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§1. Introduction

Our main purpose in this paper is to construct unitary representations
of the most continuous principal series, using polarizations. As is stated in
§1 of [137], a polarization on a symplectic manifold was devised by Kostant
with the aim of constructing unitary representations for an arbitrary Lie
group. It is an extension of the nilpotent case given in Kirillov [ 8], and has
enough effectiveness in solvable Lie groups of type I (Auslander-Kostant [ 27]).
For semisimple Lie groups, however, the situation is slightly different from
them. For example, it has been pointed out by many people that the discrete
series representations of a non-compact semisimple Lie group of the non-
Hermitian type can not be obtained by polarizations only, and some concepts,
like cohomology spaces, seem to be required. However, we can show that the
representations of the most continuous principal series can all be constructed
by using polarizations (Theorem 6.6). This is partly because a polarization
of any semisimple element in the Cartan subalgebra with maximal vector
part can be chosen related with a minimal parabolic subalgebra by translat-
ing the element by the addition of a certain nilpotent element, and partly
because the differential equations attached to the polarization can be replaced
by the Borel-Weil theorem of a compact reductive Lie group. In this paper,
we also make investigations in each simple Lie algebra, and prove that in case
of (AI1-AIID), 80(n, 1) or (EIV), every element has w-polarizations, while there
exists an element with no polarizations in Lie algebras of any other type
(Theorem 4.6). The proof is made by using a suitable TDS with high singula-
rity.

The author should like to express his hearty thanks to Professor H. Ozeki
for his kind advice and useful discussions.

§2. Real admissible polarizations

In this paper, except for §5, we assume that G is a connected real semi-
simple Lie group with Lie algebra gz. (In §3, gz is assumed to be simple.)
Let g be the complexification of gz, and B the Killing form of g. Notations
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are due to [137].

Lemma 2.1.  Let p be a w-polarization (in the sense of Definition 7.1 [13])
of a milpotent element e in g, and g; the j-eigenspace of ad,(x) where x 18 a
mono-semisimple element corresponding to e. Then

1) dim(4d(gprng;)=dim(pNg;) Sfor every ge (G°)°,
2) dim(opNg;)=dim(pNg;)  tf e€gr.
(Note that in this case x does not necessarily belong to gr.)

Proor. 1) By Lemma 3.2 of [138], (G°)° is the semi-direct product of
(G%), and (G°)°*N\(G°)*. Since (G°), is connected, it stabilizes p, and so we need
only to prove the relation 1) for ge (G°)°N\(G°)*. The space g; is stable under
Ad(g)(g € (G°)*N(G°)*). So we have

Ad(g)pNg;=Ad(g)pNA4d(g)g;
=Ad(g) (pNg;)-
Hence
dim (4d(g)pNg;)=dim 4d(g)(pNg;)
=dim(p N g;).

2) Let (x, e, f) be an S-triple containing e as the nilpositive element.
Then (0x, e, 6f) is also an S-triple. Owing to the Kostant’s results stated
in §3 [13], we can find an element ge (G°), such that sx=gx. We shall
show that og; coincides with 4d(g)g;. Indeed, we have

og;={0X; [x, X ]=jX}
={Y; [x,07'Y]=jo"'Y} (where Y=0X)
={Y; [o%, Y]=/Y}
={Y; [4d(g)x, Y]=jY}
={Y; Ad(g)lx, 4d(g HY]=jY}
={4d(g)Z; Ad(g) x, Z]1=jAd(g)Z}

(where Z=A4d(g™")Y)

={4d(gX; [», X]=jX}
=Ad(g)g;-.

Therefore
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dim (op Ng;)=dima(pNag;)
=dim (p N og,)=dim (pN 4d(g)g;)
=dim 4d(g)(4d(g )pNg;)
=dim (4d(g ) pNg;)=dim (pNg;)
since Ad(gp=p (g€ (G).).
Q.E.D.

ProrosiTion 2.2. Let e be a wmilpotent element in gr. Assume that the
characteristic of a mono-semisimple element x of e consists only of integers.
Then e has a real polarization.

Proor. We set p= };g;. Then p is a w-polarization of e (Proposition
JjZ0
5.1 of [137]). Further by Lemma 2.1, we have

Ad((G°)*)p=b,
and
op=p.
Thus p is a real polarization of e. Q.E.D.

ProrosiTion 2.8. Let p be a w-polarization of a nilpotent element e in gg.
Assume that e has not a w-polarization v’ of e other than p such that dim(pbNg;)
=dim (p'Ng;) for every j. Then p is a real polarization of e.

Proor. op and 4d(g)p(g e (G°)°) are w-polarizations of e satisfying
dim (6pNg;) =dim (pNg;),
and dim (4d(g)pNg;)=dim(pNg;),

by Lemma 2.1. And so, by our assumption, ¢p and A4d(g)p must coincide
with p. Thus p is a real polarization of e. Q.E.D.

ProrosiTion 2.4. Let p be a w-polarization of an element X in gg.  As-
sume that any w-polarization of X except for p is not conjugate to p under the
action of the automorphism group Aut(g) of g. Then b is a real polarization
of X.

Proor. Let Y be a Cartan subalgebra of g contained in p. Then )" =o0¥)
is a Cartan subalgebra of gp. Let 4 (resp. 4’) the non-zero root system of g
with respect to § (resp. ). For each € 4, ca € 4’ is defined by

(ca)(H)=a(cH) for every He Yy,
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and this correspondence becomes a bijection of 4 to 4. We define H, € §) and
HyeY(aed, a'e d) by

B(H,, H)y=a(H) for every He b,
B(H,, H=a/(H") for every H' €Yy,
and we set

br= 2. RH,,

de4
and

bz =a,§,RHé,
where B denotes the Killing form of g. By Theorom 5.4 (Chap. III) of Helga-

son [ 77, there exists a Lie algebra automorphism ¢ of g, such that ¢=0 on
Hz. Then we have

vg)=0(") =g
for every « € 4, because, for X € g* and H € Hj,

[H, X ]=¢[¢'H, X]=¢[0'H, X]
=¢[oH, X ]=g¢(a(cH)X)
=a(H)p(X)=a(@H)¢(X)
=(oa)(H)p(X).

So we have ¢(p)=0(p), i.e., 6p is a w-polarization of X which is conjugate to p
under Aut(g). By our assumption, ¢p must coincide with p. It also follows
from our assumption, that p is 4d((G°)°)-stable, so p is a real polarization of
X. Q.E.D.

§8. Polarizations and cuspidal parabolic subalgebras

Let gr=£,+p, be a Cartan decomposition of a real semisimple Lie al-
gebra gg, a, a maximal abelian subspace of p,, and ap=a_+a.(a_Cf) be a
Cartan subalgebra of gz. Denote by g, £, p, a, a¢ and a$ the complexification of
gr, fo, Po, 00, a_ and a, respectively. Fix a compatible order in the non-zero

root system 4 of (g, a) with respect to (azg=v—1a_+a,, a,), and we set
4. =the set of all positive roots in 4,

A.={a € 4,; a does not vanish on a,},
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2 ={a€ 4; a vanishes on a,},
2.=2N4d,,

n = 2, g% no=u\gg,

atd,
m =the centralizer of a, in f,
m, =mNggr=the centralizer of a, in f,,
by =mo+a,.+1,,
and
b=bf=m+as+n.
For every a € 4, H, € az is defined by
B(H,, H)=a(H) for every He q,

where B denotes the Killing form of g. For simplicity, a root « € 4 is often
identified with H,.

Let II={ai,.--, a;} be the fundamental root system, and {ei, .-, &} the
basis of a dual to {ay,---, a;}.

Tueorem 3.1.  There exists a nilpotent element in gr with a real polariza-
tion b.

Proor. We set 0=II"\4,, and write a~p(a, B € 0) if aja,=F|a,. (In
other words, a~f@ implies that =48 or they are combined with an arrow in
the Satake diagram.) Let {a,,; 1=<i <"k} be the subset of @ consisting of all
representatives of equivalence classes in @ with respect to ~. By a suitable
arrangement of ay, -, @, we assume that &/~ = {«a,, -, a;} and that

oa; = o for lglép,
oa; Fa; for p+1<i<k.
We set

» k
e= i eq.t+ 2, (ea,t0es)
i=1 i=p+1

where e, is a non-zero vector in g*(« € 4) satisfying B(en, e_,)=1 and de,=
e,q. We set

P k
f'=2rie_a+ 2. (rie—a,+sie_ca,)
i=1 i=p+1

(rneC(1=i<k)and s;e C(p+1<i<k))
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and

x=[e, f'].

Then we have
b k
x= Y rieg+ 2 (ria+s0a;),
i=1 i=p+1
and [ x, e] is given as follows:

k ? k
Lo, e]= 2 ai( Zrjo+ 20 (riaj+si0a:))ea,
i=1 i=1 j=p+1

5 » k
+ 2 dai( i+ 2 (i tsioa;))eqq,
=1 i<p¥1

i=p+l

k
i=1 j=1

= SN @)+ 3 s, dae,

k k k
+ 2 Z U(O‘Gﬁ,‘, ;) + ) %16‘]‘(0’&,‘, O'ij)}eaai
j=

i=p+1l j=1

=21 .Zk: ri(ai, a;) + j=§:+ lsj(ai, oa))}teaq,

i=1 j=1

k k k
+ 2 A Xr(oa,ap+ 2 siai, @)} eca,
ji=1 j=p+1

i=p+1

From the relation [x, e]=e (this is a necessary and sufficient condition in
order that x may be a mono-semisimple element corresponding to e), we have
a system of linear equations:

3 E
2irilas, a)+ 2 siai, oap)=1  (1=i=k),
i=1 j=p+1

@
k k
2rilda, o)+ 20 silas, =1  (p+1=i=<k).
j=1 j=p+1

Now we set
(a1, 051) o (a, Qk) - (au, qap+1) - (e, fTCﬁk)
(@i 1) () o (y 0p) - (i, O0)
(0aps1, @1) - (01, ) - (@pr1y Api1) - (Apr1, An)
(Uak,.al) (O'ak,‘ak) o (s dp+1) - (s dk)

The matrix A is a positive definite real matrix, since the Killing form B is
strictly positive definite on ag, and {a,,.--, as, 6y, -, 6a;} is linearly indepen-
dent. The equations (1) are written in the matrix form:
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(2) 4 't<r1"", Thky Sp+1s*7s sk)zt(la"'a 1)

The linear equation (2) (or (1)) has a unique solution, and ry,---, 74, Spi1s---5 St
are determined as real numbers. Now we shall show that r;=s; (for p+1<
i<k). Noting that

(o, ) = (0, 00;) =(av;, Oct;) for1<i<pand 1<;<k,

we have from (1)

? k k
[ S (@, adr+ 3 (@ oaprn+ X (a, aps=1  (for 1<i<p),
i=1 i<p+1 i=p+1

y k k
2 (oay, ari+ 20 (i, ari+ 2 (0ay, a)s;=1  (for p+1=<i=<k),
= i<pr1 i=p+1

4 k k
2 (ay, ari+ 2 (ai, oari+ 2 (i, a;)si=1 (for p+1<=i<k).
\ /=1 j=p+1 j=p+1

Changing the second equations with the third, and the second terms with the
third, we have

b k k
(% (@ e+ 3 (an a)si+ 3 (e oapr=1  (A=<i<p),
j=1 j=p+1 j=p+1

» k A
@y ¢ X (a,aprit+ X (i, a)si+ 2 (ay, oaj)r;=1 (p+1=i<k),
=1 i=p+1 j=p+1

b

k k
(oay, apri+ 25 (ay, a)si+ 2 (i, ari=1  (p+1=i=k).
1 j=p+1 j=p+1

(/=
Using the matrix A4, these equations become as follow :

2y AT 1y ey Ty Spity vy Sty Tpsty s Te)="(1,---, 1).

By the uniqueness of solutions of equations (2) and (2)’, we have
$;i=r; (for p+1<i<k).

Thus we have proved that the element
b k
x = Z T,'Hai‘i— Z T,-(Hai‘*‘O'Ha‘.) € Qg
i=p+1

i=1

(where ry,.--, r, are solutions of equations (1)) satisfies [x, e]=e and x €
Ce, g, so x is a mono-semisimple element corresponding to e. Now we
expand the above x by the basis {e;, -, &}:

1
x= 2, Cii,
i=1

where ¢;=a;(x) € R for 1<i<1.
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We shall make an investigation into the characteristic (ci,---, ¢;) of «.
We shall show that

0 (if «; is a purely-imaginary root)
Ci:{ 1 (otherwise).
Indeed, if «; is a purely-imaginary simple root (i.e., 6a;= —«;), we have
(o, a)=0 for 1<;<p
(because (aj, ;) = (0, 0a;) = — (e, @;)) and
(a5, a))+ (0, a;)=0 for p+1<;<k.
Thus we have

ci=a;(x)
» k
= 2 riley, a) + 20 ri{(ay, i)+ (0, i)}
ji=1 j=p+1
=0.

il
Next we consider the case when a; € #. From x= 3] c;¢;, we have
i=1

1

b k
[x9 e]: 'Zl Ciea,;+_ %1 (cieai—l_ (xy o-ai)eaai)'
i= i=

Comparing the coefficients of e, in the both-hand sides of [ x, e ]=e, we have
c;i=1 AZi<h)
{ (x, 0a;)=1 (p+H1=i<k).
For each i=p+1,.., k, we can find B; € IT and 7; € af =Homg (az, R) such that
rila, =0
{ oo, =pi+7i.

The root g; is either equal to «; or combined with «; by an arrow in Satake
diagram. Then, due to (x, ca;)=1 and («x, 7;)=0 (this is because x € a,), we
have

Bix)=1  (prl=i=h).
By the definition of the equivalence relation “~” in @, @ is exhausted by
{al""’ (29 B,b-t—l,"" Bk}’

where the expression of this set permits repetition. Thus we have proved
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that
C,'=1 if a;€D.

Since the characteristic of x consists only of integers, p= Z}g, is a w-pola-
=0
rization of e by Proposition 5.1 of [13]. Further p is a real polarlzatlon of e

by Proposition 2.2. It is easily seen from the characteristic of x (¢;=0 if «;
is purely-imaginary, and c;=1 if «; € @), that

go=a+ 2] g*=ai+m,
aexy

2.8;= 2, g°=n.
i>0

aed,

So we have p=>b. Q.E.D.
From the proof of the above theorem, we have:

CororrARY 3.2. The element in a., whose characteristic is equal to 0 at
purely-imaginary roots and to 1 elsewhere, is a mono-semisimple element cor-
responding to a certain nilpotent element in gg.

Now we introduce the notion of a principal nilpotent element of a real
semisimple Lie algebra:

DeriniTioN 3.1. A nilpotent element e in gy is called a principal nilpo-
tent element of gr if dimg® <<dimg* for any nilpotent element X in gg.

ProrositioN 8.3 1) The nilpotent element in Theorem 3.1 is a principal
nilpotent element of gr.

2) Principal nilpotent elements are all conjugate to each other under the
action of G°.

Proor. 1) Choose x and e as in the proof of Theorem 3.1. Let ¢’ be a
nilpotent element in gz, and x»’ a mono-semisimple element corresponding to
e’. The element x’ may be assumed to be contained in the closure of the
positive Weyl chamber in a, (Corollary 4.2 of [137). Let g} be the j-eigen-
space of ad,x’. Since x’ € a,, we have

go=a+ 2, g*Dat 2 g

a(x’)=0 aled 0
a,=

=a+m=as+m.
So we have

dimg® =dim g¢+dimgj =dim(a$ +m).
2

As we have shown in the proof of Theorem 3.1, the characteristic (ci,---, ¢i)
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of x has the property:
0 if «; is purely-imaginary,
1 otherwise,

and so
dimg’=dimg,=dim (a +m).

Hence dimg°<<dimg*, so e is a principal nilpotent element of gz.

2) Let ¢’ be a principal nilpotent element of gz, and x’ a mono-semisim-
ple element corresponding to e/. By Corollary 4.2 of [137], x’ may be assumed
to be contained in the closure of the positive Weyl chamber in a.. In order
to prove this proposition, it is enough to show that x=x". We consider the
characteristic (ci, -, ¢)) =(a1(x"), -, ay(x")) of x’. From x’ € a,, we have c/=0
for each purely-imaginary root «;. Now we shall prove that ¢/=1 for «;¢€
0 =1II — {purely-imaginary simple roots}. By Lemma 3.1 of [137], cach ¢/ is

equal to O,% or 1. Suppose that c¢;=0 or % for some a;e@. If ¢;=0

for some «; € @, we have
gt Da+m—+g¥i4g
so we have
dimg® >dimg} >dim (a+m)=dimg°.
This contradicts the fact that e’ is principal nilpotent. If ¢/} =—%—~ for some
a; € O, we have

géDa+m and a1 Dg%,
2

so we have

dimg® =dimgj+dimg] >dimgg
2

=dim(a+m).

This also contradicts the principality of ¢/. Thus we have proved c¢/=1 for

a; € 0, and so we have x=x". Therefore ¢’ is G°-conjugate to e.
Q.E.D.

Note: Any two principal nilpotent elements in gz are not necessarily

conjugate to one another under the action of G. For example, the set of all
principal nilpotent elements in 8l(2, R) separates into two SL(2, R)-orbits; the

one through <8 %)) and the other through 2 8 .
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From the proof of Proposition 3.3, we have:

CoroLLARY 3.4. Let e be a nilpotent element in gz. Then e is a princi-
pal nilpotent element of gr if and only if dimg®=dim (a+m).

CoroLLARY 3.5. gr contains a principal nilpotent element of g, if and
only if there exists no purely-imaginary root in 4 (i.e., 3 is empty).

Proor. Let e be a principal nilpotent element of gz. Then, by Corolla-
ry 3.4,

dimg’=dim(a+ 2] g%).
aey
So the condition that e is a principal nilpotent element of g is equivalent to
dim(a+ X g%)=rankg=dima,
aey

which is equivalent to 2 =¢ (the empty set). Q.E.D.

The following theorem is concerned with cuspidal parabolic subalgebras
and polarizations, and plays an important role in the construction of principal
series representations.

TuEOREM 3.6. Let §, be a 6-stable Cartan subalgebra, and notations are the
same as in §4 of [137]. Let Hy=H,+ H,(H, € §_ and H, € §),) be an element in
9o such that a(Hy)=0 for every ac€ 3,. Then there exists a nilpotent element
e in ny such that

q=b+ 2 g*+ 2. g°
aes

a(V-THDZ0

18 an admaissible w-polarization of Hy+ e.

Proor. The centralizer (gr)?* of H, in g is a reductive Lie algebra with
the center

and the semisimple part
Io=f)6+(a%,9“)f\91e,
where
d={ae d; a(H)=0} 34,
Y= 3 CH,,

aeq’
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and
Ho=H'Ngz.

As is shown in the proof of Proposition 4.5 of [137, §; is a Cartan subalgebra
of [, with maximal vector part, and §.=5p;Nf, (resp. . =Hh;N\p,) is the toro-
idal (resp. vector) part of §;. And a lexicographic linear order in the non-
zero root system R (which may be identified with {«x|¥;ae€ 4’}) of (1, 9")
compatible to (93, H%) can be chosen so that the subset R, of all positive roots
in R coincides with {«|Y’;a € 4/"4,}. By Theorem 3.1, we can find a princi-
pal nilpotent element e of I, with a real polarization (in [)
=Y+ 2 g+ X g*

aed aedl

#lb4=0 a@lp}0
Now we put X=H,+e, and we shall prove that q is an admissible w-polariza-

tion of X.
0) g is a subalgebra of g since the linear order in 4 is compatible.

i) By definition of q, we have
dimg—dim(I+3)=2(dimq—dimq —dim3).
Since ¢ is a polarization of e in I, we have
dim!—dimq =dimq —dim Z(e).
And, as is proved in the above,
dimgxzdim5+aim Z(e).
So we have
dimq—dimg* =dimg—dimg.
ii) By definition of g, we have

lo,q9]= 2. CH,+ ) g*+ 2 g%
aey AEA, LIP3
a(Ho=0 a(V=1H)Z0

On the other hand, X e CHy,+ 2] g°

a€d,

Thus we have B(X, [q, q])={0}.
iv) Since }; g“ is o-stable and ca= —« for a € &, we have
aEd,

qg+oq=Y+ > ¢+ 2. g%
QEA, des
which is a subalgebra of g because the linear order in 4 is compatible to

(Br, B:).
Thus the statement of Theorem 3.6 is proved. Q.E.D.
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Note: In the above Theorem 3.6, (3+0q)N\grz is a cuspidal parabolic
subalgebra of gz corresponding to Y.

Note: As to the assumption in Theorem 3.6, we remark here that any
(non-zero) semisimple element H in gz is G-conjugate to an element H’ in
some G-stable Cartan subalgebra §,, and which can be chosen so that a(H")=¢0
for every aw € 3, (Lemma 4.4 of [137)).

§4. A discussion in simple cases

Let gz be a non-compact real simple Lie algebra, and gz=%,+p, its Car-
tan decomposition. Choose a Cartan subalgebra a,=a_+a, (a- C¥, a, CTho)
with maximal vector part, and we set I=dima,(=rank(g)) and r=dima,(=
rank of the symmetric space G/K). Denote by g, t, b, a, a and af the com-
plexification of gz, o, Do, a0, a- and a,, respectively. Let 4 be the non-zero
root system of g with respect to a. A lexicographic order in azg=v—1a_+a,
compatible to a, induces a linear order in 4, and we denote by 4" the set of
all positive roots. Let IT={ay, .., a;} be the system of simple roots arranged
according to the Dynkin diagram, and {ei,..., &;} the basis of az dual to {a;,

o, A root ae 4 will be called a purely-imaginary root if «|a, —0 a real

root if a|a_=0, and a mizred root otherwise. A positive root a= Z} a;a; is
expressed simply by (ai,---, a;)). (In case of type (D) or (E), « is expressed

also by (41 ®1-3%1-201-1) oy (010203Q4--Gi-1) Yy Por o€ 4, we set
a; a; ’

g*={Xegq; ad H)X=a(H)X for every He a}.
We choose e, € g*(«x € 4) such that
Ble,, e_)=1and ce,=e,q,
where B denotes the Killing form of g. And we set
H,=[eq4 el

It is well-known that H, € az and B(H,, H)=«a(H) for every He Y. We set
|a|?=a(H,) for a € 4.

Lemma 4.1. In case of gr=30(n, 1),

1) every (mon-zero) milpotent element in gr is a principal nilpotent ele-
ment of gr, and

2) every nilpotent element in gr has a real polarization.

Proor. 1) A (non-zero) nilpotent element in gz is embedded into an
S-triple in gz as the nilpositive element, which is G-conjugate to a standard
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S-triple («, e, f) (Lemma 3.3. [13] and Corollary 4.2 [137]). The character-
istic of x(x € a,) is zero at purely-imaginary roots. The Satake diagram of
gr is as follows:

O—0—@ - 0—0—7]™0 (if n=21)

oO—eo—o - 0—e—@ (f n=21+1)

So the characteristic of x is

i) (1; 0,-- ) 0) (x251)3 or

ii) (_é_,o,...,o) Q:%el)

The case ii) does not occur since ii) is inconsistent with g,2¢{0}. So the only
possible case is i), which is the characteristic corresponding to a principal

nilpotent element of gx.
The statement 2) follows from 1), Theorem 3.1 and Proposition 3.3.
Q.E.D.

Lemma 4.2. Every milpotent element in the simple Lie algebra of type
(E IV) has a real w-polarization.

Proor. The Satake diagram of (E IV) is

From the table of Dynkin ([5] p. 178), the characteristic of a standard S-
triple («, e, f) is

i) (1 ,0 8 0 1) (x=¢1+es),

or
ii) (% 0 g 0 %’) (x =—é—(el+es)).

In case i), e is a principal nilpotent element of gz, and has a real polariza-
tion (Theorem 8.1 and Proposition 3.8). So we shall consider the case ii).

We set
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V1= Z ga, V2= Z ga.
a(m=-1 ap=-1

a(éy)=1 a(&g=1
Then one can see from an easy calculation of roots that
.1 .
dim V' =—-dimg ,,
2 "z
Vi is an abelian subalgebra of g, and
Vi 1is stable under the adjoint action of g,
for =1, 2. Therefore
pi=g;+V’ (i=1, 2)
7=0
is a w-polarization of e (Proposition 5.2 of [187]). Moreover, since Vi(i=1, 2)
is o-stable, p; is a real w-polarization. Q.E.D.

Lemma 4.3. Let g be a real simple Lie algebra not of type(4), and pu the
highest root. Then e, has not a w-polarization in the sense of Definition 7.1.
of [13]. (Note that e, is not necessarily in gg.)

Proor. Consider an S-triple

1 1
(x) €, f):<"_ﬂ|—2‘-H/“ e,‘,mﬁeﬁﬂ).

We can see from the root table of each case that there exists uniquely the
simple root «; such that #—a; € 4 (so x is a scalar multiple of ¢;), and that
the coefficient of # at «; is equal to 2 (i.e., u(e;)=2). From [x, e]=e, we

have x(x)=1, so we have xz—é—e;. Thus the characteristic of x is

We set
do={a € 4; a(x)=0},
4t =doN\ 4"

For a € 4o, let y—pa, p—(p—1a,..., u+qa(p, =0) be an a-series con-
taining 4. Then

o _ol(Hy) _
qg—p=—2 a|? =0.

And either p or ¢ is equal to zero, since x is the highest root. (If € 47,
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then ¢=0; and if —a € 4%, then p=0.) So we have p=¢=0, and [e, g*]={0}
for a € 4,. Thus we have

goNg°= 21 CH,,+ 25 g“
J¥xi a€ dy

Assume that e has a w-polarization p. By Proposition 5.3 of [137] (x € p)
and the above, we have goCp, so we have }; g;Cp. Since g.,=Cf and g;=
jz0

{0} (j g—%), we have

dim(png_;)=—2-dimg
2 2

by the condition ii) of polarizations. But this cannot happen because, as one
can see from an easy calculation of roots, g 1 is an irreducible go-module.
2

Therefore e has no w-polarizations. Q.E.D.

Prorosition 4.4. In case that gr is a non-compact real form of type (B),
(D) or (E), except for 3o(n, 1) and (E IV), there exists a nilpotent element with
no w-polarizations.

Proor. It suffices to show that in each case the highest root # is a real

root.
1) The Satake diagram of type (B) (except for 30(2[, 1)) is as follows:

[24] Ay (o] -1 (29]
O-vvee- O—@o—@ —0 esr).

The highest root #=(12...2) is real since it is orthogonal to purely-imaginary

simple roots.
2) The Satake diagram of type (D;)(I=4) (except for 30(2(41, 1)) is as
follows:

{ ] 2e<sri-2)
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® O @ (OIEEERE o—O—©
( (I=2m =6)

) O ) Qeeee ® O o O (I=2m+12=5)

In each case, the highest root ,a=<1 22 % 1) is orthogonal to purely-

imaginary roots and simple roots with an arrow, and so x is real.
3) The Satake diagram of type (E) (except for (EIV)) is as follows:

a

f (043
(ED ©

a3 y
O O O
O

08

(Ee) { (EII) O—0O T 0—oO
O

(EII) O @ T @ O
©)

( a, (o2 Ay as A
EV) o ® O O e

QR O—oOR

@) EVD 0

O

(EVI) o—e

o—e O0—O
[ ]
@)
O
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( [04] (0% Ay s g a7
(EVIID) o—o0 O—O0——0—O0

3
M
T
O
(24

(EIX)Q.TOOOO
[ J

(Es)

The highest root # is

( 12321 ) if qr is of type (Eo),
< 23 ‘21 321 if gz is of type (E7),

(2435 432) if gz is of type (Es).

We have (u, a;)=0 for i =6 if gz is (Es), for i=¢1 if gz is (E;), for i=¢T if gz
is (E;), and so in each case, x« is orthogonal to purely-imaginary roots and
simple roots with arrows. Thus x« is a real root. Q.E.D.

Lemma 4.5. In a non-compact real form of type (C), there exists a nilpo-
tent element with no w-polarizations.

Proor. The Satake diagram of (C)) is

a [07) A3 A2 G-y a
O O OO0

...__O.—.O__.__. ...... .(__—_-.

.—O—. ...................... O—. (:O

The root #/=(1 2 2...2 1) is real since (#/, @;)=0 for i=:2. We consider an
S-triple (in gg)

(x, e, f)=<[—/%q—2 H,, e, l—ﬂl,—lz e_,/>.
Since (¢, a;)=0 (so x is a scalar multiple of ¢;) and [«, e]=e (i.e., £'(x)=1)
and the coefficient of x’ at @, is equal to 2 (i.e., #/(e2)=2), we have x=—5"¢;.
So the characteristic of « is
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di={x€ d; a(x)=1}
={122..21),222..21),022...2 1)},

1
A%={a¢e 4; a(x) =5 a(€1)=1}’
1
Az_={a€6 A, th(x)=—§—, (x(el):O})
. . R ! 2
A%_{cze A,a(x)—-T}-—A_%UA%,

do.={cx€ 4; a(x)=0, ale;) =0},

do={ae d; a(x)=0}=4do,\J{x=(1 0... 0)},
4 j={—a;a € 4} (j=—;ﬂ, 1)-
Then we have

g;=1{0} (it 1j1=-3),

a=5e"  (if1il=—41)

QoNg'= L CH.+ 2, g%

go=Cx +(goNg") +g1 V479,
=I+g(1°"'°)+g‘(1°“‘°),

g'=(0Ng")+g1+as,

g_1= V1+ Vz)
2

where
[=Cx+(goNg"),
Vi= 3 g7¢ (i=1, 2).

1
aeql
2

By a simple calculation of roots, we see;
Vi is l-irreducible,

EVI, V1:|=g—(22...21),

501
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[VZ, V2:|=g—(02'"21).
Now we assume that e has a w-polarization p. We have I4+g1 +g: Cp, by
2

Proposition 2.1 and Proposition 5.3 of [137].
First we shall prove that png 1 ={0}. If png 12{0},p includes 7' or
2 2

V2, Suppose that pDO V. Then
g =V, VICp.
Since e € p, we have
g (0 0=[e, g~***]Cp.
So we have
yi=[g o0, PHICy,
Hence

g_1 C‘p; and 9_1:[g_1, g_chp
2 2 2

Thus we have p=g, which contradicts the condition ii) of polarizations. The
supposition p > V2 leads us to the same contradiction. Thus we have proved
that pNg 1 =1{0},

2

Next we shall prove that pg_; ={0}. If pg_; ¢ {0}, p includes g~ ?>~?1
or g~(°*2-Zb_ (f € p does not occur because f € p, with g°Cp, implies p=g.)
Suppose that p > g~***.  Since g% Cg1 Cp, we have

2

g—(112...21):[g—(zz...m) g(llo...o)] C p
which contradicts the fact that pNg_ 1= {0}. If we suppose that p>g (222D

we have
(01221 — [~(022.:21)  ((010..0)] —py
since g‘(°1°"'°)Cg% Cyp. This is also inconsistent with p/\g_% ={0}.

So we have pC > g;. Hence
F e\
dimp<dim 3] g,-=%(dimg+dim a0
=0
<%(dimg+dim go-+dimgy)

=~%—(dimg+dimg“).
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This is contradictory to the condition ii) of polarizations. So e has not a
w-polarization. Q.E.D.

Summing up Corollaries 6.2-6.3 ((137]), Examples 6.3-6.4 ((137]) and the
above lemmata and propositions, we have:

TueoreMm 4.6. 1) In case that g is a real simple Lie algebra of type (A I)
(A ID(E IV) or 80(n, 1), every nilpotent element in gr has a real w-polarization.

2) In case that g is a real simple Lie algebra of type (A)(E IV) or 3o(n,
1), every element in gr has a w-polarization.

3) If gr ts a mon-compact real simple Lie algebra of other type, there ex-
18ts a nilpotent element tn gr With no w-polarizations.

The following is an immediate consequence of Proposition 2.6 [137] and
the above theorem:

CoroLLARY 4.7. 1) In case that gz s a real semisimple Lie algebra con-
sisting only of simple ideals of type (4 1) (4 I1) (E IV) or 8o(n, 1), every nilpo-
tent element tn gr has a real w-polarization.

2) In case that gr is a real semisimple Lie algebra conmstisting only of
simple ideals of type (A)(EIV) or 8o(n, 1), every element in gr has a w-polariza-
tion.

3) If gr is a non-compact real semisimple Lie algebra of other type, there
exists a nilpotent element in gr with no w-polarizations.

§5. Orbits and unitary representations

5.1. In this section we shall give a sketch of the Kostant’s method (Kos-
tant (117, [127] and Kirillov [9]) from the viewpoint of induced representa-
tions.

Let gz be a Lie algebra of a connected Lie group G, and g its complexifica-
tion. The group G acts on the dual space gk=Homzr(gr, R) as the contragre-
dient representation of (4d, gz). Namely, for every g e G and 1€ g%, g is
defined by

(gD)X)=2(4d(g HX) for every X € gg.

The G-orbit 0=G/G* in g} through 1 admits the canonical G-invariant sym-
plectic structure o defined as follows (a non-degenerate closed 2-form on an
even dimensional C=-differentiable manifold is called a symplectic structure):

wﬁ(a(X)P3 6( Y)P) =—p (EXa Y:l)

for every X, Y € g and p € O, where 6(X) (X € gr) denotes the vector field on O
generated by the 1-parameter subgroup {exp:X}._...;c.. of G, i.e.,
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0 =OOF )P = - fexp—1X-p)|
(for f € C~(0) and p €0), and o(X)(X €g) is its canonical extension. It is
proved in [127] that o is well-defined as above and that » is a G-invariant
symplectic form on O.

Let p be an admissible polarization of 1, and define a linear mapping
%y of p to C by

xx(X)=2rV—14(X)  for every X € p.

Then by the condition i) of a polarization, x} is a Lie algebra homomorphism.
We set

dD=pNah,  Do=dgr=pNgr,
e=p-+0op, eo=e/MNggr,

and denote by D, (resp. E,) the analytic subgroup of G generated by b, (resp.
¢). We assume that D, and E, are closed subgroups of G. Let D (resp. E)
be the subgroup of G generated by D, (resp. E;) and G*. By the condition iii’
of a polarization,

D=G)‘Do={x_y, x EGX, nyo},
E=GE,={xy; x €G* ye€ Ey},
and D, (resp. E,) is a normal subgroup of D (resp. E).

Remark 5.1. When G is semisimple, the above definition of D and E
seems to need some modifications, as will be pointed out in 5.6.

5.2. The symplectic form » on O determines the de Rham cohomology
class [o].

Lemma 5.2.1 (Kostant [127].) When G is simply connected, the following
conditions are equivaleut :

1) There exists a character x* of G, whose differential coincides with x)
on gk.

2) [w] is integral.

Let G} be the connected component of G* containing the unit. Then we
have

Lemma 5.2.2. 1) The manifold D/G* is (canonically) diffeomorphic to
Do/(DyNGM).
2) If D/G* is simply connected, then

i) DyNG*=Gy, and
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ii) There exists a canonical 1-1 correspondence between the set of the
connected components of D and that of G*.

Proor. 1) Define a mapping ¢: Dy/(DyN\G*) — D/G* by
v(g)=g6C" for every g€ D,,

where g denotes the element in D,/(DyN\G") corresponding to g. This map-
ping ¢ is injective, since gG*= g'G* implies that g~'g’ € DoNG*, for g, g’ €
D,. Each element g in D can be decomposed as g= g'h (g’ € Do, h € G).
Then

(o(g./) — g/G)\.___ g/th: ng.

Hence ¢ is surjective
2) i) It suffices to show that Dy N\ G* is connected. There exists the
following homotopy exact sequence of the fibre space (Do, p, Do/DoN\G*):

71(Do/DoNG*, p(e)) = mo(DeNG*, e) —> mo(Dy, €)

where p denotes the canonical projection of D, onto Dy/DyN\G*, and e the unit
of D,. Here, we have

71(Do/DoNG*, p(e))={0}
by 1) and the assumption on D/G*, and
mo(Do, €)=1{0}
since D, is connected. Hence
To(DeNG*, e)={0},
and so DyN\G* is connected.

ii) Letx=hyand x’=h"y’ be elements in D (y, y’ € Do, h, ¥’ € G*). Since
x'x'=y"'h~'h y’, the relation x~'x’ € D, is equivalent to ~~'4" € Do, which is
also equivalent to A 'A’ € G; because Gy=D,N\G*. So we can assign the
connected component of G containing A to the connected component of D

containing x, and this assignment gives a 1-1 correspondence between the

set of connected components of D and that of G*. Q.E.D.
We set
R=( x; i) =z is a character of G*,
{ ii) the derivative of x coincides }
with x} on g}. ,

and
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Ry=( z; xis a character of D
with the infinitesimal representation
x.

Then, by the restriction on G*, R} is naturally included in R*; i.e., R} < R™

LemMa 5.2.83. When D/G* is simply connected, the natural inclusion of
R} to R* is a bijection.

Proor. It suffices to show that a character x of G* whose infinitesimal
representation coincides with xz} on g} is extendible to a unitary character of
D.

Let D, be the universal covering group of D, and Z the subgroup of the
center of D, such that D,/Z2 D,, and p the canonical homomorphism of D,
onto D,. The analytic subgroup H of D, generated by g} coincides with
p UGy, so H is closed, and we have

H/(HNZ)=Gy (isomorphic as Lie groups).
The mapping p of D,/H to D,/G} is well-defined by
(& =p(8)G; € Dy/Gy,

where z=gH denotes the element in Do/H corresponding to g € Do. Itis
easily seen that p is surjective and locally diffeomorphic, so p is a covering
mapping of Do/H onto D,/G;. By Lemma 5.2.2. the manifold D,/Gj} is simply
connected, so we have D,/H=> D,/Gy. Hence

ZCH
and
Gy=H/(HNZ)~H/Z.

(The proof of ZC H is as follows: each element z € Z satisfies p(z) =e, so we
have p(z)=eGy, which implies z € H, since Dy/H= D,/G}.)

Since D is simply connected, the Lie algebra homomorphism x} can be
lifted uniquely to the character 7 of D,. The representation of D, does not
necessarily, in general, induce the representation of Gy=H/Z. In our case,
however, we discuss under the assumption that there exists a character x of

5 with the infinitesimal representation x} |g% (i.e., R* is not empty). There-
fore 7 induces the character x of G}, so we have #(Z)={1}. Thus 7 induces
a character %, of D,, since Do=~D,/Z. In particular, we have

X1=2% on Gj.
Each element 4 in G* induces an automorphism I, of D, by

Ii(g)=hgh™*  for every ge€ D,.
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We set 2{=x;0I;. The infinitesimal representation (xz{), of %; is given by

(xDx=(21) 50 Ad(h),

and we have

(2D (X)) = ()5 (Ad(R) X)
=27V —1 2(4d(h)X)
=21y —1 (A~*2)(X)
=27V =1 2(X) = (21)x(X),

for every X € d,. So we have (x{)x=(%1)4, and x{=%;. Thus we have proved
that

x(hgh™)=1.(g)

for every ge Do and h € G*.
Let x=yh=y’h’ be two expressions of an element x in D, where y, y'€
D, and h, b’ € G*. Since y~'y'=hh'"' € D, G*=G and x;=x on Gg, we have

21yt y)=x(hh' 1),
So we can define a mapping %, of D to C* by
%o(yh)=x1(y)x(h)

where y € Dy and h € G*.

By the definition of %,, in order to prove that x, € R}, it is enough to show
that %, is a group homomorphism. For x=yh, x'=y'h" € D(y, ¥’ € D, and
h, k' € G*), we have

xx'=yhy'h = y(hy B Dbk

So we have
xo(xx)=21(yhyh )x(hh")
=x1(y)x1(hy ™) x(h)x(R")
=x1(y)0(y)x(R)x(h")
=x1(y)x(R) 21 (y)x(h')
=2%o(x)%o(x").
And

xo(e)=2%1(e)x(e)=1.
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Thus we have x, € R}, and the restriction of x, on G* coincides with x.
Q.E.D.

Hereafter we assume that x} can be lifted to a unitary character x* of
D.

5.3. In this section, we introduce G-quasi-invariant measures on G/D
and G/E.

Lemma 53.1. d={Xe€e; 1([e, X ])={0}}.

Proor. From the conditions of polarizations and the non-singularity of
the symplectic structure w on 0, we have

p={Xeg; A([p, X D={0}}.
We set
V={Xece; 2([e, X=A{0}}.
Since e=p+0p and cdA=4, we have
V={Xee; A([(p, XD={0}}N{X ee; 2([op, X])={0}}
=pN{X ee; A([p, c X N={0}}
=pN{0X; X eeand A([p, X ])={0}}
=pN\ap=b. Q.E.D.
Lemma 5.3.2. det Adp(x)=det Adz(x) for every x € D.

Proor. The statement of this lemma is shown using the theory of sym-
plectic structures. We set 1,=¢(1), where ¢ is the canonical projection of
g¥ onto the dual space ef =Hompg(ey, R) of ¢,. The E-orbit £ in e} through 4,
admits a canonical E-invariant symplectic structure w, (v, is defined in the
same way as in 5.1). Let E™ denote the isotropy subgroup of E with respect
to 2o and e}° its Lie algebra, i.e.,

e’ ={X € eo; 2o([e, X)={0}}
={X€eo; 2([e, X])={0}}
=Dy,

by Lemma 5.3.1. Then D and E* are Lie subgroups of G with the same Lie
algebra b,. Since D, is the connected component of D containing the unit,
DyCE™». We have G*CE™, since G* is the stabilizer of 1 in G and G* is
included in E.

So we have
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D=GDyCE™.

Now the orbit 2=E/E™ has the B-invariant volume element induced
from the symplectic structure w,, and this volume element is realized as a
differential form. So by Proposition 1.6 Chap. X of Helgason [7], we have

det Adg:(x)=det Adp(x) for every x € E™.

Since E™ and D are Lie subgroups of E with the same Lie algebra b,, we have
det Adg:(x)=det Adp(x) for every x € D.

So we have
det Adp(x)=det Adg(x) for every x € D.
Q.E.D.

Let ¢ (resp. up or ur) denote a left-invariant measure, and 4 (resp. 4p
or 4g) the modular function on G (resp. D or E); i.e.,

duc(yx)=de(x ") duc(y), ete..

e, #p and up are determined uniquely up to constant factors. Modular
functions are given explicitly by

dc(x)=det Ad(x) for every x € G,
dp(x)=det Adp(x) for every x € D,
dp(x)=det Adg(x) for every x € E.

This is due to Corollary 1.8 Chap. X of Helgason [7]. It is known from the
invariant measure theory that there exists a C~-function p on G satisfying

1) o0(g>0 for every geG,

2) o(gh)= j‘zgg o(g) for geGand heE,

and that there exists such G-quasi-invariant measures yvp and vz on G/D and
G/E that

| f@o@duce)=_ (e fehran®

_ S Ly s gE)SEf(gh)dﬂE(h)

for every continuous function f on G with compact support, where gD (resp.
gE) denotes the element in G/D (resp. G/E) corresponding to g€ G.
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We denote by C.(G) (resp. C.(G/D) or C.(G/E)) the space of all continuous
functions on G (resp. G/D or G/E) with compact support. We shall often use
the following lemma :

Lemma 5.3.3. (Helgason [7] Lemma 1.8 Chap. X). Let G be a Lie group
and H a closed subgroup. Let dh be a left invariant measure >0 on H and
put

J(et)=_f(ghdh, f € C.6).

Then the mapping f— f is a linear mapping of C.(G) onto C.(G/H).
For each element g€ G, we define a C~-function &, on G by

o(gx)
o(x) °

Lemma 5.83.4. The function &, has the following property:

ég(x) =

E (xh)=¢€,(x) for every x € G and h € E.
Proor. This is shown by an easy calculation:
o(gxh) _ do(h) '8 _ o(gx)

o(xh) 4z(h) o(x)
Af; 0l o(x)

E(xh)= =&, (x).

Q.E.D.
So we can define a C~-function &2(resp. ¢£) on G/D (resp. G/E) by
E0(xD)=¢,(x) for every xD € G/D,
EE(xE)=¢&y(x) for every xE € G/E.
For g €G, let y(gyvp denote the quasi-invariant measure on G/D defined by
(r(gvo)(S)=vp(g'S),

where S is a v-measurable subset of G/D and g 'S={g'x; x € S}. With
the usual notation, 7(g)vp is expressed by

d(r(@vp)(x)=dvp(g™'x)

where g€ G and x € G/D. The left-translation y(g)vr of the measure v is
also defined in the same way as above.

Lemma 5.3.5. For every g€ G, we have



Polarizations of Certain Homogeneous Spaces and Most Continuous Principal Series 511

dvp(gx)=¢E2(x)dvp(x),

and
dye(gx)=EE(x)dyr(x).

Proor. By Lemma 5.8.3, for each f € C.(G/D), we can find f € C.(G)
such that

FoD = fymdu®m  for yec.

We set x=yD e G/D, then
f@dvo(gn={_ g mdvo@)
oo g™y dush

Flg ' we(w)dus(u)

~,

(wo(gu)due(u)

5y S o) oty

Q

o(gyh)
o) fOm G E dro®)

=SG/D F(x)e2(x)dyp(x).

Thus we have dvp(gx)=£¢2(x)dvp(x). The discussion as to v is the same as
above. Q.E.D.

Let op (resp. o) be the canonical projection of G onto G/D (resp. G/E),
and ppg that of G/D onto G/E. The following lemma is an easy consequence
of the definition of &, and Lemma 5.3.4.

LemMa 5.3.6. For every g, g’ € G, we have

1) &, (x)=§,(g"%)¢,(x) for every x € G,
&l (x)=¢€2(g x)E0(x) Sfor every x € G/D,
€L (x)=€E(g'x)EE (%) Sfor every x € G/E.

2) &, (resp. £D) is constant on each fibre of o (resp. Opr).
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5.4. Let L, denote the Hermitian G-homogeneous line bundle over G/D
associated to the unitary character x* of D, and we set
I'(L,)=the space of all C~-sections of L,,
I'y(L,)=the pre-Hilbert space of all square-integrable C=-sections of
L,,
C=(G)*=the space of all C~-functions f on G such that f(gh)=x*(A"")
f(g) for every ge G and k€ D.

Notations: 1) For x €G/D, | |, (or simply | |) denotes the Hermitian
norm on the fibre over x» of the line bundle L,.
2) For s e I'(L,), |Is|[(0=<||s|]| < o) denotes the square-integral-norm of

lsliP=,  Is@)12dvn(a).

The group G acts on I'(L,) by
(gs)(x)=g(s(g7'x)) forsel'(L,), geGand x € G/D,

and acts on C~(G)* by left-translations, and I';(L,) is a G-invariant subspace
of I'(L,). There exists the canonical G-isomorphism between I"(L,) and
C=(G)*, which we shall denote by

r'(L,) — C=(6G)* I'(L,) «— C=*(G)*
w w and w w
s —> ¢ Sg < o.

Each element X in gz acts on C~(G) as a left-invariant vector field X:

Rf)e)=[-L f(gexpiX)] = forevery f € C*(6)and g,

1=0
and, by the canonical extension, X is defined for every Xeg. We set
o ={s € I'z(Ln); X¢p,=2nV—T12(X)¢; for every X € p},
and for every ge€ G and s € O{, we define a section 7;(g)s by
(1)) =VETA(x)-(gs)(x)  for x € G/D.
Then we have
Lemma 54.1. 1) 9] is 7{(G)-stable.
2) 7n{(gg)=ni(gr(g) Sfor every g, g €G.
3) m(g) 18 morm-preserving.

Proor. 3) For se ] and ge€ G, we have
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Im@sli*=, | 1@ (@@ dvo)

|
|
={ 15 %624 gx)e2(x) dvo()
[, ls1erdns)
|

|s(2)]*dvp(x)=]lsll%,

where we have used Lemma 5.3.5 and Lemma 5.3.6. So 7;(g) is norm-pre-
serving.

1) Fix geGand seD]. Since 7](g) is norm-preserving, 7;(g)s belongs
to I'y(L,). So we need only to show that

Xarigrs =20V =12(X) /(05 for every X €'p.
Now it is easily seen that

¢7r;(g)s =\/§.g¢)s

Since &, is constant on each fibre of pr (Lemma 5.8.6), we have X¢,=0 for
every X € p, and by the left-invariantness of X,

X(gos)=g(X¢s) for every X € g.
Therefore, for each X € p, we have
Xuiigrs =VEg-1-8(X05)
=V g2V —T2(X)¢.)
=21V —12(X) N, g,
=27V —12(X) P 0 -

Thus we have proved that 7](g)s € ] for every ge G and s € ;.
2) The statement 1) of Lemma 5.3.6 implies that &,,,=(g'"'&,)-&,. So
we have,
n’,((gg')s=\/$g/-1g_1 - g(g’s)
=V g gm0 g(g's)
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&g (Eg's)
= (g)(m(g")s),
for every s € 9. Q.E.D.

Let (7., ©.») be the completion of (n{, ) with respect to the norm
[l |I. Then, by the above lemma, we have:

TueoreM 5.4.2. (7,, D)) 18 a unitary representation of G.

5.5. We shall give here an example when G is a non-compact simple Lie
group.

Example 5.,5. G=SL(3, R) (gr=38L(3, R)).

We set
K=S0@B,R)={ge€G;'g=g"},
(fr 00
A4.=(0 s 0 ;1 s>0
0 0 (rs)7t s
(fr 0 0
A={ 0 s O ; r, s are non-zero
Lo 0 (e real numbers ’
+1 0
the number of
A-=ANK=( 0 *1 0 |, “minus’-signs
0 0 +1 iseven ,
1 u w)

N=(0 1 v|; u,v,weR
0 0 1

Then G=KA.N is an Iwasawa decomposition of G, and 4 is a Cartan sub-
group of G with maximal vector part. The centralizer M of 4, in K coinci-
des with 4_, and

B=MA,N=AN={{0 s v |€G
0 0 (rs)



Polarizations of Certain Homogeneous Spaces and Most Continuous Principal Series 515

is a minimal parabolic subgroup of G. We set
010

e=|0 0 1 egr
0 0 0

Since e is a principal nilpotent element of g, e has a unipue w-polarization b,
and it is at the same time a real polarization (Corollary 5.6 of [137]). p is
given by

ai; Q2 a3
a;jEC

’ 3
2 ai;=0
0 0 ass i=1 ,

p=( 0 a2 a2

and subgroups D, and E, in 5.1 are given by

r u w

u, v, w€R
D0=E0: 0 s v 5
r,s>0
0 0 (rs)7t
=A,N.

The subgroup G* is obtained by a simple calculation:
1 6 ¢
G‘=(|0 1 b |, b,ceR
0 0 1/
So G° is connected, and we have
D=G*D,=A4,N.
Then the unitary representation of G constructed on the G-orbit through e is

equivalent to ind (14,v), where 1, v denotes the trivial character of 4.,V
A N1tG

This representation is reducible, and the direct sum of 4-numbers of irreduci-
ble components :

3
ind (14,m~ 2 ind (g),
AyN1tG i=0 AN1G
where ¢;(0<i<3) is a unitary character of 4N defined by

eo(x)=1,
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and
(%) =sgn(x;;) (=1,2,3),
where
X11 X1z %13
x=| 0 x32 x23]|€ AN,

0 0 X33

and sgn (u) designates the sign of a non-zero real number u.

5.6. In order to avoid the inconvenience as in Example 5.5, we make a
modification on the definition of D and E, when G is a connected semisimple
Lie group. Since a polarization p is a parabolic subalgebra of g (Theorem 2.2
of [187)), p\gr contains a Cartan subalgebra Y, of gz. The Cartan subgroup
H of G corresponding to ), is, by definition, the centralizer of §, in G, and let
D, and E, be the same as in 5.1. We set D=4D, and E= AE,. Since A sta-
bilizes b, and ¢y, D and E are subgroups of G. The argument in 5.3-5.4 is
still valid for such D and E.

5.7. We shall give another expression of the G-quasi-invariant measure
yp (or yg) in 5.3.

DeriniTION 5.7. 1) A linear mapping v of C.(G/D) to € with the fol-
lowing property is called a Radon measure on G/D: for each compact subset
K of G/D, there exists such a non-negative constant My that

[v(f)|=Mx sup | f(x)]
x€GID

for all f € C.(G/D) whose support is contained in K.

2) A linear mapping v of C.(G/D) to R which satisfies v(f) =0 for every
f=0 is called a positive Radon measure on G/D. (It is a well-known fact
that a positive Radon measure is a Radon measure.)

Each element ¢ in C~(G)* defines a linear mapping y; of C.(G) to C by

= 101 (@o(dnc(e

for f € C.(G).
Lemma 5.7.1. Let ¢ € C*(G)* be fixed, then

= 5@ @) dvn(x)

for every f € C.(G), where f— f 18 a linear mapping in Lemma 5.3.3.
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Proor. We have

viH={ 0@ (@0 dre)
- SG/D dvD(g)SD |o(gh)|%f(gh)dup(h)

=, [ dvo(a),
since
9(g0)| =16 =I5/  (g=gD € G/D).
Q.E.D.

By the above lemma, vj(f) does not depend on the choice of a represen-
tative f of f, but depends only on ¢ and f. So a linear mapping v, of C.(G/D)
to C is well-defined by

vo()=v4(f),

and v, is a positive Radon measure on G/D. Let ||¢]*(0<]|¢||* <o) be the
total volume of G/D with respect to this measure y,:

ll¢l|=vol, (G/D).
We set
C3(G)={¢ € C~(G)*; ||p|| < oo}.

For ¢ and ¢’ € C53(G)*, the Radon measure v, on G/D is defined by using
¢(9)¢'(g), and we set

(¢, ¢")=vol,, ,(G/D).

The space C3(G)* becomes a pre-Hilbert space with this Hermitian inner pro-
duct, and at the same time it is a G-submodule of C~(G)*. We set

Ol={y € C3(6)*; Xp=2rnV—12(X)¢  for every X € p},
and for every geG and ¢ € 9!, we define a C~-function 7/( g9 on G by
()Y =VE1+ go.
Lemma 5.7.2. 1) 9/ s 7[(G)-stable.

2) wi(gg)=m(gn(g") Sfor every g, g’ €G.

3) @(g) 18 norm-preserving.
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The proof of this lemma is the same as that of Lemma 5.4.1. And the com-

pletion (7,, ©,) of (7, Si))() with respect to the norm || || is a unitary repre-
sentation of G.

LemMmA 5.7.8. The mapping s— ¢, is an isometry I'53(L,) onto C3(G)*.
Proor. It suffices to show that ||¢ ||=]|s|| for every se I'(L,). Let K,
K,-.- be a sequence of compact sets in G/D such that

K,CK,.1 for every n € N,

and
6/D=\JK,,
n=1

where N is the set of all positive integers. Letg, € C.(G) (n € N) be a func-
tion such that

i) ¢,=1 onK, and ¢,=0 on G/D,
i) ¢,<@ni1 for every n € N.

Then we have, by Lemma 5.7.1,

v(on={ 100 *on00(dnc(®)

[, s Paua)dvot),
/1D
therefore
]2 =vol,, (6/D)=limy,(¢)
=1im§ |5() | 200(x) dvp( ).
n—J)G|D

Then, by the Lebesgue’s integral theorem for a sequence of monotonously in-
creasing non-negative integrable functions, we have

lgeliz={ limls()|%pa(x)dvn(x)

= SG [s(x)|2dyp(x)=]||s||?
/D
Q.E.D.

This lemma, combined with the fact that ¢,.;,,=Vé;1- gd.= (g ¢s,
leads us to:
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TueoreM 5.7.4. (%, D)) is a unitary representation of G equivalent to
(s D), amd s— ¢ induces an isometric intertwining operator between them.

§6. Polarizations and most continuous principal series

In this section, we construct representations of most continuous principal
series using orbits and polarizations. First of all, we shall state the Borel-
Weil theorem for a (non-connected in general) reductive compact Lie group.

6.1. Let G be a connected semisimple compact Lie group with Lie al-
gebra go,. Let Y, be a Cartan subalgebra of g, and 4 the non-zero root system
of g with respect to Y, and 4, the set of all positive roots with respect to an
arbitrarily fixed lexicographic linear order in 4. For « € 4, we set

g*={Xe€gqg; ad(H)X=a(H)X for every H € h}.

Let (0,, V,) be a finite-dimensional irreducible representation of G with
highest weight v, and we set

d={aed; <a,y>=0},

where < , > denotes the inner product in H*=Hom ,(f, C) induced from the
Killing form of g. Let L be a subgroup of G generated by I,=%,+( > g*)N
aedq’

g0, and ¢, the unitary character of L defined by v. We set

v

feC(G); f(gh=e U N)f(g) for every ge G and l€ L, }
N Xf=0  forevery Xeg, ’

where X(X € g,) denotes the left-invariant vector field on G defined by

Xf) (=] -4 flgexp D)

t=0
for every f € C=(G) and ge G, and X(X € g) is its canonical extension and g, =
2. g% The group G acts on 9, by the left-translation:

aeq,

(m(Qf Yx)=f(g %)

for every fe 9, and g, x € G. Then the well-known Borel-Weil theorem is
stated in the following form:

Lemma 6.1, (7,, D,) is a finite-dimensional irreducible representation of
G equivalent to (c,, V).

6.2. Let G be a connected reductive compact Lie group and g, its Lie
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algebra. Then g, admits the direct sum decomposition (as Lie algebras):
8o =30 13,

where 3, (resp. g§) is the center (resp. the semisimple part) of g, (i.e., g5 =[go,
go]). Let Z (resp. G°) be the analytic subgroup of G generated by 3, (resp. g3),
then we have

GC=2G'={z2g; 2 € Z, g€ G*},

since G is connected. Let b§ be a Cartan subalgebra of g3, 4 the non-zero root
system of (g°, b°), and 4, and g* be the same as in 6.1. For a finite-dimensio-
nal irreducible representation (¢, V') of G, 0(z) (z € Z) is a scalar operator on
V and the restriction (¢|G*, V') of (s, V) to G* is an irreducible representa-
tion of G°. So the representation (g, V) of G is characterized by the character
n of Z and the highest weight v of G° with respect to 4,. (If necessary, we
write (0,,, V,,) instead of (g, V).) We set

d={aed; <a,y>=0},
Bo =30+ b0,
and
Io:[)o+a§,9a,

where < , > denotes the inner product in (§°)*=Hom,(§°, C) induced from
the Killing form of g°. Let L be the analytic subgroup of G generated by I,
and ¢ the character of L defined by # and v. We set

feC=(6); f(ghy=e(I"")f(g)  for every geG and l € L,
B Xf=0 for every X € g,
and denote by 7= the left-translation of G on . Then

LemMma 6.2. (7w, D) 18 a finite-dimensional irreducible representation of G
equivalent to (o, V).

Proor The subgroup L°=LNG* is the analytic subgroup of G° genera-
ted by

We put

and
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feC™(G); f(gh=e (U N)f(g) for ge G* and l € L*,
Xf=0 for every X e g,

and let =, denote the representation of G° on $, defined by the left-transla-
tion. By Lemma 6.1, (7,, 9,) is the irreducible representation of G° equi-
valent to (¢|G°, V). Define a linear mapping ¢ of  to 9, by

o(f)=f|G°  for fe .

Then ¢ is an injective G*-homomorphism, and the image of ¢ is a non-zero
Gs-submodule of $,, which must coincide with ©, by the G*-irreducibility of
9,. Then ¢ is a G°-isomorphism of O onto ©,. Therefore $ is G*-irreducible
(equivalent to (¢|G*, 7)), and so G-irreducible and equivalent to (g, V'), since
n(z) (z € Z) is a scalar operator on  which is equal to x«(2).

Q.E.D.

6.3. Let G be a (non-connected) reductive compact Lie group, and
go=4%0+gj its Lie algebra. (30(resp. g3) is the center (resp. the semisimple part)
of go.) Let 5 be a Cartan subalgebra of g5, and we define 4, 4, and g* in the
same way as in 6.2. Let H be the centralizer of H,=3,+5; in G (i.e., H is the
Cartan subgroup of G corresponding to §,). We assume that H is an abelian
subgroup of G and that G=HG,, where G, is the connected component of G
containing the unit. For a finite-dimensional irreducible representation
(0, V) of G, we define a subspace V* (the subspace of highest weight vectors)
of V by

Vi={veV;o.(X)»=0 for every X e€g.}.

Then V+* is an H-submodule of V.
Note: V', is 1-dimensional and (¢|G,, V') is an irreducible representation
of G,. In fact, we put k=dim/»,. Then V* can be decomposed directly as

where VF(1<i<k) is a 1-dimensional H-submodule. We set
1(g_)=the universal enveloping algebra
overg = 2. g7
AEdy
and

Vi=ox(U@- )V  (A=i=h).

Then V,(1<i<k) is an irreducible G-submodule, and V = Z V; (direct sum
as G-modules). So we have k=1 by the irreducibility of V.
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Using (6|G,, V'), we define 4" as in 6.2, and we set
lo=ho+ ag,g"‘,
L,=the analytic subgroup of G generated by I,
L=HL,.
And let ¢ be the character of H defined by
o(h)v=ce(h)v for he H and v € V™.
We set
feCG); f(gl)=e(I")f(g) for geGandlelL,
o= XfF=0 for every Xeg., },
and let 7 denote the representation of G on $ defined by left-translations.

Lemma 6.3. (7, D) is a finite-dimensional irreducible representation of G
equivalent to (c, V).

Proor We set
go=¢| Ly,
[ €C(Gy); f(gh=e(")f (g for ge Gy and [ € Ly,
Xf=0 for every X eg, },

0:

and let 7, denote the left-translation of G, on ©,. Then, by Lemma 6.2, (7,
o) is the irreducible representation of G, equivalent to (¢|G,, V). Define a
linear mapping ¢ of  to D, by

o(f)=f1G,  for f e

Then, by the assumption that G=G.H, ¢ is an injective G,-homomorphism.
So the image of ¢ is a non-zero G,-submodule of $,, which must coincide with
Do by the irreducibility of ©,. Thus ¢ is a bijective Gy-isomorphism. There-
fore 9 is Go-irreducible (equivalent to (6| Gy, 7)) and so G-irreducible.

Denote by V. (resp. .) the space of all highest weight vectors in 7 (resp.
D), regarding them as the representation spaces of G,. In order to prove the
G-equivalence of ¢ and =, it suffices to show that the action of H on 9, is
equivalent with that on V,: i.e., n(a)f=c(a)f for every a € H and f € 9,.
Now we consider a linear mapping T of  onto C defined by Tf =f(e) (f€
D). If we regard the space C as an H-module by ac=c(a)c for a € H and
c € C, then T is an H-intertwining operator since

T(af)=(af)e)=[f(a")=c(a)f (e)
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=e(a)(Tf)

for a€ H and f €. Let W be the sum of all H-submodules of  which are
isomorphic to e. Then W is non-trivial and must coincide with ., because
9. is the only subspace of © whose H,-module structure is isomorphic to

¢|H,. Thus we have proved that 9. is the A-submodule equivalent to e.
Q.E.D.

6.4. Henceforward we fix a connected semisimple Lie group G with Lie
algebra g,. Let 6 be a Cartan involution of g, and go=£,+1p, be the Cartan
decomposition of g, associated to 6, where f, is a maximal compactly imbed-
ded subalgebra of go,. Let ap=a_-+a,(a_Cty, a, Cho) be a 6-stable Cartan sub-
algebra of g, with maximal vector part. We set g=g5, a=a§ and azg=v—1a_
+a,. The non-zero root system 4 of g with respect to a admits a direct sum
decomposition 4=3'\U4, where

J={aed;ala,=0t={ae€ 4;g*Ct},
A={a € 4; a|a,>0}.

A lexicographic order in az compatible to a, induces a linear order in 4 and
determines positive subsystems 4., 2, and 4,.. We set

mo=( 25 §*)N\go,
@ed,
mo =a_+( 22 g*)Mgo,
aey

m.= 2 g%

aEx,
M=_7Zg(a,)=the centralizer of a, in K,
A=the Cartan subgroup of G corresponding to ay,
A_=ANK,
A, =ANexppo=expa,
=the analytic subgroup of G generated by a.,

N =the analytic subgroup of G generated by n,.

Then we have an Iwasawa decomposition G=KA,N, and B=MA_N is a mini-
mal parabolic subgroup of G, and A4_ is a Cartan subgroup of the (non-connec-
ted in general) reductive compact Lie group M. Let M, (resp. (4_), or A,)
be the connected component of M (resp. A_ or A) containing the identity ele-
ment, then M=A4_M,. Hereafter we assume that A4 is abelian. This condi-
tion is always satisfied if G admits the complexification.
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6.5. Let (g, V) be a finite-dimensional irreducible unitary representation
of M, and 1 the unitary character of A4,. Then the irreducible unitary
representation (¢, 1) of B is well-defined by

(6, 2)(man)=0(m)A(a) forme M,aec A, and n € N.

We define the unitary character ¢ of 4_ as in 6.3. Then ¢ and 1 determine
elements H; € a_ and H; € a,. by

ex(H)=2nV—1< Hy, H> for every H €a_,
(N =2nV—1< H,, H> for every H €a.,

where < , > denotes the inner product in a, defined by the Killing form B.
We set

Hy=H,+ H, € a,.
Then by Theorem 3.6, there exists a nilpotent element e in n, such that
[Hy, e]=0
and

g=a+ 2, g+ 2. g% is an admissible polarization of X= H,-+e.
aed, desx
a(V=THZ0

We set
b=a-+( % 994,
a(H1)=0
L,=the analytic subgroup of G with Lie algebra I,
and

L=A_L,.

Then ¢ can be extended uniquely to the character of L, which is also denoted
by e. In this case, we have

vo=Io+a,+ny,
e =11+ a, +1y,
Do=LoA.N,
Ey=MyA,N.
As we have noted in 5.6, we define subgroups D and E of G by
D=A_Dy=LA.N,



Polarizations of Certain Homogeneous Spaces and Most Continuous Principal Series 525

and
E=A E,—MA.N=B.

By Lemma 5.3.2, there exists a B-invariant volume element vpp on B/D,
which can be normalized by

[,f®dus®=(  avo@D)| fem)dmoth)

for every f € C.(B). Since B/D (= M/L) is compact, we can normalize xp
so that the total volume of B/D with respect to yp,p may be equal to 1. The
following lemma is useful for calculation of measures:

Lemma 6.5.1 (Helgason [7] Lemma 1.10 (Chap X)). Let U be a Lie
group with Lie algebra 1. Suppose u is a direct sum u=m+1% where m and ¥
are subalgebras of u. Let M and H denote the analytic subgroups of U with
Lie algebras m and Y, respectively. Suppose the mapping «: (m, h) > mh is
a 1-1 mapping of M x H onto U. Then the positive left invariant measures
dh, dm, du can be normalized in such a way that

_ det Ady(h)
SUf(u)du—SMfo(mh) detAd};(h) dmdh

for all fe C.(U).
As a simple application of this lemma, we have

Lemma 6.5.2. The left invariant measures dm, dl, da, dn on M, L, A,, N
can be normalized by

SBf(b)dﬂB(b) =SMxA+fo (man) dmdadn

Sfor every f e C.(B), and

SDf(x)d/lD(x) = ngA+fo(lan)dldadn
Sfor every f € C.(D).

Proor. Fix positive left-invariant measures de and dn arbitrarily.
Since

det Ady(n)=detAds y(n)=1

for every n € N, the positive left invariant measure d(an) on 4,N can be nor-
malized by d(en)=dadn. We set

00=-;— 2. a€af=Homg(a,, R).

a€d,
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Since
det Ada, n(an)=det Adp(an)

=det Adp(an) = e?rrlo8(®)

for every a € A, and n € N, the positive left invariant measures dm, dl on

M, L can be normalized as

d(man)=dm d(an),
and

d(lan)=dl d(an).
Thus we have proved

d(man)=dmdadn,
and

d(lan)=dldadn.

Let vy, be the M--invariant volume element on M/L such that

ng(m) dm= SM/L dVM/L(mL)SLf(ml)dl

for every f € C.(M). Then we have

Q.E.D.

LemMa 6.5.83 vy, =vpp, under the canonical diffeomorphism M/L=B/D.

Proor. For f e C.(B), we have

Mx

SB f(b)dﬂB(b):S 5oy (mam)dmdadn

Il

S de,L(mL)g f(mlan)dldadn
M|L xN

LxA,

Il

XM/L Ay (mL)SDf(mx)d,uD(x)_

Comparing with the definition of vp,p, we have
dVM/L(mL) = dVB/D(mD).

Thus we have proved that v,z =v3sp.

Q.E.D.

6.6. The unitary representation (7., 9,,) constructed in 5.7 is the com-

pletion of (#%x, Hin):
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S ([ECTO5 D) flalan)=eU A @)
for x€G,leL,ae A, and n € N,
2) Xf=0 for Xe a§+g“,
3) fllp<ee ;

on(g)f =VEg1- gf.
We set
a=(f; 0) fisa V-valued C~-function on G,
1) flxb)=(0,2) H)f(x) for x e G and b € B,
2) llfllz<eo ,
2 f =VE;1-gf  for geGand fe Wi,

where || f||5 is the norm of f defined in the same way as in 5.7, and gf denotes
the left translation of f by g The completion (7., W,.) of (yir, Win) is
called a representation of most continuous principal series, and sometimes
denoted by 1;13; (0, 2).

By Lemma 6.3, the representation (¢, V) of M is equivalent to (¢/, V),
where

feCM); f(m)=e(l™") f(m) formeMand l €L,
V=
XfF=0 for every Xe ) g* ,
aex,

and ¢’ is left-translation of M on 7’. We introduce a Hermitian inner pro-
duct ( , ) in V7 as follows: for f, f’ € V7, the C~-function ¢ on M/L is well-de-
fined by ¢(xL)= f(x)f'(x) (x € M) since ¢ and 1 are unitary, and so we put

1=, 0D dun(y).

By the M-invariantness of vy,;, (6, V) is a unitary representation of M with
respect to this Hermitian inner product. Let S be an isometric intertwining

operator of ¥ onto ¥’. And we define a linear mapping 7’ of W, to i by
(T'F) () =LS(f(x))] (e)
for f € Wi and x € G, where e denotes the unit of G.

TuEOREM 6.6. 17 is an isometry of Wi onto Ok, which commutes with
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G-actions. So T’ can be extended to an isometric intertwining operator of (s»,

W.) onto (%.n ©.»), and the representation (7.,, O..) 18 a unitary representa-
tion of G of the most continuous principal series.

We shall give a proof of this theorem step-wisely.
6.7. We set p(x)=[S(f(x))] (e) for fe Winand x €G.
Lemma 6.71. 1) o(xm)=[S(f(x))] (m) for x € G and m € M.
Proor. Since S is an intertwining operator, we have
¢(xm)=[S(f(xm))] (e)=[S@(m™") f(x))] (e)
=[0’(m=HS(f(x))] (e)
=[S(f (x))](m). Q.E.D.
Lemma 6.7.2. 1) X¢p=0  for Xem,.
2) @¢(xlan)=e(l " HA(@a He(x) for x€G,leL,aec A, and n € N.

Proor. 1) For fe Wi, we define a C~-function f, on M by f.(m)=
[S(f(x))](m). Then, by Lemma 6.7.1, we have

(Xp) (x)=(Xf2) (e)
for every x€G and X em. So we have
Xo=0 for Xem,

since f. € V.
2) Since f€ Wi, and S(f(x)) € ¥/, we have

¢(xlan)=[S(f (xlan))] (e)
=2 HS(f(=D)] (o)
=@ HIS(f N1
=2(a e HLS(f(2)](e)
=@ el He(x).
Q.E.D.
Lewma 6.7.3. || T'fll=|lfll  for fe Wi

Proor. We denote by || |z | Ilp, ]| |lvrand | |lv» the norm of W,,,

Do, V and V' respectively. Let Kj, K»,... be a sequence of compact sets in
G/B such that
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K,CK,.. for every n € N,
and
G/B= \le,,,
n=

and let ¢, € C.(G/B)(n € N) be a function such that
i) ¢,=1 on K, and ¢,=>0 on G/B,
i) ¢.<¢p1 for every n € N.
We set
¢n=¢nc0pe  (n€N)

where ppp is the canonical fibration defined in 5.3. There exists a sequence
@1, @2, in C.(G) such that

i) ¢.=0,
ii) (07; é ¢n+1,
where  ¢,(xD)=| pu(xh)dup(h).
We set
gu(xB)= SB%(xb)d,uB(b).

Then ¢,c C.(G/D), and we have

onxB)=| dvap®D)| ¢u(xbh)ds(h)
={  ex(xbD)dp(bD)

- g p1p $4(5bD)dv5p(bD).

Since ¢, (xbD)=¢,(xE) and vp;p(B/D)=1, we have &,=¢,.
Now, for any f € Wi, we shall calculate || f||5 and || Tf||p:

115 =1lim{ |l f@Ilpea(xo()duc()

=1ﬂiﬂgcdv3(xB)SB | F (%6) |20 n(xb) dpi5(b)
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=lim  dva@B)| | £ @) *0u(xb)dus(®)

7—>00

=1imSGIB | f(xB)|2¢.(xB)dvs(xB)

n—roo

={, , IFDIFda(y),

by the Lebesgue’s integral theorem for a sequence of monotonously increasing
non-negative integrable functions.

1T £l =lim{_|(T'F)0) IPa(d0(@)dus()

=1img6/3 de(xB)SB |(T'£)(xb) | *0u(xb) dies(b)

n—>o0

:Iimg " de(xB)S . |[(T'f)(xman)|*¢.(xman)dmdadn

n—o0)G MxA

=1im§G/B duB(xB)gM/L de,L(mL)S

n—>o0

le (T'f)(xmlan)| 2

LxA,

X g(xmlan)dldadn.
For each x € G, we put f,=S(f(x))€V’. Then
[(T'f)(xmlan) | =[2(a e ) (T'f) (xm)]|

= |(T' f)(xm)| = | foz(m)|
by Lemma 6.7.1. So we have

1T fIly= limg n duB(xB)SM/L Az (mL)S N f <) |*gu(amlan)didadn
n—»o0 +X

LxA

=tim{  dusxB)| 1f:(m)|"p(emD)dvie;s(mL)

Nn—roc0

=limSGIBduB(xB)SM/L | fo(m) |*@n(xD)dvyg (L),

n—oo

since @,= @,o0pr is constant on each fibre of pps. By the definition of || ||y
in 6.6,

1fellpr=S,, 1<) |*dvaeiz(mD),
and, since S is unitary,

I fellv =1l fOllv = f e Bl
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So we have

I3 =tim( 1l f:llp ou(rB)dva(x )
=, o I1fellp-dvaCeB)
=, , IfB)llpdva(xB)
/B

={ . IFDIlpdva(),

where we used the Lebesgue’s theorem. Thus we have proved that || 7" f|lp=

171l Q.E.D.
Lemma 6.74. ni(g) T f=T"7'.(g) f for every f € Wo. and g€G.
Proor. This is shown by an easy calculaton:
@) T () =VE1(x) (T'f) (g7 %)
=V&,1(2) LS(f (g7 x))](e),
(T"an (&) ) () =[S ((rer(g) f)(x))] ()
=[S (Vg1 (x) f(g2))](e),
for all x € G. Q.E.D.

6.8. We shall prove the bijectiveness of 7’. For ¢ € $/, and x € G, we
define ¢, € V' by

@z(m)=g@(xm),
and we set f(x)=S""¢, (eV).

LemMMmA 6.8.1. @ipman=0"(m HA(a" e,
Jor every x €G,me€ M,a € A,_and n € N.

Proor. For m’ € M, we have
Paman(m’)=@(xmanm’)
=g¢(xmm’+a-m'"'nm’)
=A(a™ e (xmm’)
=2(@"Hg:(mm’)
=2(a"H)(0'(m g (m"). Q.E.D.
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Lemma 6.8.2. fe Wi,
Proor. For x €G,me M,a€ A,_and n € N, we have
Sfaman)=S8"¢upan=S8"1(0"(m ) (a"Hp.)
=0(m Y@ HS g,
=0(m~"a(a™) f (x).
Q.E.D.

Thus ¢— f determines a linear mapping U of Dl to Win: (Up)(x)=S"'0.,
for ¢ € 9, and x € G.

Lemma 6.8.3. 1) UT’ is the identity of Wi,
2) T'U 1is the identity of i
(And so T is a linear isomorphism of Wi onto @;x.)
Proor. 1) For fe W, and x € G, we have
(T )= S(f (x)),
since
(T'f)e(m)=(T"f)(wm) =L S(f (xm))](e)
=LS(f(x)I(m)
for every m € M. So we have
UT'f)(@)=S8(T'f)e=SS(f ()= £ ().
2) For ¢ € ., and x € G, we have
(T"Up)(2)=[S((Up)(x))1(e)=[S(S *¢s)](e)
=g¢z(e)=9¢(x).
Q.E.D.

Theorem 6.6 follows from Lemma 6.7.3, Lemma 6.7.4 and Lemma 6.8.3
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