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§1. Introduction

Let L*(k)=L"(k; 1,..., 1) be the (2n+1)-dimensional standard lens space
mod k, where n and k are positive integers and £>2. Denote by 4 the field
R of the real numbers or C of the complex numbers. The structure of K -
rings of L"(k) is determined by J. F. Adams [1] when k=2 (L*(2) is the real
projective space), and by T. Kambe [5] when £ is an odd prime.

The purpose of this note is to determine the structure of K,(L"(k)) for
the case k=4. We use K or KO instead of K. or Kxz.

Let % be the canonical complex line bundle over L”(k), and set
c=7—1 € K(L"(k)).
Then, we have the following theorem?:
Tueorem A. (4.6)
R(L"(4) = Zyns P Zy ey B Zorn-ni21,
and the direct summands are generated by the three elements
o, 0°+20, 0%+20%4-2"2%*¢g (if n 1s even),
o, 0*+20+22 g 634206%  (if n 1s odd),
respectively. The multiplicative structure is given by
0'=—40%—602—40, 0"1=0,

Let o be the non-trivial (real) line bundle over L”(4) and set k=p—1¢€
@(L"(@). Let ro € I?O(L”(Ll)) denote the real restriction of ¢.

Tueorem B. (6.3, 5.6, 5.13, 5.18, 6.1, 6.7)

1 According to N. Mahammed [8], it is announced that

K(L*(k)=Z[n]/ <(n—D1)™*, p*—1>
for any k.
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Zyni1PZyniz for even n>0,
@(Ln(4)); Zzn@Zz[an]H fO’r' nEl mOd 4,
I Zzn@Zz[mz] fO’I" n=38 mod 4,

and the first summand is generated by ro and the second by r+2%Irg, where
it 1s able to replace the last element by £ 1f n=1 mod 4.

The multiplicative structure in I?O(L”(4)) 18 given by

(ro)m21+1 =0 if n=<1 mod 4,

(ro)? = —4ro+ 2k, {
(ro)121+2 =0 if n=1 mod 4;

2

K2=k-ro=—2k, g2+ =,

We can calculate the order of (r0)’ by the above theorems, and apply the
ri-operation to the problem of the immersion and the embedding of L"”(4) in
Euclidean space by making use of the method of M. F. Atiyah (cf. [2] and

[50D.
Taeorem C. L*(4) cannot be immersed in R**+*L™Y aqnd L*(4) cannot be
embedded in R*"+2LmD+1 yhere

1<i< [%] (”ji)xo mod 2"~2f+2} if n=1mod 2,

max {i

max{illgig [%] ("F )0 mod 2} if n=0mod 2.

i

In §2, we recall the cohomology groups of L”(k). In §3, we consider the
element 0(1)=0%2+20=7%%—1 ¢ K(L"(4)), and establish the following formulas:

cro=20+0(1)+o(1)o, ck=0(1),

where c: I?O(L”(4))—+ K(L"(4)) is the complexification (Lemmas 3.10-11).
Theorem A is proved in §4 by means of the relations:

(c+1)=1, o"*1=0,

and by using the Atiyah-Hirzebruch spectral sequences (cf. [3]). Moreover,
we verify that the elements ¢’ and ¢(1)'c7(i==1) in K(L"(4)) are of order 22+"~*
and 2!+t +1-2-9i21 regpectively (Cor. 4.7, Th. 4.8).

The proofs of Theorem B are carried out in §§5-6. The additive struc-
ture of @(L”M)) is determined in §5, by making use of the complexification

c and Theorem A. The multiplicative structure of I?f)(L"(4)) is determined
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in §6. In the final section, we give the proof of Theorem C and discuss the
immersion problem for L"(k).

The K ,-rings of L"(p*), for p an odd prime, will be considered in a for-
thcoming paper [6].

§2. Cohomology groups of L"(k)

Let S?"*! be the unit (2n+1)-sphere in the complex (n-+1)-space C"*!,
and 7 be the rotation of S?"*! given by

__(p27i|k 2nilk 2xilk
')’(Zo, 21y ey z,,)—(e i 20y € i 215005 € il zﬂ)'

Then 7y generates the topological transformation group Z, of S?**!, and the
standard lens space mod % is

L*(k)= S/ Z,.
As is well-known, L”(k) has a cell structure
(2.1) L'(k)=e"Ue'\U- - \Uet\ e t!
and its cohomology groups are given by
[ Zy for i=2,4,..., 2n
H(L"k); 2)~ | Z for i=0, 2n+1
1 0 otherwise,
Hi(L"(21); Zy))=2Z, for 0<<:i<<2n+1.

Let 4: H*L"(k); Z;)—>H?*L"(k); Z) be the Bockstein homomorphism
associated with the coefficient sequence: 0—»Z—>7—27,—0. If £=2[, we have
the following lemma easily.

Lemma 2.2. dx =1y,

where x and y are generators of H'(L"(21); Z;)=Z, and H?*(L"(21); Z)=Zs,
respectively.

Let P be a single point, then it is well-known that K- and KO-groups of
P are given by

K *(P)=Z (p even), =0 (p odd);
KO *(P)=Z (p=0, 4 mod 8), =Z, (p=1, 2 mod 8),

=0 (otherwise).
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Let CP" be the n-dimensional complex projective space, and
n: L"(k)—>CP"= §*"*1/St
be the natural projection. Then
Lemma 2.8. n*: A*(CP"; K~*(P))—H!(L"(k); K~*(P)) is an epimorphism.

Proor. It is trivial for odd p. For even p, the result follows from the
Gysin exact sequence. q.e.d.

The following are easy.
_ Zy for p and ¢ even, 0< p=<_2n,
@4) ALK KU(P)= { ,
0 otherwise,
[ Zy for p=0, 4 mod 8, 0<p=2n,
(2.5) H(L*21); KO *(P))=~: Z, for p=1,2mod 8, 0<p=<2n+1,
0 otherwise.
LemMmAa 2.6.  The induced homomorphism
i1 H(L"Y(20); KO-*(P))—H*(L*(21); KO~*(P))

by the inclusion i s an epimorphism for any p.

Consider the 2r-skeleton

2.7 Liyk)y=eUel\U---\Ue®
of the CW -complex L*(k) of (2.1). Then

@8)  W/L®=S"" L h/Lil =S Je

where the attaching map £: S2"*'— S2"*! means the map of degree k.

Also H(L™k); Z)=Z, for i=2, 4,..., 2n and =0 otherwise, and A (L}(20);
Zy)=Z, for 0<i<2n. Furthermore, we have

(2.9) HP(LA21); KO (P)~H*(L"(21); KO~ *(P))

for n=<0 mod 4.
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§8. Non-trivial line bundle over L*(k)

Let o be the non-trivial line bundle over L"(20), i. e., o is the line bundle
such that the first Stiefel-Whitney class wi(p) € H(L"(2l); Z;)=Z, is non-
Z€ro.

Lemma 8.1. The Euler class x(20) of the two-fold Whitney sum 20 of o
18 mon-zero.

Proor. By the relation between the Euler class and Bockstein homo-
morphism and by Lemma 2.2, we have x(20) = 4(w(0)) =1 y=x0. q.e.d.

Let 7 be the canonical complex line bundle over L*(k). The first Chern
class ¢,(7) is a generator of H*(L"(k); Z)~Z,. Let

¢: KO(X)—>KR(X), r: R(X)—>KO(X)

be the complexification and the real restriction respectively. Then it is well-
known that

3.2) re=2, cr=1+41t,
where ¢ denotes the complex conjugation (ef. [17).

ProposiTion 3.3. For L*(2l), we have
co=7"=9R Xy (-fold tensor product).

Proor. By Lemma 3.1 and (8.2), x(rcp)=c0. Thus cp is non-trivial.

Denote by C the total Chern class. Then, by (8.2), C(cr(cp))= C(coPtcp)
=C(cp)C(tco)=(1+c1(cp)) (1—c1(co))=1—rc1(cp)?, While C(cr(cp))=C(c(20))
=C(2cp)= (1+c1(cp))*=1+2¢c,(co)+ c1(cp)?. Therefore we obtain 2¢,(cp)=0.
Since complex line bundles are classified by the first Chern classes, the rela-
tion co=7' follows from ci(cp)=1Ilci(y)=ci1(y"). q.e.d.

Let X and Y be finite CW -complexes and f: Y—X be a map. Let {E?%}
be the Atiyah-Hirzebruch spectral sequence for K ,(X), i.e., EL = H*(X; K{(P))
and E%~? is the graded group associated to K ,(X), and also {_E?%} be that
for K,(Y) (cf.[8]). Then

ProrosiTioN 3.4. Assume that there is an integer r—=2 such that E??=
EtP=. . =EL? and f¥:EL-?—'EY"? is an epimorphism for any p. Then
the induced homomorphism f': K,(X)—>K(Y) 1is an epimorphism.

Proor. By the assumptions it follows that f%: EZ~?—'EZ~? is an epi-
morphism for each p. Then we have the result by the five lemma. q.e.d.
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Lemma 8.5. 7': K(CP")—R(L"(k)) is an epimorphism, where n is the
natural projection.

Proor. Since the Atiyah-Hirzebruch spectral sequence for K(CP”) is
trivial, we have the desired result by Lemma 2.3 and Prop. 3.4. q.e.d.

Let 0=7—1 € K(L*(k)) denote the stable class of 7. Then we have
Lemma 8.6. In K(L*(k)), it holds
3.7 (c+1DF=1, o"*1=0.

Furthermore, the elements o, ¢°,..., 0*~* generate K (L"(k)) additively.

Proor. The first equality of (3.7) follows from c;(*)=kc:1(»)=0 in H?
(L"(k)=Z,.

Consider the canonical complex line bundle over CP” and denote it also
by 7, then n!p=y. Furthermore, it is well-known that the ring K(CP") is
generated by the element y—1 and (y—1)"*'1=0 (e.g. [1, Th. 7.27]). Thus we
have the lemma using Lemma 3.5. ' q.e.d.

Denote by #A4 the number of the elements of a finite set 4.

Lemma 3.8, BK (L*(k)=k".

Proor. Let {E?% be the Atiyah-Hirzebruch spectral sequence for K(L"
(k)). Then Ef -~ f?(L*(k); K %(P)) is given by (2.4). Therefore this spec-
tral sequence is trivial and the lemma follows. q.e.d.

Henceforth, we consider the case t=4. Put

c()=(0+1)2 —1=0%+20 € K(L"(4)).
The relation (6+1)*=1 of (8.7) is equivalent to (¢(1)+1) =1, and so we have

3.9) o)+t =(—1)2¢(1) for i=0.

LemMa 8.10. cro=0%/(6+1)=20+0(1)+c(1)a.

Proor. The first equality is proved in the proof of [ 5, Lemma (8.5), ii)].
The second follows from (3.7) and (3.9). q.e.d.

Let k=p—1¢€ KNO(L”(4)) denote the stable class of p. Then we have
Lemma 3.11. ck=0c(1).

Proor. By Prop. 3.3, co=7%% Therefore ck=7*—1=0(1). g.e.d.
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§4. The structure of K(L"(4))

Lemma 4.1, 2*%¢" =0  for i=0,1,..., n—1.
Proor. Multiplying ¢! to the relation
(4.2) ' +40%+60%+40=0,

we have 4¢"=0, because ¢"**=0 for i >0 by (3.7). Assume that 2/*%¢"~ =0
for 0<{i<n—1. Multiplying 2:*'¢”"*~% to the equation (4.2), we have

2i+lgn-i+Z | Qit3gn—i+l | B.i+2gn-i git3gn-i-1_(),
By the assumption, we have 2/+3¢"~ -1 =(. q.e.d.
Lemma 4.3. For i=0,1,..., n—2,
2itlgn=i=gi+2gn-i-l— _ git2gn-i-1 = 9itlg(1)g"~i-2=(,
Proor. If we multiply 2/6"~"~% to the equation (4.2), we have
ign=i+iy pivign-i+ly 3. 9i+lgn-i 9i+2gn=i-1_()
By Lemma 4.1, we have the desired result. q.e.d.
Lemma 4.4. If n=2m, then
2ng(1)=0, 2" (g(1)s+2"1¢)=0.

Proor. By the definition of ¢(1), (3.7) and Lemma 4.1, we have
o)™ =(6%4+20)""1 = mf;l(m;r 1)2"(7”"'+2 =0.
i=0

Thus the first result follows from (3.9).
Next, by the definition of ¢(1), (3.9) and Lemma 4.3, we have

2" lg(Do=(—1D" o))" =(—1)""o(1)(c®+20)" ‘o
o yme1l S m—1\o; n—i—1
=(—1) i}go ( ; >2 o)
=(—=D"le(1)o" =20"=—2"0.
Therefore we have the second result. q.e.d.

The following lemma is verified quite similarly as the above lemma.
Lemma 45. If n=2m+1, then
2"(e(1)+ 2™ 16)=0, 2"0(1)a=0.
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The following theorem is one of our main theorems.
THEOREM 4.6.
K(L"(4)= Zyn 1P ZomP Zym-1, for n=2m>0,
whose direct summands are generated by ¢, ¢(1) and c(1)o+2"+10 respectively.
R(L"(4))= Zyn1D ZynD Zym, Jor n=2m+1,

whose direct summands are generated by o, 0(1)+2™+q and c(1)c respectively.
The multiplicative structure is given by

o'=—40%—60"—40, ¢"*1=0.

Proor. According to Lemma 3.6, we see that the elements ¢, ¢ and o3
generate K(L"(4)) additively. Thus it is clear that ¢, ¢(1) and o(1)d+2™* ¢
(or 0, 0(1)+2"+'¢ and 6(1)7) generate K(L"(4)) additively. Then our results
follow from Lemmas 4.4-5, 3.8 and (3.7). q.e.d.

CorOLLARY 4.7. The element o' € K(L"(4)) is of order 2"'*% for 1<i<n,
and ¢"+1=0.

Proor. Th. 4.6 shows that the element ¢ is of order 2”*!. Suppose that
o' is of order 2"~ "2 for 1<i<n. By Lemma 4.3, 2" ‘¢i*1=2""*15720. On the
other hand, 2"-*!'¢*'=0 by Lemma 4.1. Thus the order of ¢'*! is equal to
n—itl, q.e.d.

TueoreM 4.8. The element c(1)'c’ € K(L"(4)) is of order 2'+[(»+1-2i-DI2]
Sfor any i, j with 1<i<1+[(n—;—1)/2].

Proor. Since 6(1)'c’=(—1)""12"1¢(1)d’ by (8.9), it is sufficient to prove
that

4.9) o(1)ao’ is of order 21+ L=~V for 0<j<n.

Put [(n—j—1)/2]=h. Then j=n—2h—1or j=n—2h—2. In order to prove
(4.9), it is sufficient to show

2h+10-(1)0-n—2h*2:0, 2h0-(1)0-n—2h—13€:0.
Now, by (3.9), Lemma 4.1 and (3.7), we have
2h+10.(1)0-n72h—2:(_1)h+10-n—2h—2

:(_ 1)h+1(02 _|_20-)h+26n—2h_2
:(_1)h+1 hiz<h_]‘c_2>2k0'n-k+2=0.
k=0

Similarly, we have
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2’?)'(1)(7”"2”*1 =(— 1)h6(1)h+10-n—2h—1

=(—=D*(1)(0%+20)t" 241
—(—1)" k h k n—k—1
~(-D" (% yprowo
=(—=1Dre(1)o" '=(—1)"20"=c0
using Lemma 4.3 and Cor. 4.7. Therefore, we have (4.9). q.e.d.

The following two corollaries are immediate consequences.

CoroLLARY 4.10. The element 6(1) is of order 21+L®+1-2012) for 1<j<
[(n+ 1)/2:], and 0‘(1)1+E(n+1)/z] —0.

CoroLLARY 4.11. The element 6(1)0 is of order 21"/,

Finally, we notice that
(4.12) it K(L'(4)=K (Ly(4)),

where Lj(4) is the subcomplex of (2.7) and j is the inclusion, and hence the
above results hold also for L%(4) taking into account the element o=j'c. In
fact, consider the Puppe exact sequence (cf. [ 3, Prop. 1.47)

K ($™" ) —R(L"4)-L-K (Li4)—K (™)

of L"(4)/Ly(4)= S*"*! of (2.8), where the first term is 0 and the last term is Z.
Then, (4.12) follows from the fact that K(L?(4)) is finite, which is seen simi-
larly as Lemma 3.8.

§5. The additive structure of I?O(L"(4))

Lemma 5.1. IZ’@(L”(AI)) has only 2-component, and
261+1 Jor n=4z,

_ [26”2 Sfor n=4t+1,

#KO(L"(4) =

lzﬁ”‘* for n=4:+2,
261+4 for n=4¢+3.

Proor. We make use of the Atiyah-Hirzebruch spectral sequence for
KO(L"(4)). The terms E2—*~F?(L"(4); KO*(P)) are given by (2.5), and so
we have the desired result. q.e.d.

Casel. n=4:+3.
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LemMma 5.2.  For the case n=2s+1>1, the elements cro and c(k+
20123:5) of K(L"(4)) are of order 2" and 2™/%7, respectively, and these elements
generate a subgroup ZynPZ,wniy of K(L*(4)).

Proor. We notice that 1+2™27 is odd by the assumption »n>1. Using
Lemmas 3.10-11 and Th. 4.6, we have

cro=2(1—-2"2Ng + (6(1) +2M23+15) +-0(1)0,
c(k +2020rg) = — 25 + (14 20/21) (g (1) + 20121 +15),
Therefore, the order of these elements are 2” and 2L*/23 by Th. 4.6.
Suppose acro + Bc(k+2%rg)=0. Then,
2(1—20* N —2"4=0 mod 2"+,
a+(142027)8=0, a=0 mod 20"/

by the above equalities and Th. 4.6. These congruences imply that «=0
mod 2" and =0 mod 223, and so we have the desired results. g.e.d.

Tueorem 5.3. If n=4t+3, we have
KO(L )= ZnD Zotorm,
where the direct summands are generated by ro and k-+2M'%Irg, respectively.
Proor. For the homomorphism c: IEJO(L”(4))—>IZ( L*(4)),
254 ZRO(L"(49) =4 Im ¢ =H(ZpnD Zyrny) =27,

by the above two lemmas. Therefore, #I?D(L”(zl)):ze” 4, Im c is the subgroup
of Lemma 5.2 and ¢ is monomorphic, and so we have the theorem. g.e.d.

CoroLLARY 5.4. The complexification
c: KO(L*3(4))—> R (L*+3(4))

18 @ monomorphism.
Case 2. n=4:t+2.
Let i: L"(4)—>L"*'(4) be the inclusion.

Lemma 5.5, If n=4:+2, i': IEO(L”+ 1(4))—»[2()(L”(4)) 18 an isomorphism.

Proor. Consider the Puppe exact sequence (cf. [ 3, Prop. 1.4)):
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KO(L"*1(4)/L"(4))—KO(L**'(4)) < KO(L"(4))—KO'(L**'(4)/L"(4)).

It is easily seen that the first term is KO(S**®\Ue®*")~0 and the last term
is I%(SB’+5Ue8‘+6);0. Hence ;! is an isomorphism. q.e.d.

By the above lemma and Th. 5.3, we have

TueoreM 5.6. If n=4t+2,

@(L”(4));Zzn+l®Z2nlz’
where the first summand is generated by ro, and the second by £+ 2"*ro.

CoroLLARY 5.7. If n=4t+2 or 4¢t+3, then I?b(L"(4)) s generated by the
elements ro and £, and the order of k is equal to 2t"/23+1,

Case 3. n=4t+1.

Consider the following commutative diagram

RKO(L*+*(4))--KO(L"+1(4))
(56.8) l i l !
KO(S™+2\ Je*+4)—KO(L4**(4)) <L KO(LE  (4)

where i, i/, j and j’ are the inclusions, and the lower sequence is the Puppe
exact sequence of (2.8). Then we have the following lemmas.

Lemma 5.9. i' 4s epimorphic.

Proor. Let {E?} and {'E2“} be the spectral sequence for KO(L*+2(4))
and I&VO(L‘“ *1(4)), respectively. Then, i*: E% ?—'E%~? is epimorphic by
Lemma 2.6, and E4?=...=E%~? by Th. 5.6 and Lemma 5.1. Therefore, we
have the lemma by Prop. 3.4. q.e.d.

Lemma 5.10. ;"' is an isomorphism.

Proor. Consider the Puppe exact sequence
I?IO(SSH5)—»]%(144”2(4))—"—,—(—»@(Lét+2(4))—>1(’\61(SBHS)

of (2.8), where KO(S*+%)~0 and KO'(S*+5)~Z. We see that KO(L4*2(4)) is
finite similarly as Lemma 5.1 by (2.9), and so ;' is isomorphic. q.e.d.

LemMa 5.11. i is epimorphic and $KO(L&'+1(4))=261+2,
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Proor. The Puppe exact sequence of (S8+3\ Je8/+%)/S8+3=8%+* ig the
4

following

Eo(s8t+4)x_4)1?'0(88t+4)__)I{No(s&f+3U68t+4)__)1’<\’0(58t+3)’
1

since the degree of the attaching map is 4. Therefore KO(S%+3\ Je®*)~Z,.
4

On the other hand, #I?O(Lg”z@)):zﬁ”“ by the above lemma, and so we

can prove that i’ is epic similarly as Lemma 5.9. Also we have #I?O (LE*1(4)
< 2%+% gimilarly as Lemma 5.1 by (2.9), and so the lemma. g.e.d.

LemMa 5.12.  j' is isomorphic and $KO(L*+'(4))=26!+2,

Proor. #IEO(L““(4))§26”2 by Lemma 5.1, and j' is epic by the com-
mutativity of (5.8) and Lemmas 5.10-11. Therefore we have the desired
results by the above lemma. q.e.d.

Now, we have the following

Tueorem 5.13. If n=4t+1, then
@(Ln(4));ZZn@ZZEn/z]+I,

and the first summand is generated by ro and the second by k, where the latter
can be replaced by £-+2"%)rg.

Proor. By Th. 5.6, the equality

22t+llﬂ+24t+2r(f:0

holds in KO(L*+*(4)), and so in KO(L**1(4)). Also,
2+lg 4 24+l if £ >0

in KO(L**'(4)). In fact, the left hand side is equal to 2*/2Irc(k+20/3r0) =0
by (3.2) and Lemma 5.2. These two equalities imply that

2hirg=0, 2%1k=0, if >0,

These hold for the case :=0, since 2ro=rcro=r(6?/(c+1)) and ¢°=0 in
K(L'(4)) by Lemma 3.10 and (3.7).

On the other hand, I?b(L‘”“(4)) is generated by ro and £ additively, by
Cor. 5.7 and Lemma 5.9. Therefore, we have the theorem by Lemma 5.12
and the last equalities. q.e.d.

CoROLLARY 5.14. For the complexification c: KO(L**(4))—K(L**'(4)),
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Ker c~Z,; is generated by 2% (k+2%r0), 1f t>0.

Proor. This is an immediate consequence of the above theorem and
Lemma 5.2. q.e.d.

Case 4. n=4t(>0).

Consider the commutative diagram

K“O(L'“+1\<4))J_.12<L4f+1<4))_fbk(Lgf+1(4))Lk(581+2)

N

KO(L*(4))X—KO(L4+1(4)) - KO(S*+?)

where the lower sequence is the Puppe exact sequence of L& +1(4)/L*(4)= S¥*%,
and i, j are the inclusions.

Lemma 5.15. i' s an epimorphism.

Proor. This can be proved similarly as Lemma 5.9, using the above
theorem. q.e.d.

Lemma 5.16. In the lower exact sequence, k' is epimorphic, p' is monomor-
phic and $KO(L*(4))=26t+1,

Proor. The exactness shows the lemma, since #I?O(Lg’“@)):zﬁ”z by

Lemma 5.11, #K0(L*'(4))<<2°**' by Lemma 5.1, and KO(S®+?)~Z,. q.e.d.
Lemma 5.17. Ker i' =Ker ¢ in KO(L***'(4)).

Proor. Since the two homomorphisms j' are isomorphic by Lemma 5.12
and (4.12), it is sufficient to prove Im p' = Ker ¢ in EO(L;‘,’”(LL)). Since c:

IF(VO(S“’”)_:_ZZ-»I?(SS”Z)_:_Z is 0, we have cop'=0 and Im p'CKer ¢. Also,
Im p'~Z, by the above lemma, and Ker ¢=Z, by Cor. 5.14. Thus we have
Im p'=Ker c. q.e.d.

By Th. 5.13, Lemmas 5.15, 5.17 and Cor. 5.14, we have the following
Tueorem 5.18. If n=4t>0, then
KO(L"(48)) 2= Zyns@ Zyniz,

where the first summand is generated by ro and the second by t—+2"*rc. Also
the order of & s equal to 2"'%+1,
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Thus the additive structures of KNO(L”(AL)) in Th. B of §1 are obtained
completely.

In the rest of this section, we are concerned with KNO(L:)’(AI)). If n=<0
mod 4, the induced homomorphism

j': KO(L"(4))—~KO(L3(4))

is isomorphic, where j is the inclusion. In fact, it is proved in Lemmas 5.12
and 5.10 if n=1, 2 mod 4, and it follows immediately from the Puppe exact

sequence and KO(S**1)~KO(S**)~0 if n=3 mod 4.
To consider the case n=0 mod 4, we use the following

LeEmMA 5.19. If n=2s>0, the elements cro and c(k+2"%0) of K(L"(4))
are of order 2" and 2"'%, respectively, and these elements generate a subgroup

ZonD Zzniz of K(L"(4)).

Proor. By the similar way to the proof of Lemma 5.2, we have
cro=2(1-2"%g+0(1)+ (c(1)g + 2"%+1¢),
c(k+2"%rg)=2"2+1g 4 (14-2"%)g(1),

and so the desired results, using Lemmas 3.10-11 and Th. 4.6. qg.e.d.

By this lemma and Th. 5.6 and 5.18, we have immediately

CoRroOLLARY 5.20. For the complexification c: EO(L23(4))—>I2(L25(4))(3> 0),
Ker ¢c~Z, s generated by 2%ro.

Let n=4¢>0 and consider the commutative diagram
KO(S™*1)LLKO(L*(4) 2 KO(LY (4)—KO' (1)
K‘(SSI:I)LK(LM(43)

where the upper sequence is the Puppe exact sequence.

Lemma 5.21. j' is epimorphic and Ker j'=Im p'=Ker ¢c==Z, is generated
by 2*rg in KO(L*(4)).

Proor. Similarly as Lemma 5.1, we see #K0(L&(4))<<2% by (2.9), and so
j' is epimorphic since KO\(S*+*Y)~Z. Also, $KO(L*(4))=2%*'! by Lemma b.
16, and I?O(SS’”);ZZ. Hence, the exactness shows that ﬁI’EO(Lg’(él)):ZS’ and
p' is monomorphic, and Ker j'=Im p'~Z,. On the other hand, by the com-
mutativity of the diagram and K(S**') =0, we have cop'=0 and Im p' CKer
¢, and so the desired results by the above corollary. q.e.d.
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By this lemma, Th. 5.18 and the above considerations, we have the
following

Tueorem 5.22. @(L3(4));I%(L"(4))
for n=<0 mod 4, by the induced homomorphism j' of the inclusion j.
If n=4t>0, then
KO(LY(4) = ZonD Zyn1:

and the first summand is generated by ro and the second by £ (or k-+2"%rc),
where ro and & are the elements j'ro and 'k respectively.

§6. The multipilcative structure of I’(\i)(L"(4))
We preserve the notations of the previous sections.

Tueorem 6.1. The multiplicative structure of I’C\O(L”(ZL)) 18 given by
(6.2) ro)?>= —4ro+2x,
(6.3) £2= —2k=rf-ro.

Proor. It is sufficient to prove these equalities for n=4t¢+3, mapping

by the monomorphism c¢ of Cor. 5.4. Now, by Lemmas 3.10-11 and (3.9), we
have

c(ro)2=(cro)’=20+0(1)+a(1)0)?
=—420+0(1)+0Q)0)+20(1) = c(—4ro +2k),
c(kro)=c(k)c(ro)=01)20+0(1)+0c(1)0)
=—20(1)=c(—2k)
=0(1)?=(ck)*=c(x?). q.e.d.
By the above theorem and the induction, we have
(6.4) K =(—1)""12i-1g,
(6.5) (ro)' =(—1)""12%"%rg 4 (—1)'(2% > —2"" M)k
=(—1)i+12i-1{2i-1 4 202)(2-1 1)} ro
+ (=122 - 1) (k + 2512 rg),
for i=1.
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Then we have the following corollaries by these equalities, Cor. 5.7 and
Th. 5.3, 5.6, 5.13, 5.18.

CoROLLARY 6.6. The element &' € KO(L*(4)) is of order 207*1+2=% for 1<
i<[n/2]+1, and £"?3+2=0,

CorOLLARY 6.7. The order of the element (r6)’ of [’("0([/%4)) 18 equal to
27242 4 f 1 is odd, 2" %3 4f n 1s even,
for 1<i<<{[n/2]or i=[n/2]+1 and n=1mod 4. Also
(o)1 =0 if n==1 mod 4,

(r6) 2172 =0 4f n=1 mod 4.

§7. Applications

We study the problem of the immersion and the embedding of the lens
space L*(k) in Euclidean space. The following two results are due to [2, Th.
3.3 and 4.37]. Let y*: KO(X)—>KO(X) be the y-operation.

(7.1) If an n-dimensional differentiable manifold M” is immersed in
(n+k)-dimensional Euclidean space R"**(k>0), then y'(n—t(M"))=0 for all
i>k, where t(M?") denotes the tangent bundle of M".

(7.2) If M” is embedded in R"**, then 7'(n—c(M™)=0 for all ik.

According to [10, Cor. 3.27], it is known that

(7.3) t(L*(k))D1=(n+1)ry.

Lemma 7.4. 2n+1—o(L"(k))=—(n+1)ro.

Proor. By (7.3), 2n+1—c(L* k) =2n+2— (n+1Drp=— (n+1) (rp—2)
=—(n+1)r0. q.e.d.

Let 7; be the operation defined by 7,(¢)= f} ()¢
i=o

Lemma 7.5. 7:@0)=14ro-t —ro-t2.

Proor. We carry out the proof in the same way as that of [ 5, Lemma

4.87. q.e.d.

ProrposiTioN 7.6. For any k, L*(k) cannot be immersed in R*"+2L:® qnd
L"(k) cannot be embedded in R*"+2L(mM+1 yyhere
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(nj i)(m)fﬂ;o }

Proor. By Lemmas 7.4-5, we have

L(n, k)= max {i

7:2n+1—t(L*(k) =7:(— (n+1)re) =7:(ra) "1

=1 +r-t—ro-t) " t=1+ro(z—1t%)) "1

= 5 (T heoa—y= B 0T Heore—ey.
Therefore, we obtain
7'@n+1—c(L"(k)))>:0 for i=2L(n, k),
r'"@n+1—c(L"(k)))=0 for i >2L(n, k).
By (7.1-2) we have the desired results. qg.e.d.

For the case k=4, the above proposition is Theorem C of §1, by Cor. 6.7.

The next theorem reduces the immersion problem for L”(k) to the cross-
section problem for the bundle mry (the m-fold Whitney sum of ry).

TaeoreM 7.7. Let n and I be integers with 0<1<"2n+1. Suppose N=2n
+2, where N is an integer such that Nro=0. Then there is an immersion of
L*k) in (2n+1+1)-dimensional Euclidean space R***'*' 4f and only if the
vector bundle (N—n—L1)ry has (2N—2n — [ —2)-independent cross-sections.

This theorem is a slight generalization of [7, I, Th. 17.
There is an integer N such that Nro=0, because fO(L”(k)) is a finite
group.

Proor. Suppose that L*(k) is immersible in R?”*!*!, Let » be a normal
bundle of an immersion. Then v is [-dimensional, and it holds that

t(L"(k)Py=2n+1+1.
Since Nro=N(r7—2)=0 by the assumption, we have by (7.3)
v+ @N—-2n—2—-0)=(N—n—Dry in KOL"(k)).

But the dimension of the bundle of both sides is greater than 2r 41, since
N>2n+2. So we obtain the Whitney sum decomposition: v@o(2N—2n —2
—D=(WN—n—ry.

Conversely, assume that there exists a vector bundle « of dimension I
such that (N—n—1Drp=a®@N—2n—2—1). Then 2n+1—c(L"k))=a—k
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6@(L”(k)). Therefore, by the theorem of M. W. Hirsch (cf. [4, Th. 6.4]
and [ 2, Prop. 3.27)), we see that L*(k) is immersible in R?"*1*, g.e.d.

CorOLLARY 7.8. Let p be an odd prime, and a be an integer such that
ap” Tt RI@=DI>2n 4+ 2, where r==1. Then there is an immersion of L"(p") in
R 14(0<1<2n+1) if and only if the vector bundle (ap™ " 2/*"D)—n —1)ry
has (2ap”*t*=21¢-D1_2n — | —2)-independent cross-sections.

Proor. Since p” L2 =0 by [6, Th. 1.1, (ii)], the result follows
from Th. 7.7. q.e.d.

Finally, we give a non-immersion theorem for L"(k).

TaEOREM 7.9. Suppose that p is an odd prime. Let k=up’, where r=1
and (u, p)=1. Let n and m be integers with 0<m=[n/2]. Assume that the
following two conditions are satisfied :

@ ("0 modp,

(i) n+m+1=0 mod pt "~ DI-DI,
Then L*(k) s not immersible in R*"+¥m+1,

If u=1and r=1, this theorem coincides with [7, I, Th. C]. The assump-
tion m<n of Th. C and (6.2) in [7, II] should be m<[ n/2]].

Proor. The natural projection L"(p)—L"(k) is a covering projection.
Therefore, if L"(k) is immersible in R”, then L"(p) is immersible in RY. Thus
the result is a consequence of [ 7, II, Th. C. q.e.d.

The next corollaries are immediate consequences.

CoroLLARY 7.10. Assume that p is a prime >3, and that k is divisible by
p- Then L"(k) is not immersible in R°"*' for n=2p’, t=1.

CoroLLARY 7.11. Under the assumptions of Cor. 7.10, L*(k) is not
tmmersible in R for n=2p'+1, t=>1.

According to D. Sjerve (cf. [97]), L"(k) is immersible in R*"*+2[7/21+2 if [ ig
odd. This result is seen to be best possible by the above corollaries (cf. also
[7, II, Cor. D-E7)).
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