é) = lim51 s

and ny, be the outward normal unit vector in N-dimensional y-space at
0(eDy). Then it is known that xV(¢) is a tangent vector on d(eD,), which is
represented as

kM) =71 (1, 0,+-,0) + 9,(8) (0, np)

with y,(&) = 1 4+ 0(¢?) and y, = O(¢). Also let nj, be the outward normal unit
vector in N-dimensional y-space at dD,, a and b(s) the N-dimensional volume
of D and the N-1-dimensional volume of dD,, respectively, 4y = 8%/0y? + --- +
0%/0y%. We choose V(s) as a bounded function satisfying

1 d
N (s) ds
V©)>0, V(L)>D0.

(r”(s) Z~V> +exp(1/f)c* < — 1, se(0, L),
(2.20) *

For example, by taking V(s)= C —e"™ for se(0, L) where C and v are
sufficiently large positive constants satisfying C > 'L, it turns out that V(s)
satisfies (2.20).

Consider the following boundary value problem for any constant {:

4w ="y 4 b, yeb,,
W _ 128 o 1 e, yea,
ony €

Then it is shown in [45] that (2.21) has the solution

W) = — J K, z){ N’(—()S) Vi(s) + Cb(s)} dz
Ds

rs

+ f K(y, 11){?—2(& V'(s) + Car”(s)}dn +c
aDs €
for the Neumann function K(y, z) and any constant ¢. We denote W(y) by
W(s, y, &) and define U(s, y) by U(s, y) = V(s) + e2W(s, y/e, &) in £,. Then,
in a similar manner to the one in [45], we know that U(s, y) = V(s) + O(¢?) and
AU + exp(1/B)c* < — 1 + {b(s) + O(e) in Q,,
ou

W (&) = elar™(s) + O(e?) on (09,),.
n
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Therefore, if € >0 and { > 0 are chosen to be sufficiently small, we find that
U(s, y) satisfies (2.19).

By using the above Lemmas, we arrive at the following result:

THEOREM 2.4. There exist positive constants K9 and K2 such that for any
K, >K?and K, > K9, if 0<6(0) <K, and 0 < ¢(0) < K,, then the solutions
6(t) and c(t) of (2.10) ~ (2.12) satisfy

0<0()<K,, 0<c() <K, for t=t, >0,
where t; = t,(¢, K;, 6y) < 00.

Theorem 2.4 immediately shows that (2.10), (2.11) has an asymptotically
invariant region.

§3. Abstract formulation

In this section, we treat the system (2.1)~(2.4) in an abstract
setting. Taking the transformations

(3.1)

yn = er(s)zy,

and letting V ="'(d/0s, 0/0y,,---,0/0yy) and V,="(3/0s, 8/0z,,---,0/0zy), We
know

v,=Jw,
where
1 0 0 0
s er'(s)z, er(s) O 0
PRGSO ()2, 0 er(s) 0
0(s, 2y, Zy) -
er'(s)zy O 0 - er(s)

Under the transformations (3.1), the system (2.1) becomes

0
a_': = — Ld)u — oayu + f(u, v; s, 2),

(3.2) ; (t; s, z)€(0, ) x Q
5’; = — gs(dz)v — 00 + gs(u, v, s, 2)9
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with Q = (0, L) x D, where
FLidyu= —(d/rs)V, - Tu for d>0,¢>0

and
ou ou u
N — r”‘lr’(zl— +otzy—
0s 0z, 0zy
ou ou rN"2 u
— Nz — + V22, <zl-—+ +ZN—> P
0z, O0zy & 0z,
Iu= s
ou N2 Ou
—rN'lr’sz+r’"_2r’221\,<z1 + +zN——> >
L 0zy g Ozy

fo, v; s, 2) = f(u, v; s, er(s)z) + a,u,

9o, v5 5, 2) = g(u, v; s, er(s)z) + ayv

with a,, a, > O satisfying «,/d, = a,/d,. The boundary conditions (2.2), (2.3)
and (2.4) become

ou ov
3.3  =Tu-n=0 Z_— ;
(3.3) on, u-n on, 0, (t; s, 2)e(0, 00) x 09,
ou
u=0 on {0,L}xD, 5—=0 on (0, L) x oD,
(34) "
® _o o0
— =0 on
on,
and
ou
u=0 on {0,L} xD, — =0 on (0,L)x D,
(3.5) &
0
v=0 on {0,L}x D, a—”=0 on (0, L) x oD,
nE

respectively. Here n is the outward normal unit vector on 0€Q.

The terms du/dz; (i=1,2,---,N) should be very small formally as
€]0. Because the diffusion in each direction of z,,---,zy is very large when
¢ is sufficiently small, u and v depend very small on z,,---,zy and the reduced
problem of (3.2) ~ (3.5) as ¢} 0 should be
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% = — L°d)u— o u + fo(u, v; s),
(3.6) . (t; s)e(0, o) x (0, L),
P — Py — a0 + golu, v; 9),

ot
3.7 % = (—33 =0, (t, 5)€(0, o0) x {0, L},
on 0On
ov
(3.8) u=0 — =0, (¢, 5)€(0, 00) x {0, L},
on
(3.9) u=0 v=0, (¢, s)€(0, 00) x {0, L},

where

Lo(d)u = — (d/r”(s))i <rN(s) d_u> for d >0,
ds ds

Sou, v;8)=f(u, v; s, 0)+ au,
go(u, v; ) =g(u, v; s, 0) + a0
and n is the outward normal unit vector on d(0, L).
In order to know the relation between (3.2) ~ (3.5) and (3.6) ~ (3.9), it

will be convenient to rewrite the systems in an abstract form. We first consider
the system (3.2), (3.3). Let |- [lo.o be the usual norm in L*(2). Let H ()

1/2
be L?(2) equipped with the norm |ull, = < f rN(s)u? dsdz> and the inner
Q0

product {u, vy, = f r(s) uvdsdz. Also let (H,(2))? be (L*(22))* equipped with
o]
the norm || ®@|lg = (|ullZ + |v|H)'? for @ = (u,v) and the inner product

Dy, Dyog = uy, Uy + vy, v, for & =(uy, v,) and D, =(u,, v,). Let

. . 1 2
H/(2) be H'(22) equipped with the norm |lu|, . =<||u||(2m+ o +-+
e* || 0z
a 1/2 110,02
= 0—“— > and let (H!(Q))*> be (H'(£2))*> equipped with the norm
Znllo,@

1@],n= illullf,L + [v[|2)? for @ = (u, v). We define the gradient operator
L12(d) in H'(Q) by

zé/z(d)u=<\/30 fr(s)< LI ) dou Jdou >
r(s) é’zN er(s)éz1 er(s)ozy
for d >0 and ¢ >0. Here £!/>® means

P20 = (LY d)u, £L?d,)v)  for @ = (u, v)e(H(2))%.
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The bilinear forms ai(-,-) (i=1,2) in (H'(2))* and b,(-,-) in (H'(R))* x
(H'(2))? are respectively defined by
a;(u, v) = (L2 d)u, L))o +ou vy, (i=1,2)
for u, ve H'(Q) and
b,(®,, D,) = al(u, u,) + aZ(vy, v,)

for @, = (u,, vy), D, = (u,, v,)e(H*(Q))?, where

(L dJu, L)),y = f () L d)u - LY, vdsd.
[}

It turns out that ai(-,-) (i=1,2) and b,(-,-) are elliptic forms and, from

the assumptions on r(s), it follows that there exist &, >0 (¢, < ¢,) and ¢; >0

and ¢, > 0 such that for 0 <e<e¢,

(3.10) cHlulZ, <al(w,uy<é3lull?, for ueH' (Q) (i=1,2)
and
(3.11) GlP2g <b,(D, D) <3| D)2y for Pe(H'(Q)) .

By using the above notations, operators Si (i =1,2) in H'(f) can be
defined by {H,(Q), H!(Q), ai(-,-)}, that is, ue 2(S}) if and only if (iff) the
functional al(u, - ) is continuous in H!(£2) with respect to the topology of H,(£2)
and (Siu, w), = al(u, w). Similarly, an operator B, in (H!(£))? can be defined
by {(H,())?, (H*(2))?, b,(-,)}, that is, ®e 2 (B,) ifl the functional b,(®, -) is
continuous in (H!(£2))* with respect to the topology of (H,(£2))* and {B,®, ¥)y
=b,(®, ¥). By the Riesz Representation Theorem, the Green Formula and
regularity properties (see Hale and Raugel [17] and [18]), it turns out that S:

and B, are well defined with @(Si)z{ueHz(Q)lyZ—uzo on 6!2}, Siu
n

0 0
— #*(d)u + a,u and 2(B,) = {cp = (u, v)e(H2(Q))|y a_“ —0, y a-" =0on ag}
n n
and B,® = (£*(d,)u + o,u, £*(d,)v + a,v), respectively, where y is the trace
operator on 0Q2. Moreover, it follows from (3.10) and (3.11) that there is a

constant ¢ > 0 such that

lul,p <cliSiull,  for ue2(S) (i=1,2)
and

1Pl <clIB,Plly  for PeZ(B,).
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We note that S. (i =1,2) and B, are self-adjoint, positive and sectorial
operators in H'(2) and (H'(2))?, respectively (See Henry [19]). The
fractional powers of S! and B, can be defined and Y= 2((S)'/?) is H(Q)
equipped with the norm

lulle,y: = 18D 2ull, = (@i(u, w) > (=(| L2 d)ulf + o« llull})/?),
and X, = 2(B}'?) is (H*(2))? equipped with the norm
[@.x = B ?® g = (b(D, D)'/*(=(a} (u, u) + aZ(v, v))"/?)

for @ = (u, v). The following inequalities follow from (3.10) and (3.11):

(3.12) Cillullr < llulleyi < Ellull,,  for ueY; (i=1,2)
and
(3.13) il Plea<Pl.x <c[®l,n for PeX,.

We next consider the system (3.6), (3.7). Let |||, and || - |, g, be the
usual norm in H!(0,L) and the usual product norm in (H'(0, L))?,
respectively. Let Ho(0, L) be L*(0, L) equipped with the norm |[lull,, =

L

L 1/2
(f N (s)u? ds) and the inner product (u, v),, =j rN(s)uvds. Also let

0 (4]
(Ho(0, L))* be (L?(0, L))* equipped with the norm | @l u, = (14|13 ; + 03 )"
for @ = (u, v) and the inner product (@, @,>q y, = {Uy, U301 + V1, V)01
for @, = (u,, v,), D, = (u,, v;). We define the bilinear forms ai(-,-) (i = 1, 2)
in (H'(0, L))* and by(-,-) in (H*(0, L))*> x (H'(0, L))?, respectively, by

du dv

ai)(ua U) = d:<_ _> + (xi<u7 U>0 1 (l = la 2)
ds ds /o '

for u,ve H*(0, L) and
bo(P,, D,) = ad(uy, u,) + aj(vy, v,)

for @, = (uy, vy), P, = (uy, v,)€(H'(0, L))*.
It is known that aj(-,-) (i=1,2) and by(-,-) are elliptic forms and
there are positive constants ¢; and ¢, such that

(3.14) Glull?, <abw u)<lul}, for ueH'O, L) (i=12)
and
(3.15) GlIPIia, <bo(P, ®) <G| P|7 g, for de(H'(0, L))

Operators S§ (i=1,2) in H'(0, L) can be defined by {H,(0, L), H!(0, L),
ah(-,-)}, that is, ue 2(S}) iff the functional aj(u, -) is continuous in H*(0, L)
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with respect to the topology of Hy(0, L) and <Shu, w)o ; = ah(u, w). Similarly,
an operator B, in (H'(0, L))* can be defined by {(H,(0, L))?, (H'(0, L))?,
bo(-,-)}, that is, ®#ePD(B,) iff the functional by(®, -) is continuous in
(H'(0, L))* with respect to the topology of (Ho(0, L))* and <(Bo®, ¥)¢ q, =
by(P, ¥). By the Riesz Representation Theorem, the Green Formula and
regularity properties (see Hale and Raugel [17] and [18]), we find that S}

and B, are well defined with 2(S)) = {ueH (0, L)|ygE =0 when s =0, L},
n

. 0
Shu = L°d)u + o;u and 2(By) = {(D = (u, v)e(H?(0, L))*|y _au =0,y 2D =0
n n

when s = 0, L} and By® = (£°(d,)u + o u, £°(d,)v + a,v), respectively, where

y is the trace operator on 0(0, L). Moreover, there is a constant ¢ > 0 such
that

lully,r < cliSoullo,s for ue2(Sy) (i=1,2)
and
[P0, <CIBo®Pllon, for ®e2(B).

It is known that Si (i = 1, 2) and B, are self-adjoint, positive and sectorial
operators in H!(0,L) and (H!(0, L))?>, respectively. Yi= 2((S))'/?) is
H'(0, L) equipped with the norm

lullo,vi = 11(S0)'ullo,r = (ap(u, u))''?

du |12 1/2
<=<di + “i”u”(z),I)
S o,

and X, = 2(B}/?) is (H'(0, L))* equipped with the norm

I®llo.x = 1BS*® llo.n, = (bo(P, D))'1*(=(a5(u, u) + ag(v, v))''?)

for @ = (u, v). The following inequalities follow from (3.14) and (3.15):

(3.16) Callully,r < llullo,yi < Callullys for ueYy (i=1,2)
and
G1) &I Plme < | Blox <l Bllim, for PeXo.

Similar abstract formulations can be given to (3.2), (3.4) and (3.6), (3.8) as
well as to (3.2), (3.5) and (3.6), (3.9). We only note that for the former case,
HY(Q) for i=1 and (H!'(RQ))?* are replaced by ¥,(2) and ¥(Q) x H(Q),
respectively, where V(@) = {ue H*(Q2)ju =0 on {0, L} x D}, and H'(0, L) for
i=1 and (H'(0, L))*> are replaced by V,(0, L) and V¥,(0, L) x H'(0, L),
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respectively, where ¥,(0, L) = {ue H'(0, L)ju =0 on {0, L}}. For the latter
case, H'(Q) for i = 1,2 and (H'(22))? are replaced by ¥,(Q) and (¥,(2))?, and
H'(0, L) for i=1,2 and (H!(0, L))* are replaced by ¥,(0, L) and (¥,(£2))?,
respectively. All the notations are needed not to be changed without
confusions. We only note, for example, that B, and B, are defined by
((H(Q)?, V(@) x H'(Q), b(-,-)} and {(Ho(0, L)), ¥, L) x H'(0, L),
bo(-,-)}, respectively for the former case and defined by {(H,(€2))%, (V(2))%,
b,(-,-)} and {(Ho(0, L)), (¥(0, L))?, bo(-,-)}, respectively for the latter.

§4. Eigenvalue problems

Let {u,} and {w,} (n =1, 2,---) be the eigenvalues and the corresponding
eigenfunctions of B, normalized in (H,(0, L))>. It is known that 0 < yu,
<u, <--and p,— o as n—oo. Consider the following eigenvalue problem
associated with the operator S}:

1) ~ b g+ ap=ih  in (O, L)

r(s)

with the homogeneous Neumann boundary conditions

(4.2) $5(0) = ¢5(Ly =0
or the Dirichlet boundary conditions
(4.3) $(0) = ¢(L) = 0.

Let {4,} and {¢,} (n=1,2,---) be the eigenvalues and the corresponding
eigenfunctions of (4.1) normalized in Hy(0, L). It is known that A, is simple
and 0 < 4, <1, <--- with 1, > 00 as n— o0.

By the transformation ¢ = (r¥(s))!/?¢, (4.1) ~ (4.3) becomes

(4.4) 0 — ()0 + diq) —0  in (0 L),

1
4.5) 0.(0) = Boo(0) = 0, 9y(L) — Bro(L) = O,
(46) 0(0) =0, o(L)=0,

where h(s) = (N/2)(N/2 — 1)(F'/r)> + (N/2)r"/r + o, Bo = (N/2)(r'/7)(0), B, =
(N/2)(r'/r)(L). Tt follows from Hochstadt [21] that there are functions P, (%)
and P,(4) bounded for all A such that

sin(Ly/4/d;) = P,()/ /4  for (4.4),(4.5)
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and

sin(Ly/2/d) = Py(A)//4  for (4.4), (4.6).

Letting L./A/d, = n(n + v), we have
L Pid 7 (n + v)?/L?)
\/Zn(n +v)/L

which has a unique solution v, in (— 1/2, 1/2) satisfying lim,_ , v, =0 when
n is sufficiently large. We thus know that for any 6 > 0, there exists N, > 0
such that

sin(nv) = (— 1)

d,n*
LZ

d,n?
L2

4.7) m—9082*<i, < (n+96)? for n>N,.

Let {Af} and {¢fF} (n=1, 2,---) be the eigenvalues and the corresponding
eigenfunctions of (4.1) normalized in H,(0, L) with the boundary conditions
(4.2) (or (4.3)) associated with the operator S3. The inequality (4.7) also holds
for AE for large n. Note that the sequence of eigenvalues {u;, u,,---} of B,
are rearrangement of {A,, A,,---}U{dA¥, dJ%,---}, where d =d,/d,. Thus we
know that the multiplicity of y; is at most two and the corresponding
normalized eigenfunction is (®,, 0) or (0, Df).

For sufficiently large k, n(> No), let A,_, <dif < 4,.

(i) If A,y <dAF <(4,-, + A,)/2, we have
Ay —diE >, — A,1)/2>d,n/L?
and
dif., —dif>2dd k/[*> ./d,d,n/L?,
by using the estimate (4.7).
() If (4,_, + 4,)/2 <dif <1, we have
dif — Ay y =y — Ap_y)/2>d n/L?
and
dif —diE_| >2dd k/L? > /d,d,n/L?
also by (4.7).

Thus we obtain the following result:

LeMMA 4.1. The multiplicity of the eigenvalue w, of B, is at most two
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and limsupn—*co (”n+1 - :un) = 00.

We will discuss the relation between the eigenvalues of B, and B,. Let
{A..} and {¢,,} (mn=1,2,---) be the eigenvalues and the corresponding
eigenfunctions of the following eigenvalue problem associated with the operator
Sl

4.8) Lid)p + a0 =4¢ in Q
with the homogeneous Neumann boundary condition

0
4.9) o9 =0 . on 0Q
on,

or the mixed boundary conditions

(4.10) ¢=0 on {0,L} x D, g‘ﬁ =0 on (0,L)xdD,

where ¢ is normalized in H,(€2). It is known that 0 <4,, < 4,, <--- and
Jgn— 0 as n—oo. We will show the following result:

LeEMMA 4.2.  For any positive integer N, there exists ¢, = e,(N;) > 0 such
that for 0 < ¢ <e,,

4.11) max <j<n, {M’a,j - /1j| + ’ ¢e,j - qu

1
— }Sclms
V 1Dl

holds for some positive constant c, where |D| is the N-dimensional volume of D.

£, Y!

Thus, for sufficiently small ¢, we know that 4, ; is simple and that for
any K > 0 there are a positive integer N, and ¢; = ¢5(N,) > 0 such that

(412) infOsasu(;“s,Nz+1 - )“e.Nz) > K

holds.

The gap property of eigenvalues of B, follows from Lemma 4.2. Let
{t,,} and {w,,} (n=1,2,---) be the eigenvalues and the corresponding
eigenfunctions of B, which is normalized in (H,(€))?. Similarly, let {1} and
{#E,} (n=1,2,---) be the eigenvalues and the corresponding eigenfunctions of
(4.8), which is normalized in H,(L), with the boundary condition (4.9) or (4.10)
associated with the operator S?. Note that {u, ,, p, ,,---} are rearrangement
of {Ay 15 Aoz»-JU{dAE,, dJE,, -} and that the multiplicity of p,, is at most
two and o,, is (¢, ., 0) or (0, ¢f,). The following result is obtained by
Lemma 4.2:
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THEOREM 4.3. For any positive integer N, there exists ¢, = g4(N;) >0
such that for 0 < ¢ < ¢,

@;

1
(4.13) maxlsjsm{l.ue,j—llﬂ + ’we.j—— }SC#N,E
A/ |D| & X
holds for some positive constant c. Also for any K >0 there are a positive
integer N5 and &5 = €5(N3) > 0 such that

(414) infOsasss (HS.N3+1 - uE,Ng) > K
holds.

Next we will prove Lemma 4.2. To do it, the following three Lemmas
are needed.

LeEMMA 4.4. For any we H(Q):
(4.15) [w—Awll, < cellwll,y

holds for some positive constant c, where (Mw)(s) = (1/|D]) J w(s, z)dz and Y
D

means Y! or Y2,

Proor. For any we C*(R2), we have

Z1

W(S, 21, 25, +,Zy) = W(S, Ty, Z3,+,Zy) + f — (8, &y, 23,0, 2y)d

0z,

T1

z

' ow
_-(S5 619 ZZ)"'aZN)dél
0z,

= W(S, Ty, Tps 235" "5 2ZN) +J

T1

22 0w
+j *0—(5, Ty, &a, 23,0, 2y)dE,

T2 Z3

= W(S, T1s r29"',TN) + I—s

2t Ow z2

_ 0
whereI=J — (s, &4, zz,-u,zN)d£1+J a—mi(s, Ty, &ay 23,0, zy)dEy + o+
12 22

N a T1 1 ) .
J a—w(s, T, Tar > Ty—1, Cy)dEy. Taking the spatial average of the above
™~ ZN

equality on D with respect to z,---,zy, we have

1 _
(Aw)(s) = w(s, Ty, T, *»Ty) + —J Idz,dz,---dzy
ID| Jp

and
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(4.16) WS, 2y, 2y) — (MW)(s) = T — ij Tdz,--dzy.
ID| Jp

Then let us take the spatial average of (4.16) on D with respect to 7,---,ty. It
follows that

1 _
w(s, Z1,...,2y) — (AW)(s) = ——J Idt,---dty
ID|Jp
1 _
-—W DXDIdzl---dsztl---dtN.

Also by taking the integration on Q of the above equality with respect to
S, Zy,...,Zy, W€ have
0,!2)

+ .-+
0,2

ow

ow
“W_ﬂW”O,QSCl(} z
1

0,2 ‘ Ozy

for some positive constant ¢,. Therefore we know

ow

Z4

||W—///W”L—<-Cz||W—=/”W“o,nSc1cz<

O,.Q)

for some positive constants ¢, and ¢, by using (3.12) and the definition of
| |,.. Since C*(Q) is dense in H'(Q), (4.15) holds for any we H(Q).

0zy

<cel|wly

We define the inverse of S! and S{ (i = 1, 2) by
SH lu=w iff a,(w, v) = {u, v), for any veY!
and
(SH"'u=w iff ag(w, v) = <{u, v, for any veYi,
respectively. The Lax-Milgram Theorem shows that (S})~' and (Sh)~' are
well defined. By using regularity properties (see Hale and Raugel [17] and
[18]), we know that (S) ‘e Z(H,(Q); H3(Q)) and (Si) ‘e Z(H,(, L);

H?*(0, L)). Therefore, it turns out that (SY)~! and (S})~! are both compact
operators from Y! and Y} into Y. and Y}, respectively.

LemMA 4.5. (Hale and Raugel [17]) There are e > 0 and some positive
constant c5 such that

1S)~ I @@y T I 0~ 2moc0. Ly 20,1y < Cs (i=12)
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holds for 0 < ¢ < g.

LEMMA 4.6. There exists some positive constant cg such that for 0 < e < g4
and any heHy(0, L),

1) = ) Doy < Cellhllor (= 1,2).
Proor. We note that he H,(0, L) is considered as an element in H,(Q)
and
4.17) ao((Sh) "1 h, u) = <hy udg for ue H'(0, L),
(4.18) a,((SH) ™ h, w) = (h, wyy for we H'(Q).
It follows from (4.17) that

N(s)((SE) " th)uds = fL N (s) huds.

0

L L
f dn”(s)i((sa)-lh)@dswlf
ds ds

0 0

Substituting u =j w(s, z)dz into the above, we have
D

J d,r(s) —d—((Si,)_lh) ow dsdz + alj N (s)((SE) " th)wdsdz = J N (s) hwdsdz
P ds 0s

ko 0

and then

- sy (zjal>dsd2~
ds ! 0

Jj

ae((sa)_1h7 W) = <h’ W>L - j

(9]

By using (4.18) and letting w = ((S))™! — (S{)”"!)h in the above, we obtain
1S~ = (S5) ™ Hhl2yi = a,(((S) ™" — (S5) ™M, ((S) ™! — (So)™Hh)

< cellhllo, 1) ™" = (S6) ™ Dhller < el bl 1((SH™H — (S5~ DA,y

for some positive constants ¢ and ¢. Here we used (3.12) and Lemma
4.5. Thus, Lemma 4.6 immediately follows.

Proor oF LEMMA 4.2. The proof consists of three steps.

Step I: Let 4; and ¢; be one of the eigenvalues and the corresponding
normalized eigenfunctions of S} (i =1,2). We will prove that there is only
one simple eigenvalue 4, ; of S} in a small neighborhood of 4; for sufficiently
small ¢ and the corresponding normalized eigenfunction ¢, ; with the property

that A, ;— 4; and ¢, ;- (1/\/ID|)¢; as €| 0. We now define the operators g,
and g, by

70: Rx Y§ — R x Y§ with go(t, u) = ({ou — @), u— t(Sh)™'u)
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and
2o Rx Yl — R x Y] with g(r, w) = ((,(w—¢), w—1(S)™"'w),

where (o(u) = 4] 'ao(u, ¢;) and (,(w) = i; 'a,(w, ;). The norms in R x Y}
and R x Y. are defined by |(z, u)llo=It|+ |[ulloy: and [(z, w)|, = 7| +
[wll,yi, respectively. It is known that g,(4;, ¢;) =0 and that if 4, (r, w) =0,
then t is an eigenvalue of S! with the corresponding eigenfunction w. From
Lemmas 4.4, 4.5 and 4.6, the following result holds:

LEmMA 4.7. (Hale and Raugel [17]) Dgo(4;, ¢)) is an isomorphism from R x Y|,
into itself and there are &,;>0 and 7y, >0 such that for
0<e<eg, Dg.4j, ¢ is invertible and

Ye = “(Dgh(/{j» ¢j))_l ||.<[<va:;,wa;) < Yo.

We introduce the following notations: d, = || g.(4;, ¢)ll., B.(n) =
sup { | Dg,(z, w) — D?s()“!" Pl z@xyirxyil(T, w)eB(e, 4j, ¢;; 1)}, where (e, Ajs
¢;:n) = {(t, weR x Y| l(z, w) — (4;, $))ll, < n}.

Lemma 4.8. (Crouzeix [6]) If 2v.8.(27.0,) < 1, then for any n >0 satisfying
YeBe(n) < 1 and n = 2v,0,, ¢.(t, w) = 0 has only one solution (t,, w,)
in B, Aj, ¢;;m). Moreover, 1, is a simple eigenvalue of S, and

“(Tm we) - ('{j9 d)]) “s < ')}558’

Since the proof. is directly obtained by using the contraction mapping
theorem, we omit it.

Since  g,(4;, ¢) = g0(4;, ¢)) + (0, 1,((Sp) ™' — (SH ™), it follows from
Lemma 4.6 that J, < ced; for some positive constant ¢ and 0 <& <egs. Also
since

Dg,(t, w)(v, v) = ((,(v), v — T(S) ™ 'v — v(SD) ™' w),
we have

(Dg,(j, ¢;) = Dgelr, W) (v, v) = (0, (t — 2)(S) ™ 'v — v(Sp) ™" (¢p; — w)).

Therefore, by Lemma 4.5, we have f,(n) < c¢'n for some positive constant ¢’
and 0 < ¢ < ¢&. Then we can use Lemma 4.8 by choosing n =, ; = 1/(2y,¢),
ey;>0 and 4yfcc’e; j4; < 1 and therefore we know that g.(t, w) = 0 has only
one solution (4, ;, w, ;) in A, 4;, ¢;;n, ;) for 0 <e<e, ;, and that 4, ; is
simple and

4.19) [Aej— Al + Iwe; — @jlleyvi < €vokje, O<ex<e ;.

We normalize w, ; by letting ¢, ; = w, ;/llw, ;| so that || ¢, ;|l, = 1. It follows
from (4.19) that
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[Iwe il — ;L] < cyodje for 0<e<e; ;.
Using [ ¢;l, = \/IDIll¢;llo.; = /IDI, we have
1
VD]

for some positive constants ¢ and ¢, ;.

¢;

<cie for O0<e<e,;
g, Y!

H ¢8‘j a

Step II: For any positive integer Ny, let ¢, = min{e, 1, €5.2,....€2.n5,}- It
follows from the results in Step I that for 0 < ¢ < ¢,, S. has simple eigenvalues
A&,l""’lE,Nl in '@11\’1 =Ujv=11[i‘]—r]1h,, }41+7,1'1] and

1

/D]

¢e,j_ ¢j

maxlSjSNl{Ile,f_ijl + }SCANNS
g, Y!

for some positive constant c.

Step IIl.  Letting Z3, = (0, 4, — 1y JU(UN (A1 + 11— 15 4; — 111.))), We
will prove that S} has no eigenvalue in %3 when ¢ is sufficiently
small. Suppose that this is not true, then threre exists a sequence {¢,} (¢,]0
as n— oo) such that A, e #% is the eigenvalue of S.. Letting ¢, be the
corresponding eigenfunction of Si normalized in H, (22), then we have

E% ” ¢e,. ”azn,L < ain(qse"a ¢gn) = <S::,. d)s,.’ ¢e">L = lz,, <c

for some positive constant c. Therefore | ¢, ||, . are uniformly bounded and
by the compactness of (S))™! there exists a subsequence of {¢,}, also denoted
by {e,}, such that 1, —> A and ¢, — ¢, strongly in H'(Q) for some A€ %3,
and ¢,e H'(Q2) with || ¢y llo, o # O from the normality of ¢, . By the definition
of || - |l;,, we know that ¢,(s, z) = ¢o(s) does not depend on z,,...,zy. Thus
it follows from Lemmas 4.5 and 4.6 that

185,) ™" @e, — (S6) ™' bollo,o < 1(S;,) ™" (e, — o) 0.0
+ 1(S;) ™ = (S0 Ndolloeg—>0 as n— 0.

Together with ¢, = 4, (S.)"'¢,,, we have ¢y = 1o(Sh)~*do. That is, She,
= Aoo which implies that A, is an eigenvalue of Si with the corresponding
eigenfunction ¢,. This is a contradiction so that we find that the conclusion
is true.

§5. Existence of inertial manifolds

We rewrite the systems (3.2) ~(3.5) and (3.6) ~(3.9) as the following
abstract forms:
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51 {m=—&U+RWL t>0,
' U(0) = UyeK,

and

52 {u:-mv+mwx t>0,

U(0) = UpeK,,

respectively, where U = (u, v), F,(U)(s, 2) = (f,(u, v; s, 2), g.(u, v; s, 2)), Fo(U)(s)
= (fou, v; s), go(u, v; s)) and K; = {(u,v)|0 <u<K,, 0<v<K,}. Because
[A] holds for (5.1), we can modify the nonlinear terms F, outside K; as follows:
for 0 < ¢ < ¢, F, satisfies

(53) F(U)=0 if UeKy={(wv)|—1<u<K, +1, —1<v<K,+1},
(54) sup{|F,(U)|, |DF,(U)|,|D*F,(U)|} <M, for UeR?,

(5.5) IF(Uy) — F(U)l < MUy — Uy, [F(U)| < M |UI + M,
for U, U,, U,eR?

for some positive constants M, and M, uniformly with respect to (s, z), since
we only want to discuss the dynamics of bounded solutions of (5.1). Since
f and g belong to W»*(Q), the following inequality holds for some positive
constants ¢g and c,:

(5.6) IF.(U) = Fo(U)lln < ¢eell Ulln + ¢;¢  for Ue(L*(©))*.

We will discuss (5.1) only, because (5.2) can be considered similarly. We
want to construct inertial manifold for the following initial value problem of
(5.1):

U =—
57 {, B,U + F,(U), t>0,

U@0) = UseKinKy;,

where Ky = {UeX} ;|| Ullxs , < K3}. Here, X}, = 2(Bf) when B, is consi-
dered as an operator in (L?(R))? with || Ulxe, = B£U||(,_,(m)2, p>N+1and
pe((+ N + 1)/2p, 1). Fix K, K, and K; sufficiently large. Then we know
that there exists a unique global solution U(t) of (5.7) such that U(t)e C*([0, o),
X,)n2(B, (Henry [19]) and that U(t)eK,(Ky) if the system (5.7) has the
(asymptotically) invariant region assumed in [A]. Moreover, the following
result holds (for example, Fi and Mimura [11]):

LEMMA 5.1. There exists a positive constant ¢ such that any solution U (t)
of (5.7) satisfies
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By Theorem 4.3, we know that for any large u > 0O there exist some
positive integer N, and &,(N;) >0 such that uy <pu < py,+, and p,y, < p
<y n,+1 for 0<e<e, Let Vi=span{w,,, -, 0,y } and W= (V)"
= clspan{w, ;|j > N,}. We define P} and Q¢ be the natural projection from
(H,(2))* into Vi and Qi =1-P;, respectively. Let p=P,U and q = Q,U.
Then (5.7) can be written as

{pt = - Bsp + PZ(Fa(p’ 4)),
9. = — B.q + Qu(F.(p, 9)),

where F,(p, q) means F,(p + q). Let 6: [0, o) - [0, 1] be a smooth function
such that 6(¢) =1 if 0<¢< K, max{K,+1,K,+1})* and 0(¢) =0 if
&> 4K, (max{K, + 1, K, + 1})*>, where K, > 1 is a sufficiently large fixed
constant. By following Mallet-Paret and Sell [30], (5.8) can be rewritten as

(5.8)

59) {p. = — B,p + 0(1pIAPLF.(p. 9) = Z(p. 0).

g, = —B,g + 0(llp IR QLF.(p, 9) = — B.g + %.(p, 9).

LEMMA 5.2. Let U(t) be a solution of (5.9). For 0 <e¢ <e¢, there exists
ty >0 such that

[RUGIES %K4(max{K1 + 1L,K,+1})2  for t>1,.

PrROOF. Rewrite (5.9) as
U = —BU+0(lplRF.(U).

Then we have

| =

% IU® & + <B.U, Udy = (Il p R F(U), Udn.

QU

t

It follows from the modification of F, that there exists some positive constant
¢ such that

| =

U@ G+ U@ <a/21UO R+ e,

N[ —
Q.

t

where & = min{a,, a,}. Therefore, by using the Grownwall inequality, we
have

_ 1
U@ < [ Uollue™™? + ¢ < - Ky(max (K, + 1, K, + 1})?  for t>1t,

for some positive constants ¢’ and t; and sufficiently large K (> 1).
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Lemma 5.2 implies that the attractors of (5.8) and (5.9) coincide with each
other. In order to use the existence theorem of inertial manifolds in
Mallet-Paret and Sell [30], we introduce some notations. Let

A** = {peVi|lpla <R},
C = {qe2(B)NW,|B.qu < R,},
I_(ll = Klln {Ul ” U ||(C1(_Q))2 < R3}

for fixed large positive constants R;, R, and R;. Note that for U, V and
U + Ve(A** x C**)nKy,

F3(U + V)(x) = F,(U)(x) — (DF,(U))(x) V(x)
= Jl [DF.(U + tV)(x) — DF (U)(x)]V(x)dz
0

and that |Ullg— 0 implies |U(x)]—=0 in Q. Then it follows from the
modification of F, that for any # > 0, there is 6 > 0 such that

[F(U+ V)= F/(U)=DF,(U)Vlg <nlVlna
if |V|g <9 and that
IDF.(U) = DF,(V)| @2, maany <1
if |U—V|g<9d. Therefore, we obtain the following two lemmas.

LemMa 5.3. (Regularity Condition) %, and %, are C* in (A** x C>*)nKy
for 0 <e<e,.

LemMa 54. (Dissipative Condition) If R, > 2. /K, max{K, + 1, K, + 1},
then %.(p, 0) =0 and {p, Z.(p, 0)>u <O for pecl(V;\ A*").

LEMMA 5.5. (Sobolev Condition) For any R, > 0 there exists RS such that
if po€A®* and p(t; py, 0)€A™>* in [0, ty] for ty >0, then q(t; py, 0)eC** in
[0, to] for R, > RS and 0 <& < ¢,.

PROOF. Letting exp (— B,t) be the semigroup generated by — B,, we know
that for Ue(H,(2))?,

(5.10) [exp(—B.)QuU g < e ™| U |, t>0,
and
(5.11) B2 exp(— B)Q:U |lg < u*/?b(ut) | U ||, t>0,

where
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b(r) = {(2_er)‘”2 ?n (0, 1/2],
e’ in [1/2, o)

and J c'?b(ct)dt = 2(ce)” /2. By using arguments similar to the one in
[}
Mallet-Paret and Sell [30] or Hale and Raugel [17], we know that when

FE(U) takes F,(U) for the Neumann boundary conditions or F,(U)— F,(0)
for the mixed boundary conditions, F,(U)e2(B!’? holds if Ue2(B!/?).
Moreover, there are positive constants M5y and M, such that

(5.12) IB2F(U)llg < M; | BY2U |y + M,  for Ue2(B?)
for both boundary conditions and especially
(5.13) IBL2F,(0)]|g < M, for the mixed boundary conditions.

Let u>max{l+ M, 1+2M,}. Then q(t;p,y, 0) satifies the following
integral equation:

(5.14) q(t) = f exp(— By(t — ) Qu(0(I p IR QL (F.(p(s), 4(s)))) ds.

0

We thus have

t
lg@®)lla < J e MM Ry + My [lq(9)lln + 1212 M5)ds,  te[0, 1]
0

and then by using the Grownwall inequality,

(5.15) la@)lla < (MR, +[Q|'"2M,),  te[0, t].

1

Applying B}/? to the formula (5.14), we obtain

IB:"2q(t) I < J #2b(u(t — 5)) (M Ry + Q12 M, + M [ 4(s)lln) ds.

0

Substituting (5.15) into it, we have
(5.16) IB:2q(0)ln < Msu™'2,  te[0, to]

for some positive constant Ms. On the other hand, we know
(5.17) IB:2p(®)lg < p'?Ry,  te[0, to].

When the Neumann boundary conditions are imposed, applying B, to the
formula (5.14), we have
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B.q(t) = j B;/Z exp(— B,(t — 5))B;}/*(0(1| p(s) 1R) Qu(F.(p(5), 4(5)))) ds

0

and then by using (5.16) and (5.17)

t

IB.q(t) la < J p2b(u(t — 5) [M5 1B p(s) lu + M3 1B q(s) lla + Mo]ds
0

<Mg+ Mu 2, te[0, to]

for some positive constants My and M,. When the mixed boundary
conditions are imposed, the above estimate can be similarly obtained by
showing the additional term

Jt B, /2 exp(— B,(t — 5))B;/2(0(Il p(s) 1) Q. F. (0, 0)) ds

0

is bounded by some constant indepedently of y and t. Therefore, by choosing
R, sufficiently large, we have

IBeg(@)lla < Ry, te[0, t].
LEMMA 5.6. (Linear Stability Condition) For any R,, R, >0 and

O<e<e, if tﬁe constant | satisfies | >sup {|D%,(p, 9) || #@.cn2,@m.nn | (P> )
e(A** x C**)nKy}, then there exists A > 21 such that {q, B,q>g = Allq |-

Proor. Since
D%,(p, 9)(p, o) = 2DO(|| pll&) <, p>uQ;F.(p, 9) — 6(ll pl&) Q. DF.(p, 9) (p, 0),
we know that
ID%.(p, 9| 2@an2. 2y < 25up(|0)R, M (€,12])!/* + M, ¢
for some positive constant ¢. On the other hand, we know
{q,B.gdu = pllqllf for geWin2(B,) and 0<e<e,.

Thus, the proof can be shown by choosing u to be sufficiently large.

Let p and o satisfy the following equations:

{m=D2m@M®,

(5.18)
0y = — Baa + Dgs(p’ q)(P, O')

1
and let I = E(Hallf,— llpllg). It is known that I' = (g, —B.0+D%,(p, 9)(p, 0)Dn

—<p, DZ.(p, 9)(p,0))n.
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LeMMa 5.7. (Uniform Cone Condition) For any R, >0 and R, >

2 /K max{K, + 1, K, + 1}, there exists a positive integer N, such that for
0 <& <egNy), (p, Pe((A** x C**)U(V] x {O)nKy, peV; and ceW;n2(B,)
satisfying (5.18), if |pla= lolg =1, then we have I' < — 1.

ProOF. We rewrite I’ as

I'=— <0" Bco->l-] + <ps Bep>H + H,

where
H=20(pllR)<p, pO>ulF:p, 9), 0 — p>u + 0l pI7) <DF.(p, 9) (p, 0), ¢ — p)u.

By using the modification of F,(p, q), we find |H| < Mg for some constant
Mg > 0 independently of ¢ and u. Thus we know that

I'< —pen+1 + Men, + Ms.
Since Theorem 4.3 shows that there is a positive integer N, such that
Uen,+1 — Hon, = Mg+ 1 for 0 <e <egy(Ny),
we immediately find that I' < — 1.

REMARK 5.8. More precisely speaking, it can be shown by Theorem 4.3
that there is a positive integer N, such that I' < — 2Mj for 0 < & < g,(N,).

A similar argument can be done to the case when ¢ =0. We only note
that V) and WJ are defined as V? = span{w,/\/|D|,--,wy,/\/IDI}, W}
= clspan {w;//ID||j > N,}, respectively, and that (5.8) is modified by

multiplying 6(||/IDP|pll3y,) in place of O(||plf). That is, we may consider
the following equation in place of (5.9):

(5.9) {p, = —Bop + 0(I/IDIP13.5)PY(Fo(p, 9) = Zo(p, 9),
4= — Bog + 0(1/IDIP 112 4 QFo(p, 9)) = — Bog + %o(p, 9).

The results similar to Lemmas 5.2 ~ 5.7 hold for (5.9)'.

By applying the result in Mallet-Paret and Sell [30] to the above, we
find that the following existence theorem of inertial manifolds holds, where
| -1l means || [lg or |- llo,u,-

THEOREM 5.9. There is a positive integer N, such that for 0 < ¢ < g4(N,),
there exists a C'-function ®°:V:— Wi with |D®||, .= sup{[|D®*(p)p| |p,
peV, llpll <1} <1 satisfying d*(p)eC>* for peV, supp ®*cA**, and
ME = graph @° is an invariant manifold of (5.9) ((5.9) if ¢ = 0), which is locally
attracting in the sense that if U(t) is the solution of (5.9) ((5.9) if ¢ =0) and
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U(t)e EX* = {(p, g€ A" x C**| | q| < dist(p, bodry A**)}, then
dist (U(t), M®) < 2e " diam C** < cR,e™ ™  for t >0,
where Kk and c are positive constants independent of &, u and t.

REMARK 5.10. Let (p(t), q(t)) (—oo <t < o) be the solution of (5.9) or
(5.9) for 0 < e < &4(Ny). If (p(t), q(t))e A** x C>* for all ¢, then (p(t), q(¢)) € M®
holds for all t. Especially, if (p, q) is a bounded equilibrium solution of (5.9)
or (5.9), then (p, g)e M* for some appropriate constants y, R, and R,.

Let MG and M; denote respectively V; and the image of MM, under the
flow of (5.9) (or (5.9)) at time t. It is shown by Mallet-Paret and Sell [30]
that there exists a Lipschitz continuous function @&;:V; > W; with the
Lipschitz constant less than 1 such that I = graph @;. The following results
which are obtained in [30] will be useful in the next section.

ProposITION 5.11.

(i) [|D°(p) — Pip)llg < MR,e ™™ holds for t >0, 0 <& <e¢, and peV,, where
M is some positive constant independent of ¢ and .

(i) Let T > 0 be a given small constant. Then for any n > 0 there is a positive
integer N, such that for any integer m, it holds that d5fm+N2)teC1 and
DDy s noye(P)p — DD (P)plla < nllplla for 0<e<e, and p, peV,.

§6. Reduced forms

We know in the previous section that (5.9) and (5.9) on the inertial
manifolds ¢ and M° are

d
6.1) d_f = Z(p, &(p))  for peV:
and

dp e 0 0
(62) P _ Zyp, ®°(p)  for peV?,

dt

respectively. Define 7,: Vi — R" for 0 <& < g,(N,) by n,(p) = B = (1., Bx,)

eRM for p= Z?’;lﬁjww, and 7,: V) >RM by mo(p)=BeRV for p=
1

YN B——w, By letting &*(B) = &*(n] 1) and ®*°(f) = #°(n5 ! f), (6.1)

j=1 j\A*DvI

and (6.2) can be written as
dp

(6.3) i nF(n. B, D¥(B)) = Z*(B)
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and
dﬁ 273 -1 *0 7723
(6.4) i noFo(mo " B, D*°(B)) = F5*(B),
respectively. Let B, = {feR™!||B| <r,}, where |-| is the usual norm in

RV, By using the similar argument to the one in Hale and Raugel [17], we
will show the following result:

THEOREM 6.1. There exists r§ >0 such that for ro>r¥, @&* — &*° in
C!'(B,,; (L*(2))*) as ¢|0.

ro?

The above result implies that #* — #¢ holds in C'(B,,; R"") as ¢|0.

PrOOF OF THEOREM 6.1. The following two lemmas are obtained from
Proposition 5.11 and Theorem 4.3:

LEMMA 6.2. For any n > 0, there is t, = to(n) > 0 such that for p, feRM
and 0 < ¢ < g4,

16*4(B) — B*(B) |l < Z + 1 0E(B) — BE(B) 1
and

IDS*(B)B — DP*°(B) By < - |8l + | DD(B)B — DD (B)f |1n-

[o NI

LEMMA 6.3. There exists a constant c¢g > 0 such that for 0 < ¢ <¢, and
Ue(H,(0, L)),

IPLU —PRU la < Cgeu| Ullo,m,-

From now on, we will omit x4 from superscripts and subscripts for
simplicity only. Let us introduce the following notations: For BeRM, let
Ut(t; B) = (p°(t; B), ¢°(t; B)) be the solution of (5.9) or (5.9) with the initial
value U®(0; B) = (n; !B, 0) for 0 <e<e,. For t,>0, which was stated in
Lemma .6.2, there exists 6°(f)eRM' such that U(ty; 6°(B)) = (n, ' B, DX(B))
(=(r;'B, i (n; ' B))). For simplicity, we write U(t; 6°(B)), p°(t; 6°(B)),
q(t; 0°(B) as U*(1), p°(t), q°(t) and U°(t; (), p°(t; 0°(B)), q°(t; °(B)) as
U°(@t), p°(t), q°(t), respectively.

LeMMA 64. Let 0 <e<e,. If feB,, then
max { || B,U(®) |g> | BoU°(®)llo.1,} < max {2ue*ory, uR; + R,} for t>0.

Proor. It there is t; > 0 such that
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B, U(ty) g > max {2pue*°ry, uRy + R,} > uR{ + R,,
it follows from
BU )l = IB:p*(t1) + Beg®(t1) la < 1 P*(t) s + I Beg*(21) [
that
[p*(t:)lln > Ry or  [B.g*(t;)llu > R,.

In the former case, since Ry >2./K,max{K, + 1, K, + 1}, U°® satisfies

U=-BU
and then

P*(®) = — B.p*(1),
if ¢ is close to t; but t <t,. It implies that
1P e = e™# " [ pP(t) i = 11°(¢1) > Ry

for some positive constant p, >0 as long as U= — B,U® holds. On the
other hand, | p*(f)lg > R, implies U;= — B,U? if t closes to { but
t <t Therefore, we have

U= — B,U® for 0<t<t,.
Thus it follows from the initial value ¢°(0, °(f)) = 0O that
¢@)=0 for 0<t<t,

and
1
Iz 2 0°(B) e = 1 P°(O) lwa = 1| P°(t1) s = ;IIBsp‘(tl)lln

1
= ; B, U(t,)llg > 2€"°r.

That is, if r, is chosen sufficiently large, we find
(6.5) [z, 1 5%(B) g > 2€"'°ry > max {R,, |B|}2e"".
We note that since R; > 2\/K‘4max {K, + 1, K, + 1}, U*(¢t) satisfies
U =-B,U
as long as ||p%(¢)|lg > R;, and when it holds, we find that ¢°(t) = 0 and

1Pl = e 77" 6*(B) |-
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Since (6.5) leads to | p*(to) g = e *°|l7, 16°(B) |l = 2R,, we have
) =0 and [p(®)|la=e *|n '0*B)la for 0<t<t,.
Especially, when t =t,, we know by the above inequality and (6.5) that
Ip*(to) lln = e~ ||z, *0°(B) lns = 2181

This is a contradiction to || p*(to) lg = 7. *Bllu = |BI-

The latter case does not occur because ||B,g%(t;)]lg < R, holds for
I p°(t) |l < R, by Lemma 5.5.

As the case when ¢ =0 can be studied similarly, we omit its discussion.

REMARK 6.5. B! and B;! can be defined in a similar way to (S} !
and (S5)”! (i=1,2) and by Lemma 4.5 B;! and Bg' are respectively
uniformly bounded in Z((H,())*; (H*(R))?) and L ((H,(0, L))*; (H*(0, L))
for 0 <e <egg. It is thus shown that they are compact operators from X,
and X, into X, and X,, respectively. Together with Lemma 6.4, we have

(6.6) max {||U*0) > 1U°()lo.n,} <&  for t>0
for some positive constant ¢, which may depend on t,, ¢ and r,.
LEMMA 6.6. Let 0 <e<e,. If BeB,, then
IUSt) — U°(t) g < E1on/e€™"  holds for 0 <t <t,,
where ¢,y and ¢, are positive constants which may depend on t,, u and r,.
ProoF. Note that U°(t) satisfies

du°
o = BoU® + 6(1\/IDIP°15,1,) Fo(U°).

Taking the inner product with he(H!(0, L))?, we have

au°
(6.7) < o h> = —bo(U° h) + <O(I/IDIP°15.0) Fo(U°), 1Yo o
0,Ho

Letting h = f w(s, z)ds for we(H!(£2))? and substituting it into (6.7), we have
D

UO
<d— W> +b,(U°, w) = <O(I/IDIP°13.1) Fo(U°), WH
H

dt
()0 : 99 S
12 <r(s)85 (U )1, zj(?_zj >L 22 <r(s)0s U )z,zja—zj(w)2>L,
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where U° = (U9, (U°),) and w = ((w);, (w),). On the other hand, using

<dU ,W> + b, (U%, w) = LO(]| p° IR F(U?), win,
dt H

we have
<1(U8 — U9, w> + b, (U= U° w)
dt H
= <OUIP° IR F,(U®) — (1 /IDIP° 1210 Fo(U®), W)y
0 0
L d YN < ris) RUANE —(w)>
L

.621- !
0 0
22 <r(S) 0)2, Zjé_(w)2> .
z; L

(s) 65

Putting w = U® — U° in the above formula, we obtain
d £ 02 € 02
(6.8) ;i;”U —U%la<c {lIIU* = U’

+ U = Ul p°Ila = I5/1D1P° 13 ol + 2}

for some positive constants ¢, and c¢,. Here we know

113 = 13/1D1P° 1.0 | < 12° = P a1l P* e + I18/1D1P° l0,10)
and by Lemma 6.3
Ip°(t; 6°(B)) — p°(t; 8°(B)) lw < I P2U°(2; 6°(B)) — POUC(t; 6°(B)) lIm
+ IPU(t; 6°(B) — PPUC(t; 0°(B)) Im
< c3en| U°(t; O*(B)llo.m, + 1 U(R) — U°()) n

for some positive constant c;. By using Remark 6.5, we thus obtain

P lE — I/ID1P° 113wl < calen + 1U° — U°|lg)

for some positive constant c,. Substituting it into (6.8), we have
d £ 02 € 012
(6.9) EIIU —Ullla<cse+c6| U= Uy

for some positive constants cs and cg. Since Theorem 4.3 indicates that
U*(0; 0°(B) = =, *0*(B), U°(0; &*()) = mp *0°(B) and || U*(0) — U°(0)[|s < c7¢
for some positive constant c,, it follows from (6.9) and the Grownwall
inequality that there are ¢, ¢;; > 0 such that Lemma 6.6 holds.
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LEMMA 6.7. @* — &*° in C(B,,, (L*(2))*) as ¢|0.
PROOF. Since @2 has a Lipschitz constant less than 1, we know
1% (B) — i5°(B) I < (| % (mep*(to; 3°(B))) — P (moP°(to; 3°(B)) Iu
+ 1D (B) — 2%°(mop° (20 8°(B)))lln
< 14°(to; 0°(B) — q°(to; (Bl + 1 m5 ' B — p°(to; 6°(B)) llm

< U(to; 6°(B) — U°(to; 8°*(B)) I + C{ =18l

@p,j = —F—=0;

\/ﬂ J

+ 1P*(to; 0°(B)) — P°(tos 55(3))“"}

for some positive constant ¢. On the other hand, it follows that
IP*(t05 °(B)) — P°(to; 0°(B)) la < ¢enll U°(to5 3°(B)) llo.mo
+ [1U(to) — U°(to) lln
for some positive constant ¢’. We thus obtain

1% (B) — PE°(B) Il < crenl| Bl + 1 U°(to) o) + €2 U*(to) — U°(to)

for some positive constants ¢, and ¢,. Therefore, by using Lemma 6.2, Remark
6.5 and Lemma 6.6, the conclusion holds.

We next show that &*:— @*° in C!(B,,, (L*(2))*) as ¢|0.

LemMMA 6.8. For any n >0, there are t, =to(n) >0 and e,(N;) >0 such
that for 0 <e < ¢&,(N,),

ID®*(B)f — DB**(B)f |l < Zlﬁl

+ ID DX (m,p%(to; 6°(B)))B — DB (7o p°(to; O°(B))) S I1u

for B, BeR™, BeB,,.

ProOF. Since @}° belongs to C', we find that D®}° is uniformly
continuous from B,, into Z (R, W°. Thus for any 5 >0, there is
v =v(7) > 0 such that if ', p?eB,, and |B' — f*| <, then

(6.10) ID®X(BY) — DL (B) |l s, wo) <

0|3

holds. On the other hand, noting by Theorem 4.3, Lemmas 6.6 and 6.7 that
there are positive constants ¢, ¢, and c; such that
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|B —mop°(to; (BN = lmg ' B — P°(to5 3°(B)) 0,10
<cillm B —mg Bl + c2ll P(to; 8°(B)) — p°(to; 6°(B)) lu
< c3\/5 for BeB,,,
we can choose ¢,(N;) sufficiently small such that
|B—mop°(to; (B < v.
The conclusion follows immediately from (6.10) and Lemma 6.2.

In order to estimate | D&} (m,p*(to; 8°(f))B — DBE(xop° (to; 5(B)B s
we will give the precise expressions of D@} and D®}°. We note that

o) = —a~pe(t B)ﬁ and &(t) = —a—q “(t; BB satisfy the equations

op ap
(6.11) {pt: DZ,(p°(t; B), 4°(¢t; B)(p, 0)
0, = — B,a + DY, (p°(t; P), 4°(t; B))(p, 0)

with the initial data 5(0)==,!f and §(0)=0, and that the backward uniqueness
of solutions of (6.11) holds. Let us show that gp t; pe ZRN1, V9) is
invertible for any ¢ > 0. In fact, if there is t; > 0 such that 5% Pt P)B =0,

since 6(0)=0, p(0)=n,'p which imply [6(0)|g < [p(0)|y, we have by
Lemma 5.7 that ||6(t,)|lg < || #(¢,)||g Which implies 6(¢,) = 0. The uniqueness
of solutions of (6.11) shows that pj(t)=4(t)=0 in [0, t,]. Especially,

~ ~ 0 .
p(0)=n*B=0 gives B =0. It turns out that a—ps(t; p) is invertible. Since
q&(t’; B) = O}¥(n.pi(t'; B)) for t' > 0, we have

-1
612) DOF@EF(; ) = [‘; (';B)J[;iﬁm ﬁ)] it for 630,
We simply write p(t; 0°(B)), q°(t; 0°(B)) and p°(¢; 0°(B)), q°(t; &°(B)) as
pe(t), ¢*(t) and p°(t), ¢°(¢t) as before. Let (p(t ﬁ) oi(t; [3) ) be the solution of
thé equations
p. = DZ,(p*(t), 4°(t)) (p, 0)

(6.13) {
o,= — B,o + D%, (p°(t), 4°(1)) (p; o)

with the initial values

~ ~ 0 -1 -
o’(0; B) =0, p*(0; p) =n, ! [a_PE(IOQ v)] n ' for £>0
Y

y=0%(P)
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and - 5 -1
a°(0; B) =0, p°(0; B) = 75 *| — p°(to; v)] 5t B.
| Oy y=3%(8)

We know that

~ 0 0 -1 5
p(t; B) = [~p‘(t; v)} —Ptos v)} n; B,
dy y=oepy L OV y=6%B)

- 0 0 -1 N
t; B =[— (t; v)] [ (to,v)] n '
dy y=0%B) ‘37 y=25%p)

and

0 0 -1 .
O(t ﬁ) [ ’ Y):| l: (t07 )’):' n()_lﬁa
7 y=6%(8) 57 y=6%(f)

~ 0 0 -1 ~
ao(t;ﬂ)=[~q°(t;v)] [—p (t(),'}’)] o ' B.
oy y=oep) L OV y=0558)

Therefore, it follows from the above formula and (6.12) that
Pt B)=n'p  for £>0,
0°(to; f) = DOX(m.p*(to; (BB for &> 0

and
a°(to; B) = DOXO(mop°(to; 6°(B)))B.

It is sufficient to estimate Ho-‘(to,[;’)—cr"(to;~ ﬁ)”H in order to estimate
ID B (7, p*(to s 5(B))B — DPX (mop°(tos 5(B))B lu-

LEMMA 6.9. Let |B| < 1. Then for 0<t<tyand 0 <e<eg,,

(6.14) lo*(t; Bl < 11p°(t; Bl < e FePre,
(6.15) | 0(E5 Bl < /et eire

and

(6.16) lo®(t: B)ll,m < chereire

hold for some positive constants ci and c;.

ProOF.  Since o*(0, B) = 0, p*(0; B) # 0 so that [[6°(0; B)lla < /°(0; B)llu,
we have by Lemma 5.7 that | o®(¢; /i)||H < lp*(t; P)lg. A similar argument
to the one in Mallet-Paret and Sell [30] shows that

1p°(s Bl < 11 p°(tos B) e ™o < e e in [0, £]
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for some positive constant ci, which implies that (6.14) holds. (6.15) is obvious

since ||Bl/2p%(t; B)lln < f l p°(t; B) Il holds. (6.16) immediately follows from
the Grownwall inequality by taking the inner product of the second equation
of (6.13) with B,d*(t; f).

LEMMA 6.10. Let |f| < 1. Then for 0 <& <e,,
(6.17) l0*(tos B) — 0°(to; Bl < c3e
holds for some positive constants cj and k.
Proor. Let
Vo) = ot )+ o°t: B,
p(t) = p*( ,lf)—P‘l//O( ;
a(t) =a'(t; p) — QY°().
We know that
l6%(to; B) — 0°(tos Plla < 160l + | (P* — POOYO(0) |
and by Lemma 6.3 and (6.14) that
(6.18) l*(to; B) — 0°(to; B)lln < c1& + [16(t0) I

for some positive constant ¢;. Thus it is sufficient to estimate ||G(t,)|q. Note
by Theorem 4.3, Lemma 6.3 and (6.14) that

16 la = 7 B —Po(ng ' B + 6°(to; B)lu < I 7, ' B — Porg Bl
+ (P = P%a°(to; Pl < c2¢

for some positive constant ¢,. Then if || G(to) | < || p(to) l|H, (6.17) is clear. We
next consider the case when ||/3(t0) la < 6t la. Let I(p(t), 6(2)) = (|60 |IZ
—1p(®)1E)/2 and suppose that 1(5(t), 6(t)) > 0 for te(t,, t,] with t;, >0 and
1(5(t,), 6(t1)) =0. (If X(p(t), 6()) >0 in [0,¢,], let t, =0). Using the
argument used in the proof of Lemma 6.6 on (6.13), we have

PO(D), whn + b (0(1), w)
= —2DO(|/IDIp°) 13,80 <</1D1P°@), °(t5 B)Do.sto CFo(UC()), WHa
—0(1/1D1p°(0) no 1o) (DF,(U°(t W(t), Wa

3 0 0 > <r/(s)6 0) 0 >
dz < s 2 Ja ZZ r(s)0 ¥°),, 6 (W), H,

where Y°(t) = (¥°);, (¥))e(H' (O, L))*, w= (W), (w),)e(H'(2))*. Letting
w =¢d(t) and w = p(t) in the above formula, respectively, we have
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— d -
I'(p(ty), a(ty) = El(ﬁ(t), U]

= (6,(t1), 6(t:1)>u — {Pi(t1), A(t1)>u = — (B.G, 6)u + <B,p, p)u
+2DOI P 1) <P°, pou{F.(U"), p — G )n
+ 0(1p°ll) <DF(UY (P + 6), p— 6 )u + Gy,

where
G, =2D6(| |D|PO ”(2),Ho)<\/ ]DIPO’ ‘/’0>0,H0<F0(U0)a G—pon
—2D0(Ilp° 1) <p°> ¥°DuF,(U%, ¢ — p)u
+ 0(I/1D1p° 13 1) (D Fo(UOWO, 6 — pyu — 011 p° 1R <D F,(UW°, 6 — pdu
0 0
Y < 99 o, —w—m)
z H

r(s)ds ;

r'(s)0 Jd _  _
22 < s)ﬁsw)z, Zja—zj(o'—P)2>H-

By using the gaps of eigenvalues of B,, we have

(6.19) T'(p(ty), 6(t1)) < — 116(t,) I + |Gyl

Recall that U%(t) and U°(t) are uniformly bounded in (L*(2))? for 0 <& < ¢,
and t > 0. Then by using Lemmas 6.3 ~ 6.6 and 6.9, we have

|G| < c36 ) 6(t) Iy + can/e

for some positive constants c;, ¢, and k,. Substituting it into (6.19) and using
I'(p(t,), 6(t,)) = 0, we obtain

(6.20) [6(t)llg <cse®  for some cs, k3 > 0.

Also, by (6.13), we have

1d
2% I6@ & = — <B.G, 6>u — 2DO(| p° |18 <P°, Yu{F.(UY), 5>q

— 01 P Il&) <DF (UY(p + 6), 6)n + G,
where
G, = 2DO(II\/ID1p°13,1,) </1D1P°, ¥° 0.1y {Fo(UO), 6Dy
= 2DO([p° 1) <P ¥°DuF (U?), 6 g
+ 0(I/I1D1P° 13 .10) D F (U0, 655 — (11 p°13) (D F,(UHY°, 6Dy
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$)0 o >
+dZ <()8(¢)1 J@z()l .

A O

It follows from the modification of F,, Remark 5.8 and ||p(t)|g < || 6(t)|lg for
t, <t <t, that there is some positive constant My such that

1d
(6.21) T I6@ 1 < — Molla@lli + G, for te[ty, to]

holds. G, can be estimated in a similar way to G, so that there are some
positive constants ¢, and ¢, such that

|Gyl < e 6(0) g + cr /e for te[ty, to]

holds. Substituting it into (6.21), we have
d = 2 = 2 K4
Ella(t)llnﬁ —cglla(t) g + cot for telt,, to]

for some positive constants cg, ¢co and k,. Therefore, we find by (6.20) that

6ol < €108

holds for some positive constants c,, and k5. So that (6.17) follows from the
above inequality and (6.18). Thus, Lemma 6.10 is proved.

We know that @** — @*° in C!(B,,, (L*(22))?) as ¢ 0 follows from Lemma
6.8 and Lemma 6.10. Thus, the proof of Theorem 6.1 is complete.

§7. Equilibrium solutions problem

We now investigate the relation between two solutions of the systems
(3.2)i~(3.5) and (3.6) ~(3.9). Let UX and U¥ be respectively equilibrium
solutions of (3.2) with the boundary condition (3.3) or (3.4) or (3.5) and of
(3.3.6) with the boundary condition (3.7) or (3.8) or (3.9). The linearized
eigenvalue problems of (3.2) around U} and (3.6) around U are described by
(7.1) —BW+DF(UXYW= —uWw
and

(7.2) —B,W+ DF(UHW= — uW.



502 Qing FANG

U¥ (resp. U¥) is said to be nondegenerate if (7.1) (resp. (7.2)) has no zero
eigenvalue. We show the following result.

THEOREM 7.1. Let U} be a nondegenerate equilibrium solution of (3.6)
with (3.7) (or (3.8) or (3.9)) satisfying 0 < U¥ < R* in (0, L). Then there is
eg > 0 such that for 0 < ¢ < g there exists a nondegenerate equilibrium solution
UX of (3.2) with (3.3) (or (3.4) or (3.5)) satisfying 0 < UX(s, z) < R* in Q such
that U¥ > U¥ in (L*(2))? and U¥X(s,z) > Uk(s) in Q as ¢|0. Moreover, let
the eigenvalues of (7.2) and (7.1) be {p;} (i=1,2,---) (Reu; < Repu, <---) and
{wi} i=1,2,---) Rep, ,<Repu,,<-). Then
(i) If Reyu; >0, then there is u* >0 such that Rep, , > p* for 0 < e < gg.
(i) If Rep, <0, Reu, ., >0 for some positive integer m and at least one of

{ty,-+- iy} is simple, then there exists an eigenvalue p, ., such that

Repy,, , <0 for 0 <e<eq.

PrOOF. Let U¥ = p§ + g =PIU¥ + Q U¥, we know that (p§, g¥) is a
nondegenerate equilibrium solution of the system

(7.3) {Pr = —Bop + P(Fo(p, q)),
4. = — Bog + Qi(Fo(p, 9)

for appropriate constants K,, R,, R, and g, and that (p¥, q¥)e M, q¥ = ®°(p¥)
by Remark 5.10. We will show that p¥ is a nondegenerate equilibrium solution
of the equation

S

(7.4) §=%mwm=%w

In fact, if p§ is degenerate, then we find that there exists peVy such that
D,%,(p¥)p = 0. That is,

(7.5) D, Z,(p§, ®°(p}))p + D, Zo(p§, ®°(p§))DP°(p§)p = O.
Since graph ®° is invariant with respect to (7.3), we have

{pt = Zo(p, D°(p)),
(@°(p)), = — Bo®@°(p) + %o (p, P°(p)),

which implies

D®°(p)Fo(p, P°(p)) = — Bo®°(p) + %,(p, D°(p)).

The linear variational equation of the above formula is
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D®°(p) (D, Z,(p, D°(p))p + D, Z,(p, D°(p))DD°(p)p)
(7.6) = — B,D®°(p)p + D,%,(p, 2°(p))p + D, %o(p, 2°(p)DP°(p)p
for peVy.

Letting p = p, 6 = D®°(p¥)p, we know by (7.5) that

(7.7) D Z,(p§, ¢°(p8)) (5, 3) = 0.

Also, letting p = pg, p=p = p in (7.6), we know by (7.7) that
(7.8) —BoDP°(p§)5 + D%, (p§, 2°(p})) (5, 6) = 0.

Thus, (7.7) and (7.8) lead to that (p¥, q¥%) = (p¥, @°(p¥)) is a degenerate
equilibrium solution of (7.3). However, It is a contradiction to our hypothesis,
so that p¥ is a nondegenerate equilibrium solution of (7.4).

Since @* — @*° in C'(B,,, (L*(?))?) and #*—>F% in C'(B,,, R"") as
¢|0, we know by the Implicit Function Theorem that there is & > 0 such
that for 0 < ¢ < &, there exists an equilibrium solution p} of (6.1), satisfying
p¥ - p¥ in (L*(Q))* as ¢]0. It is natural to consider that an element of
(L*(0, L))* is taken as the one in (L*(2))®. Letting UX = p* + ®°(p¥), we
know that UX is an equilibrium solution of (5.8) and U* —» U¥ in (L*(Q))?
as ¢/0. In order to show that UX(s, z) > Ug(s) in Q as ¢|0, we will show
that UXe(C'(0, L))?, U*e(C'(2))* and there is M* > 0 such that

ro?

(79) ” Uak “(Cl(O,L))z S M* and H U:‘ “(C[(.()))Z S M* for O <é¢ S 51.

Because of UgZe(L?*(0, L)), we know that U¥ can be considered as an
equilibrium solution of the integral form of (7.3)

t

U(t) = exp(— Bo) U(0) + j exp(— Bo(t — 5)Fo(U(s)) ds
0

and UgeX ., = 2(By) with ae(3/4,1). Also we have

t ,—uolt—s)

U© | &
1 U© lo.u, + L T
for some positive constant ¢ (Henry [19]). By using X% ;, = (C*(0, L))* with
0<v<20—1/2, we know that U¥e(C*(0, L))* and |Ug |l c10.12 < M, for
some positive constant M.

Next we discuss U} which can be considered as an equilibrium solution
of the integral form of (5.8)

— uot

ce
U@ xg, ., < I Fo(U ) llo,m, ds

td

(7.10) U(t) = exp(— B,t)U(0) + J exp(— B,(t — 5))F,(U(s))ds.

0
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Since U¥ —» U¥ in (L*(R2))* as ¢ |0, we know that U*e(L*(Q))* and there are
£, >0 and M, >0 such that |[U*|z <M, for 0 <e <&, It follows from
UF =B, 'F,(U¥) and the boundedness of B, * that || U¥|| g2y < ¢; M; holds
for some positive constant c;.

When N < 3, since H?(2) < L4() for 1 < g < o, we have U*e(L1(2))?
for q>5 We take B, as an operator in (LY))* with ¢>5 and Ilet
X7 = 2(B;) with its norm || U |, , = B U ||Le2)2» Where ae((g + N + 1)/2q, 1).
Then by using

czexp(— pot)
td

[U@) ], < 2 1UO0) | ey

+e, j‘ w [ F.(U(5)) ll zacy2ds
0 (t— s

for some positive constant ¢, independently of ¢ (Henry [19]), we have
IU#l,qa < M, for some positive constant M,. Since XZ = (C!(2))?, we know
that || U | c1)> < M, holds for some positive constant M5 independently of e.
We now consider the case when N > 3. By the Sobolev Imbedding
Theorem, we know H?*(2) = LP(Q2) with 1/p>1/2 —2/(N + 1). When N < 5,
using UX*e(H?(R2))? < (LP*(2))* with 1/(N + 1) > 1/p, > 1/2 —2/(N + 1), and
arguing as before with replacing (g, «) by (p,, «,) with «; €((p; + N + 1)/2p,, 1),
we know that UXeX% < (C'(Q))* and |[U¥||c1q)y <M, hold for some
positive constant M,. Otherwise, setting 1/p, =1/2—2/(N +1), a; =(N + 1)/
(N +2), we have U}eX% < (L”*(Q))*> with 1/p, >1/p; — 20, /(N + 1) =
1/2—2/(N+1)—2/(N+2). When 6 <N <9, using UX*e(LP*(2))* with
1/IN+1)>1/p, =>1/2—-2/(N+1)—2/(N + 2), and arguing as before with
replacing (g, ) by (p,, «;) with o,e((p, + N + 1)/2p,, 1), we know that
UreX2 < (C(R)* and |U¥ i@y < Ms hold for some positive constant
M. Otherwise, setting 1/p,=1/2—2/(N+1)—2/(N +2), a,=(N+1)/
(N +2), we have U}eX32c (LP(RQ)* with 1/py>1/p, —20,/(N+1)=
1/2—2/(N+1)—4/(N+2). When 9< N <12, using UX*e(L"(RQ))* with
I/(N+1)>1/py>1/2—2/(N + 1) —4/(N + 2), and arguing as before with
replacing (g, o) by (p3, a3) with aze((p; + N + 1)/2p5, 1), we know that U¥e
X% < (C'(Q))* and |U¥lciay> < Mg hold for some positive constant M.
Otherwise, setting 1/p; =1/2—2/(N+1)—4/(N + 2), a3 =(N + 1)/(N + 2),
we have U¥eX;: c (LP4(R2))* with 1/p,>1/p; —20a3/(N+1)=1/2—2/(N +1)
— 6/(N + 2). Taking the above arguments step by step at most k-times where
I/IN+1)>1/2—=2/(N+1)=2(k—1)/(N +2), we arrive at [|[U¥|ciq):<M*
for some positive constant M*. By (7.9), it can be easily shown that
UX(s, z) > Ud(s) in 2 as ¢|0 which implies that 0 < UX(s, z) < R* in Q.
We next consider the eigenvalue problems of (7.1) and (7.2). First,
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suppose that (i) does not hold. Then there exists {¢,} with ¢,]0 as n— o
such that Rep, , -0 as n— 0. Let w,,, be the eigenfunction corresponding
to u, , normalized in (H,(2))?>. Since 0 < UX*(s, z) < R* for sufficiently small
¢ and

(711) Be,.wl,c,. = Dan(U:.)wl,en + lul,snwl,sn’
we know that |y, , | is uniformly bounded for large n. Moreover, since

El “wl,e,. Ilez,H S bs,.(wl,e,.’ wl,s") = <B£"wl,en’ w1,£n>H’

we also know that |[w; , |, 4 is uniformly bounded for large n. Therefore, it
follows from the compactness of B; ! that there exists a subsequence of {e,}
(denoted also by &,) such that for some u*eC and we(H'(RQ))?, u,,, - u*
and w, , — o* strongly in (H'(22))* as n —> 0. Here we know that Re u* =0
and |o*||g # 0. It follows from the definition of | - |, 4 that w*(s, z) = w*(s)
does not depend on z, that is, w*e(H'(0, L))* and |w*| ¢y, #0. By using
a similar argument to the one in Lemma 4.6, we know that

(7.12) B! —Bg Ywllox < Ceellwlom,  for we(Ho(0, L))*, 0 <e <&

holds for some positive constants ¢ and ¢. Thus the limit £ | 0 in (7.11) leads
to

w* =By '(DFo(U§)w* + pu*w*).

Thus it turns out that u* is an eigenvalue of (7.2) with Re u* = 0 and w* is
its eigenfunction. This is a contradiction to our hypothesis, which implies
that (i) holds. A similar argument to the above can also show that U} is
nondegenerate.

For the proof of (ii), let u,, and w,,, be a simple eigenvalue with Re y,,, <0
and its eigenfunction normalized in (Hy(0, L))?, respectively. In a similar
manner to the one in the Step I of the proof of Lemma 4.2, we will show
that B, has an eigenvalue y,,, . in the small neighborhood of u,, for sufficiently
small ¢, which satisfies y,,, ,— t,,, as €| 0. We define the operators #, and
S by

0. CxXyg—CxX, with _Z(1, w)
= (oW — @), w — By 'w — Bg ' DFo(UF)w)
and
}S:C x X, — C x X, with }8(1:, w)

= (EE(W - wmz)’ w— TB;IW - Bs_lDFe(U:)W):
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where {,(W) = p,'bo(W, ®,,,) and ,(w) = p,'b,(w, ®,,) and the norms of
C x X, and C x X, are defined by |(z, w)|oo = |7 + IWlo.x and |[I(z, w)|,,
=|t| + | wll, x, respectively. It is known that jo(ymz, ®,,) =0 and that if 7
and w satisfy jg(r, w)=0, then t is an eigenvalue of (7.1) and w is its
eigenfunction. Noting that Lemmas 4.4, 4.5 and 4.6 hold for weX,, B,, we
know that Lemmas 4.7 and 4.8 also hold for ¢ and . Therefore, by
choosing &; and 7, sufficiently small, we find that Z(t,w)=0 has only
one solution (i, Wp,..) 0 {(t, W)eC x X,| (T, W) — (U, Opmy)lee < My} foOr
0 < ¢ < &3, satisfying p,,, , = i, as €10. Thus it turns out that y, , is the
eigenvalue of (7.1) with Rep,, , <O for sufficiently small e. The proof of
Theorem 7.1 is complete.
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