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§1. Introduction

Let Ln(k) = Ln(k; 1, , 1) be the (2n + l)-dimensional standard lens space
mod &, where n and k are positive integers and &^>2. Denote by A the field
R of the real numbers or C of the complex numbers. The structure of KΛ-
rings of Ln(k) is determined by J. F. Adams {ΊΓ\ when k = 2 (1/(2) is the real
protective space), and by T. Kambe [5] when k is an odd prime.

The purpose of this note is to determine the structure of KΛ(Ln(k)) for
the case k = 4. We use K or KO instead of Kc or KR.

Let Ύj be the canonical complex line bundle over Ln(k), and set

σ=τj-l eK(Ln(k)).

Then, we have the following theorem1 }:

THEOREM A. (4.6)

and the direct summands are generated by the three elements

σ, σ2 + 2σ, σ3 + 2σ2 + 2nl2+1σ (if n is even),

σ, σ2 + 2σ+2C w / 2 : + 1σ, σ3 + 2σ2 (if n is odd),

respectively. The multiplicative structure is given by

( T

4 =_4(T 3 -6σ 2 -4(r, σn+1=Q.

Let p be the non-trivial (real) line bundle over Z/(4) and set fc = p — 1 e

KO(Ln(4:)). Let r(J e KO(Ln(A)) denote the real restriction of σ.

THEOREM B. (5.3, 5.6, 5.13, 5.18, 6.1, 6.7)

According to N. Mahammed [8], it is announced that

for any k.
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Z2n+iφZ2n,2 for even n>0,

G+i for n = l mod 4,

2 for n=3 mod 4,

and the first summand is generated by rΰ and the second by fc + 2Lnl21r(T, where
it is able to replace the last element by K if n = l mod 4.

The multiplicative structure in KO(Ln(4:)) is given by

ifn = l mod 4;

We can calculate the order of (rύ)1 by the above theorems, and apply the
r*-operation to the problem of the immersion and the embedding of 77(4) in
Euclidean space by making use of the method of M. F. Atiyah (cf. pΓ] and
[5]).

THEOREM C. Z Λ ( 4 ) cannot be immersed in R2n+2L(n>A)^ and Ln(i) cannot be
embedded in R^+2L(n,4)+i^ w h e r e

frnax li if n^

mod 2n~2i+ή if n^

L(nA)=

In §2, we recall the cohomology groups of Ln(k). In §3, we consider the
element (j(l)=(J2 + 2(7 = 7j2 — 1 e K(Ln(4:)), and establish the following formulas:

era=2σ+σ(ΐ) + σ(ΐ)σ, c/c=σ(l),

where c: κd(Ln(4))-^ K(Ln(4)) is the complexification (Lemmas 3.10-11).
Theorem A is proved in §4 by means of the relations:

and by using the Atiyah-Hirzebruch spectral sequences (cf. [βj). Moreover,
we verify that the elements a1 and σ(iyσj(ί^>l) in £(Z/(4)) are of order 22+n~{

and 21+un+1-2i-»12^ respectively (Cor. 4.7, Th. 4.8).

The proofs of Theorem B are carried out in §§5-6. The additive struc-

ture of KO(Ln(4)) is determined in §5, by making use of the complexification

c and Theorem A. The multiplicative structure of K0(Ln(4)) is determined
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in §6. In the final section, we give the proof of Theorem C and discuss the
immersion problem for Ln(k).

The i^Λ-rings of Ln(p2), for p an odd prime, will be considered in a for-
thcoming paper [βΓ\.

§2. Cohomology groups of Ln(k)

Let S2n+ι be the unit (2n + l)-sphere in the complex (rc + l)-space Cw + 1,
and γ be the rotation of S2n+ι given by

i,-. , Zn) = (e2*ilhz0, e2"ilkzu , e2πiihzn).

Then γ generates the topological transformation group Zk of S2w+1, and the
standard lens space mod k is

L\k) = S2n+ι/Zk.

As is well-known, Ln(k) has a cell structure

(2.1) Ln{k) = e°\Jeι\J' \Je2n\Je2n+ι

and its cohomology groups are given by

( Zk for ί = 2, 4,.. , 2rc

HXLn(k); Z ) ^ Z for ί = 0,

[ 0 otherwise,

H*(Ln(2l); Z2)^Z2 for

Let J : H\Ln(k); Z2)-+H2(Ln(k); Z) be the Bockstein homomorphism
associated with the coefficient sequence: 0->Z->Z->Z2-*0. If A = 2Z, we have
the following lemma easily.

LEMMA 2.2. dx = lγ,

where x and y are generators of H1(Ln(2l); Z2)~Z2 and H2(Ln(2l); Z)=Z2h

respectively.

Let P be a single point, then it is well-known that K- and XO-groups of
P are given by

)^Z (p even), ^ 0 (p odd)

KO~P(P)=Z (p=09 4 mod 8), ^ Z 2 ( ^ = 1 , 2 mod 8),

= 0 (otherwise).
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Let CPn be the ^-dimensional complex projective space, and

π: Ln(k)-^CPn=S2n+1/S1

be the natural projection. Then

LEMMA 2.3. r*: Hp(CPn; K-p(P))-^Hp(Ln(k); K~P(P)) is an epimorphism.

PROOF. It is trivial for odd p. For even p, the result follows from the
Gysin exact sequence. q. e. d.

The following are easy.

ί Zk for p and a even, 0<p<,2n,
\
[ 0 otherwise,

( Z2l for p = 0, 4 mod 8, 0<p<,2n,

(2.5) Hp(Ln(2l); KO~P(P))^ { Z2 for p = l9 2 mod 8, 0<p<:2n-l

0 otherwise.

LEMMA 2.6. ΓΛβ induced homomorphism

i*: Hp(Ln+1(2l); K0-p(P))-+Hp(Ln(2l); KO~P(P))

by the inclusion ί is an epimorphism for any p.

Consider the 2n-skeleton

(2.7) Ln

Q(k) = e°\Je1\

of the CJF-complex Ln(k) of (2.1). Then

(2.8) Ln(k)/Ln

o(k) = S:

where the attaching map k: s2n+1-+S2n+1 means the map of degree k.

Also H*m(k); Z)^Zk for ΐ = 2, 4, . , 2n and ^ 0 otherwise,
Z2)=Z2 for 0 < i ^ 2 ^ . Furthermore, we have

(2.9) Hp(Ln

0(2l) K0~p(P))^Hp(Ln(2l) KO~P(P))

for n^O mod 4.
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§3. Non-trivial line bundle over Ln(k)

Let p be the non-trivial line bundle over Z/(2Z), i. e., p is the line bundle
such that the first Stiefel-Whitney class wλ(p) e H1(Ln(2l); Z2)=Z2 is non-
zero.

LEMMA 3.1. The Enter class x(2p) of the two-fold Whitney sum 2p of p
is non-zero.

PROOF. By the relation between the Euler class and Bockstein homo-
morphism and by Lemma 2.2, we have x(2p) = J(wι(p)) = Iy^ψO. q. e. d.

Let 7] be the canonical complex line bundle over Ln(k). The first Chern
class a(η) is a generator of H2(Ln(k); Z)^Zk. Let

c: KO{X)->K(XX T : K(X)->KO(X)

be the complexification and the real restriction respectively. Then it is well-
known that

(3.2) re = 2, cr =

where t denotes the complex conjugation (cf. \ΎJ).

PROPOSITION 3.3. For Ln(2l), we have

(I-fold tensor product).

PROOF. By Lemma 3.1 and (3.2), %(rcp)=V0. Thus cp is non-trivial.
Denote by C the total Chern class. Then, by (3.2), C(cr(cρ)) = C(cp®tcρ)

= C(cp)C(tcp) = (l + ci(cp)) a-ci(cp)) = l-Cl(cp)\ while C(cr(cp)) = C(c(2p))
= C(2cρ)= (l + ci(cp))2 = l + 2c1(cp) + c1(cρ)2. Therefore we obtain 2ci(cp) = 0.
Since complex line bundles are classified by the first Chern classes, the rela-
tion cp = τjι follows from ci(cp) = ZciO?) = ciO/). q. e. d.

Let X and Y be finite C ΪF-complexes and / : F->X be a map. Let {Ep/q}
be the Atiyah-Hirzebruch spectral sequence for KΛ{X\ i.e., EP

2-
Q^HP(X; Kq

A(P))
and Et:~p is the graded group associated to KΛ{X), and also {Έp'q} be that
for KΛ(Y) (cf. [3]). Then

PROPOSITION 3.4. Assume that there is an integer r^>2 such that Ep>~p =
Ep

r'+ι

p= =Ep:-p and f*:Ep

r>-p-+Έp

r'~
p is an epimorphism for any p. Then

the induced homomorphism fι: KA(X)->KΛ(Y) is an epimorphism.

PROOF. By the assumptions it follows that ft: Epj~~p->/Ep;~p is an epi-
morphism for each p. Then we have the result by the five lemma. q.e.d.
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LEMMA 3.5. πι: K(CPn)-+K(Ln(k)) is an epimorphism, where π is the
natural projection.

PROOF. Since the Atiyah-Hirzebruch spectral sequence for K(CPn) is
trivial, we have the desired result by Lemma 2.3 and Prop. 3.4. q.e.d.

Let 6 = η — 1 e K(Ln(k)) denote the stable class of -η. Then we have

LEMMA 3.6. In K(Ln(k)\ it holds

(3.7) (σ+l)* = l, σn+1=0.

Furthermore, the elements (7, (X2, > ύk~λ generate K(Ln(k)) additively.

PROOF. The first equality of (3.7) follows from c1(τjk) = kc1(τj) = 0 in H2

Consider the canonical complex line bundle over CPn and denote it also
by -q, then nl7] = 7]. Furthermore, it is well-known that the ring K(CPn) is
generated by the element -η-l and (^-l) w + 1 ^0 (e.g. [1, Th. 7.2]). Thus we
have the lemma using Lemma 3.5. q. e. d.

Denote by §A the number of the elements of a finite set A.

LEMMA 3.8. #K(Ln(k)) = kn.

PROOF. Let {Ep

r'
q} be the Atiyah-Hirzebruch spectral sequence for K(Ln

(A)). Then Ep

2>-q^LHp(Ln(k)\ K~q(P)) is given by (2.4). Therefore this spec-
tral sequence is trivial and the lemma follows. q. e. d.

Henceforth, we consider the case k = 4. Put

σ(l) = (σ+l)2-l=σ2 + 2σ € K(Ln(4:)).

The relation (σ + l) 4 = l of (3.7) is equivalent to (σ(l) + l) 2 = l, and so we have

(3.9) σ(ϊ)i+1 = (-ϊ)i2iσ(ϊ) for

LEMMA 3.10. crσ=σ2/(σ+l) =

PROOF. The first equality is proved in the proof of [5, Lemma (3.5), ii)].
The second follows from (3.7) and (3.9). q. e. d.

Let κ = p — 1 e KO(Ln(4:)) denote the stable class of p. Then we have

LEMMA 3.11. cic=σ(ΐ).

PROOF. By Prop. 3.3, cp = -η2. Therefore CK = ΎJ2 — 1=<r(l). q. e. d.
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§4. The structure of K(LΠ(4))

LEMMA 4.1. 2i+2σn'i = 0 for i = 0, 1, ••, n-1.

PROOF. Multiplying (Jn~ι to the relation

(4.2)

we have 4σw = 0, because σn+i = 0 for i > 0 by (3.7). Assume that 2i+V*-< =
for 0<^i<n — l. Multiplying 2ί+1σΛ"1'""2 to the equation (4.2), we have

By the assumption, we have 2i+3σn~i~1 = 0. q.e.d.

LEMMA 4.3. For ί = 0, 1, , n— 2,

PROOF. If we multiply 2/<τn"f'"2 to the equation (4.2), we have

2iσ"-i+2 + 2i+2σn~i+1 + 3-2i+1σn~i + 2i+2σn~i-1 = 0.

By Lemma 4.1, we have the desired result. q.e.d.

LEMMA 4.4. If n = 2m, then

2Mσ(l) = 0, 2m-\σ(l)σ+2m+ισ)=0.

PROOF. By the definition of σ(l), (3.7) and Lemma 4.1, we have

σ(lΓ+ 1==(σ2 + 2σ) w + 1 = Σ ( 1)2iσn~i+2 = 0.
i=0\ ι /

Thus the first result follows from (3.9).
Next, by the definition of tf(l), (3.9) and Lemma 4.3, we have

f = 0

Therefore we have the second result. q.e.d.

The following lemma is verified quite similarly as the above lemma.

LEMMA 4.5. / / n = 2m +1, then

2W((T(1) + 2m+V) = 0, 2wσ(l)(T=0.
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The following theorem is one of our main theorems.

THEOREM 4.6.

£ ( I β ( 4 ) ) ^ Z 2 B + i φ Z 2 m 0 Z 2 , - l 5 for n=

whose direct summands are generated by σ, σ(l) and σ(l)(ϊ + 2m+1(T respectively.

, for n=

whose direct summands are generated by cr, σ(l) + 2m+1σ and (T(ΐ)(T respectively.
The multiplicative structure is given by

σ4=-4σ3-6σ2-4σ, σn+1=0.

PROOF. According to Lemma 3.6, we see that the elements σ, β2 and σ3

generate K(Ln(4)) additively. Thus it is clear that σ, σ(ΐ) and σ(ΐ)σ + 2m+1σ
(or σ, σ(l) + 2w+1σ and σ(l)σ) generate K(Ln(A)) additively. Then our results
follow from Lemmas 4.4-5, 3.8 and (3.7). q.e.d.

COROLLARY 4.7. The element σι e K(Ln(4)) is of order 2n~i+2 for l^ί<n,
andσn+1=0.

PROOF. Th. 4.6 shows that the element σ is of order 2n+1. Suppose that
σ{ is of order 2n~i+2 for l<:i<n. By Lemma 4.3, 2n-iσi+1 = 2n-i+1σi^0. On the
other hand, 2n~i+1σi+1 = 0 by Lemma 4.1. Thus the order of σi+1 is equal to
2n'i+1. q.e.d.

THEOREM 4.8. The element ^ e ί ( Γ ( 4 ) ) is of order 2ι+^n+1~2

for any i, j with l ^ ^ l + [ (^-;- l )/2] .

PROOF. Since σ{l)iσj = {-l)i-ι2i-1σ(l)σj by (3.9), it is sufficient to prove
that

(4.9) σ(l)σJ is of order 21 + U"-J-im for 0<,j<n.

Put i(n -j-1)/2]=h. Then j = n -2h-1 or j = n - 2 h - 2 . In order to prove
(4.9), it is sufficient to show

2h+1σ(ΐ)σn-2h-2=0, 2hσ(l)σn-2h-1^0.

Now, by (3.9), Lemma 4.1 and (3.7), we have

2h+ισ(l)ύn-2h-2 = ( _ i)ft+V-2A-2

= (-l)h+\σ2+2σ)h+2σn-2h-2

k = 0 '

Similarly, we have
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2hσ(l)σκ-2h~1 = (-1) V(l)*+V-2*-1

+2σ) V^2*-1

= (-l)* Σ

using Lemma 4.3 and Cor. 4.7. Therefore, we have (4.9). q. e. d.

The following two corollaries are immediate consequences.

COROLLARY 4.10. The element σ(l)1' is of order 2ι^n+1-2mi for l ^ ί ^
], and

COROLLARY 4.11. Tfre element o~(l)ΰ is of order 2ίn'21.

Finally, we notice that

(4.12) f

where LJ(4) is the subcomplex of (2.7) and is the inclusion, and hence the
above results hold also for Ln

QQί) taking into account the element σ=jι(J. In
fact, consider the Puppe exact sequence (cf. [3, Prop. 1.4])

K(S2n+1)—^j?(Z/(4))^it(Z*(4))—+K\S2n+1)

of Ln(4)/Ln

0(4:) = S2n+1 of (2.8), where the first term is 0 and the last term is Z.
Then, (4.12) follows from the fact that £(Z||(4)) is finite, which is seen simi-
larly as Lemma 3.8.

§5. The additive structure of KO(Ln(4))

LEMMA 5.1. KO(Ln(4)) has only 2-component, and

/ nβt + 1

Δ

, 2
6 ί + 4

for

for

for

for

n=4t,

n=4t + l,

n = ±t + 2,

^ = 4̂  + 3.

PROOF. We make use of the Atiyah-Hirzebruch spectral sequence for
£&GZ7(4)). The terms Ep

2'~
p^Hp(Ln(i); KO~P(P)) are given by (2.5), and so

we have the desired result. q.e.d.

Case 1. n =
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LEMMA 5.2. For the case ra = 2s + l > l , the elements crΰ and c(κ +
2Cw/2:r(T) of K(Ln(4:)) are of order 2n and 2 [ > / 2 ], respectively, and these elements
generate a subgroup Z2nQ)Z2ini2i of K(Ln(4)).

PROOF. We notice that 1 ± 2 [ > / 2 3 is odd by the assumption n>l. Using
Lemmas 3.10-11 and Th. 4.6, we have

Therefore, the order of these elements are 2n and 2C w / 2 : by Th. 4.6.

Suppose acrσ+βc(/c + 2ίnl21rσ) = 0. Then,

2(l-2ίnl2:})a-2n(3=0 mod 2n+\

] ) ^ 0 , a^O mod 2lnm

by the above equalities and Th. 4.6. These congruences imply that a=0
mod 2n and /?=0 mod 2Cw/2D, and so we have the desired results. q.e.d.

THEOREM 5.3. / / rc=4ί + 3, we have

where the direct summands are generated by rύ and /c + 2Lnl2\(7, respectively.

PROOF. For the homomorphism c: i

Im

by the above two lemmas. Therefore, #X&(Z/(4)) = 26 '+ 4, Im c is the subgroup
of Lemma 5.2 and c is monomorphic, and so we have the theorem. q.e.d.

COROLLARY 5.4. The complexification

c: KO(L4t+3(4:))->K(L*t+3(4))

is a monomorphism.

Case 2. n=At + 2.

Let i: LW(4)->LW+1(4) be the inclusion.

LEMMA 5.5. / / n = 4t + 2, ϊ : Kb{Ln+ι{A))^KO{Ln{^)) is an isomorphism.

PROOF. Consider the Puppe exact sequence (cf. [3, Prop. 1.4]):



1^-Rings of Lens Spaces Ln(4) 263

>KO\Ln+\4:)/Ln(4)).

It is easily seen that the first term is KO(S8t+6\Je8t+7)^0 and the last term

is KO(S8t+5\Je8t+6)^0. Hence ί is an isomorphism. q.e.d.

By the above lemma and Th. 5.3, we have

THEOREM 5.6. / / n = 4ί + 2,

where the first summand is generated by rtf, and the second by tc + 2nl2r(7.

COROLLARY 5.7. // n = At + 2 or 4ί + 3, then KO(Ln(4:)) is generated by the
elements rβ and /e, and the order of K is equal to 2Cw/2: i+1.

Case 3. n =

Consider the following commutative diagram

(5.8)

KO(Sst+3\Je8t+4)-
4

where i, ί\ j and / are the inclusions, and the lower sequence is the Puppe
exact sequence of (2.8). Then we have the following lemmas.

LEMMA 5.9. iι is epimorphic.

PROOF. Let {Ep/q} and {Ep

r>
q} be the spectral sequence for £θ(L4'+2(4))

and XO(L4ί+1(4)), respectively. Then, ί*: Ep

2'-
p^fE{'-p is epimorphic by

Lemma 2.6, and Ep

2>~p= =Et'p by Th. 5.6 and Lemma 5.1. Therefore, we
have the lemma by Prop. 3.4. q.e.d.

LEMMA 5.10. / ' is an isomorphism.

PROOF. Consider the Puppe exact sequence

of (2.8), where KO(S8t+5)^0 and KO\S8t+5)^Z. We see that XO(L4ί+2(4)) is
finite similarly as Lemma 5.1 by (2.9), and so f is isomorphic. q.e.d.

LEMMA 5.11. ifl is epimorphic and #KO(L4

)

t+1(4:)) = Qβt + 2
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PROOF. The Puppe exact sequence of (S8t+3\Jest+4)/S8t+3 = Sst+4 is the
4

following
4

->KO(S8t+3\Je8t+4)—^ KO(S8t+3\
4

since the degree of the attaching map is 4. Therefore KO(S8t+3\Je8t+4)^Z4.
4

On the other hand, §KO{L%+2(4)) = 2 6 ί + 4 by the above lemma, and so we

can prove that i/l is epic similarly as Lemma 5.9. Also we have %KO(Ltf+1(4))

<Ξ26ί+2 similarly as Lemma 5.1 by (2.9), and so the lemma. q.e.d.

LEMMA 5.12. j ι is isomorphic and #KO(L4t+1(4:)) = 26t+2.

PROOF. #X&(£ 4 ί + 1(4))^2 6 ί + 2 by Lemma 5.1, and j ι is epic by the com-
mutativity of (5.8) and Lemmas 5.10-11. Therefore we have the desired
results by the above lemma. q.e.d.

Now, we have the following

THEOREM 5.13. If n = 4t + l, then

and the first summand is generated by rβ and the second by /c, where the latter
can be replaced by κ + 2Lnl2^r6.

PROOF. By Th. 5.6, the equality

22t+1/c+24t+2rσ=0

holds in KO(L4ί+2(4)), and so in £O(L 4 m (4)) . Also,

+1rσ=0 if

in xδ(L4 / + 1(4)). In fact, the left hand side is equal to 2Lnl

by (3.2) and Lemma 5.2. These two equalities imply that

rσ=0, 22t+1fc=0, if ί > 0 .

These hold for the case ί = 0, since 2rσ = rcrσ = r(σ2/(σ + l)) and σ2 = 0 in
K{L\£)) by Lemma 3.10 and (3.7).

On the other hand, KO(L4t+1(4)) is generated by rβ and K additively, by
Cor. 5.7 and Lemma 5.9. Therefore, we have the theorem by Lemma 5.12
and the last equalities. q.e.d.

COROLLARY 5.14. For the complexification c: KO(L4t+1(A))->K(L4t+1(4:)X
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Ker c^Z2 is generated by 22t(tc + 22trσ), if t>0.

PROOF. This is an immediate consequence of the above theorem and
Lemma 5.2. q.e.d.

Case A. n=4t(>0).

Consider the commutative diagram

\ J

where the lower sequence is the Puppe exact sequence of L^+1(4)/L4ί(4) = S8t+2,
and ί, j are the inclusions.

LEMMA 5.15. iι is an epimorphism.

PROOF. This can be proved similarly as Lemma 5.9, using the above
theorem. q.e.d.

LEMMA 5.16. In the lower exact sequence, kι is epimorphic, pι is monomor-

phic and

PROOF. The exactness shows the lemma, since #KO(L4

0

t+1(4:)) = 26t+2 by

Lemma 5.11, # i»(L 4 ί (4) )^2 6 ί + 1 by Lemma 5.1, and KO(S8t+2)^Z2. q.e.d.

LEMMA 5.17. Ker ίι - K e r c in KO(L4t+1(A)).

PROOF. Since the two homomorphisms j 1 are isomorphic by Lemma 5.12

and (4.12), it is sufficient to prove Im p- = Ker c in KO(L4

0

t+1(i)). Since c:

KO(S8t+2)^Z2-+K(S8t+2)QϊZis0,we have cop'-=0 and Im r C K e r c. Also,

Im p=Z2 by the above lemma, and Ker c^Z2 by Cor. 5.14. Thus we have

I m p ! = K e r c. q.e.d.

By Th. 5.13, Lemmas 5.15, 5.17 and Cor. 5.14, we have the following

THEOREM 5.18. / / τι = 4ί>0, then

where the first summand is generated by rΰ and the second by ιc + 2nl2rβ. Also
the order of K is equal to 2w / 2 + 1.
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Thus the additive structures of Kd(Ln(A)) in Th. B of §1 are obtained
completely.

In the rest of this section, we are concerned with X0(Z,g(4)). If n^O
mod 4, the induced homomorphism

is isomorphic, where j is the inclusion. In fact, it is proved in Lemmas 5.12
and 5.10 if n = l, 2 mod 4, and it follows immediately from the Puppe exact

sequence and KO(S2n+ι)^KO(S2n)^0 if n=3 mod 4.
To consider the case n^O mod 4, we use the following

LEMMA 5.19. If n = 2s>0, the elements crύ and c(/c + 2nl2rσ) of
are of order 2n and 2n]2, respectively, and these elements generate a subgroup
Z2nφZ2n,2 Of £

PROOF. By the similar way to the proof of Lemma 5.2, we have

and so the desired results, using Lemmas 3.10-11 and Th. 4.6. q.e.d.

By this lemma and Th. 5.6 and 5.18, we have immediately

COROLLARY 5.20. For the complexification c: ^(Z 2 s (4))-
Ker c^Z2 is generated by 22srσ.

Let n = 4t>0 and consider the commutative diagram

^ > K O \ S 8 t + 1 )

ic

where the upper sequence is the Puppe exact sequence.

LEMMA 5.21. j ι is epimorphic and Ker j ι =ϊmpι =Ker c=Z 2 is generated

by 24trσ in X&(Z,4ί(4)).

PROOF. Similarly as Lemma 5.1, we see #XO(Z^(4))<;26ί by (2.9), and so
; ! is epimorphic since KO\S%t+1)^Z. Also, #XO(L4ί(4)) = 26'+1 by Lemma 5.
16, and KO(Sst+1)Q±Z2. Hence, the exactness shows that ftKOm*(4)) = 26ί and
p is monomorphic, and Ker j ι =Im pι=Z2. On the other hand, by the com-
mutativity of the diagram and K(S8t+1) =0, we have cop1 =0 and Im pι CKer
c, and so the desired results by the above corollary. q. e. d.
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By this lemma, Th. 5.18 and the above considerations, we have the
following

THEOREM 5.22. KO(Ln

0(A))^KO(Ln(A))

for n^O mod 4, by the induced homomorphism j ι of the inclusion j .
If rc = 4ί>0, then

and the first summand is generated by rβ and the second by K (or ιc + 2nj2r(J),
where rΰ and tc are the elements yrΰ and jι/c respectively.

§6. The multiplicative structure of KO(Ln(4))

We preserve the notations of the previous sections.

THEOREM 6.1. The multiplicative structure of KO(Ln(£)) is given by

(6.2) (r(ϊ)2= — 4rtf + 2/c,

PROOF. It is sufficient to prove these equalities for rc = 4ί + 3, mapping
by the monomorphism c of Cor. 5.4. Now, by Lemmas 3.10-11 and (3.9), we
have

By the above theorem and the induction, we have

(6.4) /c^i-iγ-1^-1^

(6.5) (rσy = ( - l ) i + ι 2 2 i - 2 2 i 2 i

for ί>l.
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Then we have the following corollaries by these equalities, Cor. 5.7 and
Th. 5.3, 5.6, 5.13, 5.18.

COROLLARY 6.6. The element κ{ e KO(Ln(±)) is of order 2 [ w / 2 : + 2 - / for 1<:
, and fcίnl2^+2 = 0.

COROLLARY 6.7. The order of the element (r&y of K0(Ln(4:)) is equal to

2n~2i+2 if n is odd, 2n~2M if n is even,

for l^i^[_n/2J or i — [_n/2~] + l and n = l mod 4. Also

(rσ)Lnl21+1 = 0 if n±*l mod 4,

(rt)LHm+2 = 0 if n^l mod 4.

§7. Applications

We study the problem of the immersion and the embedding of the lens
space Ln(k) in Euclidean space. The following two results are due to Q2, Th.
3.3 and 4.3]. Let f: KO(X)^KO(X) be the r-operation.

(7.1) // an n-dimensional differentiate manifold Mn is immersed in
(n + k)-dimensional Euclidean space Rn+k(k>0), then ri(n — r(Mn)) = 0 for all
ί>k, where r(Mn) denotes the tangent bundle of Mn.

(7.2) / / Mn is embedded in Rn+\ then f(n - r(Mn)) = 0 for all i^k.

According to Q10, Cor. 3.2], it is known that

(7.3) v(L"(k))@l = (n + ΐ)rη.

LEMMA 7.4. 2n + l-t(Ln(k)) =-(n + ϊ)rσ.

PROOF. By (7.3), 2n + l-τ(Ln(k)) =2n + 2- (n + l)rV= - (n + ΐ) (rη-2)
q.e.d.

Let γt be the operation defined by r*(C)= Σ ϊXQt1-
ί = 0

LEMMA 7.5. γt{r(J) = l + rσ t — r(J-t2.

PROOF. We carry out the proof in the same way as that of Q5, Lemma
4.8]. q.e.d.

PROPOSITION 7.6. For any &, Ln(k) cannot be immersed in R2n+2L(n>k\ and
Ln(k) cannot be embedded in JR

2«+2^(^^)+ij where



X>Rings of Lens Spaces I"(4) 269

L(n, k)= max {i I ^ + ^

PROOF. By Lemmas 7.4-5, we have

γt{2n + 1 - τ(L"{k))) = γt{ -{n

= Σ ( Y )
, = o\ ι / i=o

Therefore, we obtain

"̂(2/1 + 1 - r(Ln(k)))^0 for ί = 2L(n, k\

f(2n + l-r(Ln(k))) = 0 for ί>2L(n, k).

By (7.1-2) we have the desired results. q.e.d.

For the case k = 4, the above proposition is Theorem C of §1, by Cor. 6.7.

The next theorem reduces the immersion problem for Ln(k) to the cross-
section problem for the bundle mrrj (the zn-fold Whitney sum of rη).

THEOREM 7.7. Let n and I be integers with 0<Z<J2π, + l. Suppose N>2n
+ 2, where N is an integer such that Nr(J = 0. Then there is an immersion of
Ln{k) in (2n + l + l)-dimensional Euclidean space R2n+1+ι if and only if the
vector bundle (N—n — l)rη has (2N—2n — I — ̂ -independent cross-sections.

This theorem is a slight generalization of [_7, I, Th. 1].
There is an integer N such that Nrσ = 0, because KO{Ln{k)) is a finite

group.

PROOF. Suppose that Ln(k) is immersible in R2n+1+ι, Let v be a normal
bundle of an immersion. Then v is Z-dimensional, and it holds that

Since Nrσ=N(rτj — 2) = 0 by the assumption, we have by (7.3)

v + (2N-2n-2-l) = (JV-n-Y)rη in KO(Ln(k)).

But the dimension of the bundle of both sides is greater than 2n + 1 , since
So we obtain the Whitney sum decomposition: vφ(2iV— 2n— 2

Conversely, assume that there exists a vector bundle a of dimension I
such that (N-n-l)rr]=a@(2N-2n-2-l). Then 2n + l-τ(Ln(k)) = <x-k
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eKO(Ln(k)). Therefore, by the theorem of M. W. Hirsch (cf. [4, Th. 6.4]
and [2, Prop. 3.2]), we see that Ln(k) is immersible in R2n+1+ι. q.e.d.

COROLLARY 7.8. Let p be an odd prime, and a be an integer such that
apr+L(n-^)KP-w^2n + 29 where 7\>1. Then there is an immersion of Ln(pr) in
R2n+1+ι(0<l<,2n + l) if and only ifthevector bundle (ap

r+L{n-2)ίip-1^ -n-l)rr]
has (2apr+ί(n~2)l(p~1}1 — 2n — l — 2yindependent cross-sections.

PROOF. Since p

r+^n-2^-^^=0 by [6, Th. 1.1, (ii)], the result follows
from Th. 7.7. q.e.d.

Finally, we give a non-immersion theorem for Ln(k).

THEOREM 7.9. Suppose that p is an odd prime. Let k = upr, where r^>l
and (u, p) = l. Let n and m be integers with 0<7τι<£ra/2]. Assume that the
following two conditions are satisfied:

(i)

(ii) n + m + 1 ^ 0 mod pπ»-f"-vκp-i)iu

Then Ln(k) is not immersible in R2n+2m+1.

If u = 1 and r = 1, this theorem coincides with [7, II, Th. C]. The assump-
tion m <n of Th. C and (6.2) in [7, II] should be m<£n

PROOF. The natural projection Ln(p)-^Ln(k) is a covering projection.
Therefore, if Ln(k) is immersible in RN, then Ln(p) is immersible in RN. Thus
the result is a consequence of [7, II, Th. C]. q.e.d.

The next corollaries are immediate consequences.

COROLLARY 7.10. Assume that p is a prime >3, and that k is divisible by
p. Then Ln(k) is not immersible in R3n+1 for n=2p\ ίj>l.

COROLLARY 7.11. Under the assumptions of Cor. 7.10, Ln(k) is not
immersible in R3n for n = 2pt + l

According to D. Sjerve (cf. [9]), L\k) is immersible in R^^mm^ -f k -g

odd. This result is seen to be best possible by the above corollaries (cf. also
[7, II, Cor. D-E]).
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