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§ 1. Introduction

It is one of the main problems in the theory of unitary representations
to find a unified way of constructing all irreducible unitary representations
for an arbitrary Lie group G.

Kostant ([9], CIO]) has shown a very general method of constructing
unitary representations, using G-homogeneous symplectic spaces and polariza-
tions on them. Related with this, it is required to characterize and classify
G-homogeneous symplectic spaces and G-invariant polarizations. It was
shown by Kostant that every G-homogeneous symplectic space is diίf eomorphic
to a covering space of G-orbit in the dual space of the Lie algebra QR of G
when G is a connected, simply connected Lie group and the 1-st and the 2-nd
cohomology spaces of QR vanish (this condition is valid if QR is semisimple).
The outline of Kostant's method is destribed in [7] and [10], and Kirillov has
given several problems related with Kostant's works.

In this note, first we shall give an infinitesimal characterization of
polarizations (Theorem 2.2). From the viewpoint of the classification of
polarizations, it seems essential for us to study them in case of orbits of
nilpotent elements (Theorem 2.5). Then the TDS-argument appears on the
stage as a useful instrument for the investigation of polarizations of nilpotent
elements. Using TDS, one can obtain polarizations of nilpotent elements in
some cases (§5). But to count up all the polarizations seems to be a somewhat
complicated problem. In fact, as one can see in Examples 6.2-6.4, there exist
a nilpotent element with no polarizations and also a nilpotent element with
many polarizations. However, when e is a nilpotent element of a special
form, Proposition 5.5 will enable us to find out all polarizations of e.

§ 2. Characterization of polarizations

Let G be a connected Lie group, QR its Lie algebra and Q% = Ή.omR(QR, R)
the dual vector space of QR. The space Q% has the G-module structure contra-
gredient to the adjoint representation of G on QR. For an element / in g*,
we denote by Gf the isotropy subgroup of G with respect to /, and by Qf

R the
subalgebra of g* corresponding to Gf(i.e., QR = {Xe $R; /([X, 0 = 0 for every
Γeg*}). Kostant [10] has shown that every G-orbit G(f)=G/Gf has a
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canonical G-invariant symplectic structure.
Let g and g/ be the complexifications of QR and g#. For a complex subal-

gebra p of g, we consider the following conditions:

) f(LP,PΊ) { } ,
ii) dim p — dim g/ = dim g—dim p,
iii) p is ^(G^-stable,
iv) p + <rp is a complex subalgebra of g,

where σ denotes the conjugation of g with respect to g#.

DEFINITION 2.1. For / in g^ and a complex subalgebra p of g, p is called

1) a weak polarization (in short, w-polarization) of f if p satisfies i)
and ii),

2) a polarization offiΐp satisfies i)—iii),
3) an admissible w-polarization offiίp satisfies i), ii) and iv), and
4) an admissible polarization offiΐp satisfies i)—iv).

DEFINITION 2.2. A polarization (or w-polarization) p of / is called

1) real if £=tft>, and
2) totally complex if :p + <r£=g (or equivalently prλσp=Qf).

PROPOSITION 2.1. A polarization p of f contains Qf.

PROOF. We put F=g/gr (the quotient vector space over C). Since

g'-ίXerg;/([X, 0 = 0 for every Γeg},

a non-degenerate skew-symmetric bilinear form ω on V is well-defined by

ω(X, Ϋ) = -/([X, O for every X, Y e g,

where X = X + g / , Ϋ= Y+Qf e F. We set q=p + $f, and denote by q the sub-
space of V corresponding to q. By the condition i) of polarizations, we have

Hence ω(q, q) = {0}, and so, by the non-degeneracy of ω, we have

d i m q < ^ - d i m F=-^-(dim g — dim gO

Therefore

dim q = dim q + dim g ̂

^ - ^ - ( d i m g + dim gθ

= dim p,
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from the condition ii) of polarizations. This relation, combined with pCc\,
implies p=q. Thus we have

Q.E.D.

It is easily seen that our (admissible) polarization in the above definition
corresponds to an invariant (admissible) polarization of the homogeneous
space G/Gf with respect to the canonical symplectic structure given by Kos-
tant. Whereas, a weak polarization of / corresponds to an invariant polariza-
tion of the universal covering space of G/Gf, considered as a homogeneous
space by the universal covering group of G. And a weak polarization p of /
becomes an invariant polarization of a suitable covering space of G/Gf. So,
from the practical viewpoint of the unitary representation of G, it seems to
be essential to study (admissible) w-polarizations of each element in Q%.

Throughout this paper we assume that G is a connected semisimple Lie
group. In this case, the G-module Q% is isomorphic to QR via the Killing form
B. For an element X in QR and a complex subalgebra p of g, we call p a
polarization (resp. a w-polarization, etc.) of X if p is a polarization (resp. a
w-polarization) of fx, where fx is the element of ĝ  corresponding to X by
the above isomorphism.

The following theorem gives a characterization of a w-polarization:

THEOREM 2.2. For X e g and a complex subalgebra p of g, the following
conditions are equivalent:

1) p is a w-polarization of X;
2) p is a parabolic subalgebra of g, and the space [X, pj coincides with the

nil-radical of p.
Particularly in case that X is a nilpotent element of g, the above conditions

are equivalent to
3) X belongs to the orthogonal complement of p with respect to the Killing

form B of g, and p satisfies the condition ii) of polarizations.

PROOF. DL)=^2)] Fix a compact real form ϊ of g, and denote by ΐVp the
vector subspace of g generated by I and p. First we shall prove that ΐVp=Q.

We choose Y,Zz ίίλp such that Y+ j^Z e [X, pj Then by the condition

and

Hence we have



448 Hideki OZEKI and Minoru WAKIMOTO

Since B is strictly negative definite on ϊ, we have Y=Z=Q. Therefore

and ( i n p ) ® / 1 1 ! (ΪΓφ) and [X, $f] are mutually disjoint linear subspaces of
the real vector space p.

Hence

dim* Z$r\p) ΘV^Ϊ (inrt: + dim* [X, fl ^ dim* *> (1).

We set rc=dimcg, tfi=dimcg* and Z=dimc£. By the condition ii) of
polarizations, we have

Since the kernel of the linear mapping φ of p onto QX, p^ defined by φ(Y) =
[X, YJ coincides with ρr\Qx=Qx, we have

dim* [X, ^=dim*t>—dim*gx = 2(Z — m).

So the inequality (1) becomes

Hence

Now we calculate the dimension of iVp'

dim*(ϊVp)=dim* ϊ + dim* )̂ —dim*

= 2τι=dim*g.

Thus we have

ΪV*>=g.

Let G c =Int g denote the group of all inner automorphisms of g, and P
the analytic subgroup of Gc generated by p. We shall prove that P is a closed
subgroup of Gc. It suffices to show that P is a connected component of the
closure F of P in Gc, since P is connected. From the condition i) of polariza-
tions, we have

, Ad(g)Y) = £(X, Y) for every ge Pand Yep.

So we have

B(X, Ad(g)Y) = B(X, Y) for every geF and Yep.
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Therefore

t^iBiX, Ad(exptZ)Y)-B(X, Y)}=0

for every Yep, Z e p and t eR*=R— {0}, where p is the Lie algebra of P.
From the above relation follows

B(X, [Z, YJ) = 0 for every Yep and Zep.

So we have

The skew-symmetric bilinear form α> on g/g* defined by

ω(ΰ,ϋ)=-B(X, ίu,υj)

(where u, v eg and zz = zj+gx eg/g*, V = V + QX eQ/QX) is non-degenerate, and
so by the condition ii) of polarizations, p/qx is a maximal null-subspace of ω.
Therefore p must coincide with p, and P is the connected component of P
containing the unit. Thus P is a closed subgroup of Gc.

Next we shall prove that Gc/P is compact. Let ϊ be a compact real form
of gc and K the analytic subgroup of Gc corresponding to f. Then K is
compact, and acts transitively on Gc/P. Therefore Gc/P is compact.

Let π be the orthogonal complement of p with respect to B. Then, by
conditions of w-polarizations, we have xι = [_X> p] and [p, rf]Cπ. The norma-
lizer P'=NGc(n) of rt in Gc is a subgroup of Gc with Lie algebra p, and so
includes P. Since Pf is algebraic and Gc/Pr is compact, Pr is a parabolic
subgroup of Gc. Thus we have proved that p is a parabolic subalgebra of g.

[2) =Φ 1)] Let n be the nil-radical of p.

i) Since B is Gc-invariant, we have

, [p, PJ) = B(£X, p], p) =

ii) We set rc=dimcg, Z = dimcp and m=dimCQ
x. QX is included in p

(=the orthogonal complement of tt), because

Z?(n, QX) = B(£X, p], Q*) = B(p, [X, g*H) = {0}.

Since the kernel of the linear mapping φ of p onto [X, p] defined by

<p(Y) = [_X, YJ coincides with ρr\Qx=Qx, we have

dimc p=di

Hence
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On the other hand, we have

dimc n=dim c g—dimc p = n — I.

Thus, by [_X, pl=n, we have l — m = n — l, and p is a w-polarization of X.

[Ί)=»3)] Since p is parabolic, there exist a Cartan subalgebra f) of g
contained in p, a positive root system J + of g with respect to ί), and an
additively closed subset Φ of J+, such that

where

— φ = {—a; aeΦ}

and

gα = {Xeg; (arfi7)Z=a(iy)Xfor every

The element X can be expressed as

X=H+ 2 cαZα,

where -ίΓeή, caeC and 0 ^ I Λ egα. From the condition i) of polarizations,
we have

ca = 0 for a

because

where Hae^ is defined by

£(# α , H)=a(H) for every

So we have

ctζΔ+-Φ

and .ίΓ=0, since X is nilpotent.

Therefore

X= Σ cαX

This is obvious from definition of w-polarizations. Q.E.D.
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PROPOSITION 2.3. Any semisimple element in g# has an admissible pola-
rization.

PROOF. A semisimple element H of QR can be embedded in a Cartan
subalgebra f)0 of QR. H can be decomposed into H=Hι + H2, where all eigen-
values of adQHι (resp. adQH2) are purely-imaginary (resp. real). Let ί) be the
complexification of Jj0 and Δ the non-zero root system of g with respect to \
Now we set

where

β« = {Xe g; (adH)X=a(H)X for every # e ί)}.

It follows from

g = ^ + Σ gα

and

[>,«= Σ c^rα+ Σ Qa+ Σ sa+ Σ gα,

that p satisfies conditions i), ii) of polarizations. And

is a subalgebra of g. Since the centralizer (GC)H of H in Gc = Intg is connect-
ed, GH stabilizes p. Thus p is an admissible polarization of H. Q.E.D.

LEMMA 2.4. Let p be a parabolic subalgebra of g, whose nil-radical is ix.
If Hep is a semisimple element, then pr\QH is a paraboic subalgebra of QH,
whose nil-radical is

PROOF. Choose a Cartan subalgebra £) of p containing H. Then f) is a
Cartan subalgebra of g, and of QH together. Now the root space decomposi-
tion of g with respect to ή shows the lemma. Q.E.D.

Each element X in g# has the unique decomposition X= H+ e such that H
is semisimple, e is nilpotent and [_H, e] = 0. The centralizer g^ of H is reduc-
tive and e belongs to the semisimple part [QH, QH~] of g .̂

THEOREM 2.5. Let X=H+e be the decomposition of X as above. Then X
has a w-polarization if and only if e has a w-polarization in the semisimple
part of the centralizer QH of H mjg.
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PROOF. First, suppose there exists a w-polarization p of X in g. Then,
by Theorem 2.2, p is a parabolic subalgebra of g such that the nil-radical π of
p coincides with [X, p}. Since He gx, §HCP (Proposition 2.1), by Lemma 2.4,
we see that pΓ\QH is a parabolic subalgebra of ĝ , whose nil-radical is
Since g^=c+g7, eCg*O, we have

where c (resp. gQ is the center (resp. semisimple part) of QH. Thus pΓΛQ' is a
parabolic subalgebra of g', whose nil-radical is nΓ\QH. We shall show that
PΓΛQ' is a w-polarization of e in g7. By the characterization theorem of
polarizations (Theorem 2.2), it suffices to show that

By the choice of p9 we have pf, fl=π. Thus

We set

f=ad(X)\p and Λ=α

then A is semisimple and foh=hof. We have

and
/(t))=/(Ker(A))0/(A(t)))

=/(Ker(A))φA(/(t))) (direct sum).

So we have

that is,

On the other hand,

Thus

Hence

and pr\Qf is a w-polarization of e in
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Next, suppose that e has a w-polarization p' in g'. pr is a parabolic suba-
lgebra of g', by Theorem 2.2. We denote its nil-radical by n'. We have

For the semisimple element H in g, we choose an admissible polarization
ps of H in g, whose nil-radical is denoted by π5. (For the proof of this
theorem, ps needs not to be admissible, but it is preferable for a later use to
choose an admissible polarization.) Since H is semisimple, we have

Ps=QH(Bns (direct sum as vector spaces).

Set

t>=c®t>'φn,,

n=tt '0π s .

We shall show that p gives a w-polarization of X= H+ e in g.

0) p is a subalgebra. In fact,

thus

Hence

p is a subalgebra.

i) Since cφp' contains a Cartan subalgebra of g, p is a parabolic suba-
lgebra of g, whose nil-radical coincides with n. And

since X belongs to the reductive part QH of ρr. So we have B([_X, pj, p) = {0}.

ii) We have

2dim )̂ = 2(dim p^dim c + dim πs)

= (dim g/ + dim(g/ng0) + 2dim c + (dim g-dim QH)

since g2Γ=(g/ng#)©c, g f f=β/0c.
Q.E.D.

REMARK 2.1. It is easily seen from the proof of the above theorem that
pΓ\Qf is a polarization of e in g7 if and only if p is a polarization of X, and that

tf is an admissible w-polarization in g7 if p is an admissible w-polarization.
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So we have
1) e has a polarization in g' if and only if X has a polarization,
2) e has an admissible w-polarization in g' if X has an admissible

w-polarization.

So the problem to find a polarization for an arbitrary element in a real
semisimple Lie algebra is reduced to the case where the element is nilpotent.
The TDS plays an important role in finding out polarizations of a nilpotent
element. Details of this method will be described in following sections.

PROPOSITION 2.6. Decompose a real semisimple Lie algebra g# into the
direct sum (as Lie algebras) of simple ideals:

and let g (resp. gθ be^the complexification of g# (resp. QR). Then an element
m

X= Σ X* e QR(X* e QR) has a (admissible) (w-)polarization if and only if each
i = 1

X* has a (admissible) (w-)polarίzation in g*.
m

PROOF. We set Z; = rank(gO and 1= Σ /t = rank(g).
i = l

First, suppose that X has a w-polarization p. Let ή be a Cartan suba-
lgebra of g contained in p, and f)* the image of ίj under the canonical projection
π* of g onto g*. Since 7Γ, is a Lie algebra homomorphism, ί)z is an abelian
subalgebra of gz and adQi(H) is semisimple for every He ΐ)'. So ί)' is contained
in a Cartan subalgebra of Q\ and we have

dim ) ,

So we have Z = dimΐ)<Ξ Σ ^ = Z, since ΐ)C Σ V
1 / 1

Σ
ί = 1

Hence fr is a Cartan subalgebra of α1' and 6= Σ 6f. Since p is parabolic, we
ί = l

have (by using the root space decomposition)
m

p= Σ π'Qp) and n{(p)
1ί = 1

We set pi = πi(p). We shall show that p* is a w-polarization of X\
m

By the condition i) (B(X, \jρ, ρJ) = {0}) of polarizations and p= Σ t>S we
i = 1

have

From this relation and the non-degeneracy of ω in the proof of Proposition
2.1, we have
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dim £' <J-~-(dim g' —dii

Hence

dim p <|-~-(dim g —dim gx).

By the condition ii) of polarizations, the above inequality " <ί " is just " = ".
Thus p{ satisfies 'the condition ii) of polarizations, and p* is a w-polarization
of X{ in g\

Next, suppose that X* has a w-polarization pi in g*. Then it is easily seen
m

that p= Σι P* is a w-polarization of X
ί = l

As to condition iii) or iv), the equivalence is easily checked. Q.E.D.

§ 3. Some properties of TDS

In this section we shall give a short description of some properties related
to the TDS, which will become useful tools for the research of w-polarizations
of a nilpotent element as is seen in following sections. Further detailed
discussions of TDS are seen in Kostant ([βj) etc.

DEFINITION 3.1. For elements x, e and / in g,

(1) (x, e, / ) is called an S-triple if

[>, e] = e, O, / ] = - / and [e, / ] = x.

(2) In the above, x is called the neutral element and e (resp. /) is called
the nil-positive (resp. nil-negative) element of the S-triple.

DEFINITION 3.2. An S-trinple (x, e, /) generates a complex subalgebra
{x, e, f}c of g, isomorphic to §1(2, C), which is called a TDS (three-dimensional
simple subalgebra) in g associated to (x, e, / ) .

Notations: 1) For Xe g, g^ denotes the centralizer of X in g.
2) Gc = Intg is the group of all inner automorphisms of g, and (Gc)x is

the centralizer of X in Gc.

3) We denote by ~^-Z the set of all integers and half-integers.

Let e be a non-zero nilpotent elenent in g. Then e can be embedded in
an S-triple (x, e, /) as a nil-positive element. We call x a mono-semisimple
element corresponding to e. We remark here that a mono-semisimple element
corresponding to e is never unique, and has the arbitrariness as follows: if x
is a mono-semisimple element corresponding to e, then x added by an element
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in g*n[e, Q2 is also a mono-semisimple element corresponding to e. It is
known (Kostant [βj) that an element x in g is a mono-semisimple element
corresponding to β, if and only if x e Qe, g] and \^x, e~] = e. Choose a Cartan
subalgebra f) of g containing x, and denote by A the non-zero root system of g
with respect to ί). Each root a in Δ determines the element Ha in f) by the
relation B(Ha, H)=a(H) for every He fy. It is known from the representa-
tion theory of §1(2, C) that the set of eigenvalues of adQ(x) forms a subset of

— Z . This concludes that the element x belongs to ί)R=
Δ

we set

The space ĝ  coincides with

RHa. For / e -^-

and with

- Σ Qa if 7 = 0,

where

8β = {Jf6g; ad(H)X=a(H)X for every

The following properties of gy are due to Kostant (E8[]):

1) dimgy = dimg_y,

2) dim Qe=dim g0 + dim gj^,
2

3) geC Σβy,
y^o

4) ad(e): gy->fly+i is injective if /<0, and ad(e): gy_i->gy is surjective

5) if ί +j ^r 0, gz and gy are mutually orthogonal with respect to the
Killing form B of g.

Let Π = {au- ,aι} be the fundamental root system for an arbitarily fixed
lexicographic linear order in Δ. The set {au. , at} forms a basis of ϊj* =
(ί), C), and x has the following expression:

χ= Σ cίi(x)eh
l

where {εi, 5 ε/} is t h e basis of ί) dual to {au , <Xι}. We shall call

^/(^))iτ *Λβ characteristic of x with respect to Π.
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LEMMA 3.1. (Dynkin [4], Kostant [8]) Choose such a linear order in Δ

that the element x is contained in the positive Weyl chamber. Then the char-

acteristic of x consists only of 0, —=- and 1.

PROOF. Each eigenspace g, of adQ(x) is a suitable sum of I) and g^'s
(a e Δ). It is enough to show that each root space gai(l<S*SSO of a simple

root appears only in g0, g_i_ and glβ Since gy coincides with [e, gy-J for
2

1 / 3 \
/;>-^- 5 a root appearing in gy lj^—-\ is expressed as a sum of a root in gi
and a root in g/_i, both of which are positive roots because x belongs to the
positive Weyl chamber. So a root which appears in g; can not be simple if

3
y*;>-^-. Thus every simple root belongs to g0, g_i_ and gi. O E D

Next we define the subalgebra ge of g by

g*=g*A Σ Qj=Qer\[_e, g],
;>0

and we set (Gc)e the analytic subgroup of Gc generated by ge. Then it follows
from well-known facts about linear nilpotent Lie algebras that (Gc)e is closed,
connected and simply connected, and that exp |gβ is a diffeomorphism of Qe

onto (Gc)e. Further, Kostant ([[8] Theorem 3.6) has proved that the following
mappings are bijections:

gx ex +Qe = {

ί t
g € (G%
i I

(gx, e, gf) e the set of all 5-triples containing e as the nil-positive
element.

Using this bisection, we have

LEMMA 3.2. 1) (Gc)e is a normal subgroup of (Gc)e.
2) (Gc)e is the semi-direct product of (Gc)e and (Gc)er\(Gc)x.

PROOF. Subgroups (Gc)% (Gc)e and (Gc)eίΛ(Gc)x are closed subgroups of
Gc. We shall prove that i) each element ge (Gc)e has the unique decomposi-
tion g=gfg" where gr e (Gc)e and g" e (Gc)eΓ\(Gc)\ and that ii) (Gc)er\(Gc)x

normalizes (Gc)e. Since (gx, e, gf) is an 5-triple containing e as the nil-
positive element, there exists g1 e (Gc)e satisfying g% = gfχ owing to the
existence of the above bijection of (Gc)e onto x + Qe. By putting g//= gf~λg,
we have g" e (Gc)er\(Gc)x and g=g'g". Thus an element ge(Gc)e has a
decomposition g=g'g", where gr e (Gc)e and g" e (Gc)er\(Gc)x. It is enough
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for the uniqueness of this decomposition to show that \JGc)eΓΛ(Gc)xJr\(Gc)e

contains only the unit. An element g0 in [_(Gc)e Γ\(GC)X^\Γ\(GC) e satisfies
ggox = gx, which fact combined with the bijectiveness of the mapping γ->yχ
of (Gc)e to x + Qe proves g=ggo So go = l, and the uniqueness of the decom-
position is proved. Next we shall prove ii). Each g e (Gc)eΓ\(GC)X stabilizes

QeΓ\Qj for every j e -^-Z, so the space ge is stable under the adjoint action of

every g e (Gc)eΓ\(Gc)x. Thus we have proved ii) because of (Gc)e = exp ge.
Q.E.D.

LEMMA 3.3. If e is a (non-zero) nilpotent element in QR, an S-triple
(x, e, f) can be chosen in QR.

PROOF. Let (x\ e, f) be an 5-triple containing e as the nil-positive
element. We set

/) = the real part of x\

= the real part of /'.

Then (x, e,f) is also an 5-triple. Q.E.D.

§ 4. G-conjugate classess in QR

Let Θ be a Cartan involution of g#, and QR = to + po be the Cartan decom-
position of QR associated to 0, where ί0 is a maximal compactly imbedded
subalgebra of QR. Let ί)J, 5 ί)o be representatives of the G-conjugate classes of
Cartan subalgebras of QR. They can be chosen fl-stable and such that
ί)LCί-, ΐ)tCf)+ and d i m ^ i ^ d i m ^ t + 1 for every ί, where £)L=^jnf0 (the
toroidal part of Ijj) and fy+=ψor\po (the vector part of ί)j). We set ήf" = (ήj)c

and IjJ2 = V—11)L + I}+. The non-zero root system Δ{ of (g, £)0 admits the direct
sum decomposition

where

and
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The set Σi = Σ\\jΣi

p coincides with the set of all purely-imaginary roots in
Δ* (i.e., roots which vanish on ψ+). A lexicographic order in ψR compatible to
ty+ induces a linear order in Δ* and determines positive subsystems Δ\ and
Λ*+.

We put

«$=( Σ.Qa)r\QR.

Notations: 1) Hereafter we write sometimes α_, α+, α0, and α instead
of ί)*, ϊ)i, ήj and ί)\ That is, in this paper α0 denotes the 0-stable Cartan
subalgebra of QR with maximal vector part. A 0-stable Cartan subalgebra ί)o

of QR is called standard relative to α0 if the vector part of ί)0 is a subspace of
α+.

2) For a 0-stable Cartan subalgebra ί)0 of QR notations ί)+, £)_ 2Ί, 2P9 Λ, π0

and so on are used to express ones defined in the same way as above.

PROPOSITION 4.1. Let e be a (non-zero) nilpotent element in g#.

Then

1) a mono-semisimple element corresponding to e can be chosen
G-conjugate to an element in α+, and

2) the element e is G-conjugate to an element in n§.

PROOF. 1) By Lemma 3.3, a mono-semisimple element x corresponding
to e exists in QR. Since x is a semisimple element of g#, x can be imbedded
into a standard (relative to α) 0-stable Cartan subalgebra i)0 of QR under the
adjoint action of G, i.e., there exists ge G such that gx e V Since the eigen-
values of adQ(gx) are all real numbers, gx belongs to the vector part of f)0,
which is a subspace of α+. Thus we have gx e a+.

2) Replacing x and e by gx and ge, we can assume that the mono-
semisimple element x belongs to α+. And by the action of an element k in
K (k is chosen in the normalizer of α+ in K), x is transferred into the closure
of the positive Weyl chamber in α+. Since ke belongs to the 1-eigenspace of
adQ(kx), we have

Σ Qa\^QR = <
a€A+ )

Q.E.D.

For the sake of simplicity, an 5-triple (x, β, /) in g is called standard
with respect to the Iwasawa decomposition QR = t0 + a+ + n0, if x e α+ and e e π0.
Then, from Proposition 4.1, we have the following:

COROLLARY 4.2. Every S-triple in QR is G-conjugate to a standard S-triple.
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LEMMA 4.3. For a θ-stable Cartan subalgebra f)0 of QR, the conditions 1)
and 2) are equivalent:

1) ΐ)0 has a maximal vector part,
2) Σp is empty.

PROOF. First we note that

where ZQ(ί)+) denotes the centralizer of fy+ in g and

ii) Σ Qa is 0-stable.
aeΣ

These facts are seen easily from the definition of Σ. Now the condition 1) is
equivalent to

which is equivalent to

( Σ ea)np=

because of i), and this is equivalent to

because of ii), and this is equivalent to

Σp=φ(βmpty set).

Thus the statement of Lemma 4.3 has been proved. Q.E.D.

LEMMA 4.4. A semisimple element Ho can be imbedded by G-action into
such a θ-stable Cartan subalgebra f)0 of QR that

for every a 6 Σp

where H'Q is an element in I)o G-conjugate to HQ.

PROOF. There exist an element g in G and an integer i (1 <J i ̂  k) such
that Ad(g)HQ belongs to ϊjj. Among the above -̂'s and z*'s, we choose ί as large
as possible (in other words, dim fy+ is as large as possible under the condition
that £)j contains an element G-conjugate to Ho), and hereafter we fix ί and g
as such. We put

Q (g) and $o=ή$,

and we shall prove that

ct(Ho) =V 0 for every a e Σp.
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Now suppose that <x(Hf

Q) = Q for some aeΣp and fix a root aeΣp as such.
Since σa= —<x{a e I^Ci 1 ), we can choose non-zero vectors e±cc in Q±a so that
ea + e-a may be σ-stable (i.e., eα + e_α eg*) We also note that ea + e-a e p0

since a e Σp. We set

^i=orthogonal complement of Ha in ϊj_ with respect to the Killing form B,

y+=ϊ+ + R(ea + e-a),
and

Vo=V-+V+

The space ψ0 is a maximal abelian subalgebra of g#, and so a (0-stable) Cartan
subalgebra of g ,̂ the dimension of whose vector part is equal to dimϊ)+ + l.
Moreover, H'o belongs to ψ0 by the assumption that α(£Γo) = O. This contra-
dicts the choice of i (the maximality of the vector part), and so we have

<X(HQ) =V 0 for every ae Σp.

Thus the proof is accomplished. Q.E.D.

PROPOSITION 4.5. An element X in QR is G-conjugate to an element in t)j + πj
for some i.

PROOF. X has a unique decomposition X=H+e where H (resp. β) is a
semisimple (resp. nilpotent) element in QR and [7f, e] = 0. The element H is
transferred into some ί)j by the adjoint action of G. We choose i as large as
possible. Hereafter, for the sake of simplicity, we assume that H itself is
contained in ί)j. Then, due to Lemma 4.4, we have

a(H) =V 0 for every a e Σ j .

So if we set

Δ1 is included in Σ\\JA\ The centralizer QH of H in g is expressed as

which is a reductive Lie algebra with the center

δ— Σ. CHa

and the semisimple part

where

£)' = Σ,CHa.
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Let Io denote the semisimple part of (QR)H, and L the analytic subgroup of G
generated by Io.

Since

Io=ί)o + ( ΣfQ
a)f^QR (where ψo=ί)f,

and

ΐ)o is a Cartan subalgebra of Io with maximal vector part (Lemma 4.3). And
since e belongs to the semisimple part Io of (QR)H, e is transferred into
( Σ gα)^£U by the adjoint action of an element g in L. Thus we have

proved that

Q.E.D.

§ 5. The TDS and w-polarizations

In this section we make an investigation into w-polarizations of nilpotent
elements using the TDS.

PROPOSITION 5.1. Let x be a mono-semisimple element corresponding to a
(non-zero) nilpotent element e in QR. And assume that the characteristic of x
consists only of integers. Then the subalgebra Σ gy of g is a w-polarization

of e.

PROOF. We set p= Σ 9y We shall prove that p satisfies the conditions

i) and ii) of a w-polarization.

i) The orthogonality of e and [p, pj is true because e e gx and 2?(gf, gy)
= {0} for £+;=¥0.

ii) The calculation of the dimension of p:

dim g—dim £=dim Σ Qy,
y<o

and

dim p — dim g*=dim p — dim g o =dim Σ 9y
y>o

Thus we have

dim g —dim £=dim p — dim g*
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since dim gy = dim g_y.
Q.E.D.

PROPOSITION 5.2. Let x be a mono-semίsimple element corresponding to a
(non-zero) nilpotent element e in QR. Assume that the characteristic of x con-
tains half-integers and that there exists such a subspace V of g_Ĵ _ that 1) V is

2

an abelian subalgebra of g, 2) V is stable under the adjoint action of each
element in g0 and 3) the dimension of V is a half of dimg__i_. Then the

2

subspace Σ qj+V is a w-polarization of e.

PROOF. We set p= Σ Qj+V. By the assumption 1) and 2) on V, p is

a subalgebra of g. And the same discussion as in the proof of Proposition 5.1
shows that p satisfies conditions i) of a w-polarization. So we need only to
calculate the dimension of p:

dimg — dim:p=-^-dim g__i_ + dim Σ fly
Δ 2 y<i_i

=-i-dimg i +dim Σ fly,

dim p — dim g*=dim p — (dim go + dim gj_)

= (dim

— (dim g0 + dim g JL)

= d i m Σ fl/ + - 4 g

y^i Δ *

Thus we have

dim g —dim £ = dim p—dim Q%

and p is a w-polarization of e. Q.E.D.

PROPOSITION 5.3. A w-polarization p of a nilpotent element e in g#, if it
exists, contains mono-semisimple elements corresponding to e.

PROOF. Let x be a mono-semisimple element corresponding to e, and π
the nil-radical of p. By Theorem 2.2, we have
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Thus we have

Q.E.D.

The following is an easy consequence of the above proposition:

COROLLARY 5.4. Let p be a w-polarization of a nilpotent element e in QR,

x a mono-semisimple element corresponding to e, and Qj the j-eigenspace of
adQ(x). Then we have a direct decomposition (as vector spaces)

P= Σ (Άjr\p).

PROPOSITION 5.5. Let e be a nilpotent element in QR written in the follow-
ing form: e= Σ ea, where Φ is a subset of a fundamental root system Π =

{cίiy ,<Xι} of Q with respect to a Cartan subalgebra t), and ea is a non-zero
element in the root space Qa. Then any w-polarization of e, if it exists,
contains ί).

PROOF. First we shall show that there exists a mono-semisimple element
in ΐ) corresponding to e. Choose the element β_α in Q~a(a e Φ) so that B(ea,
e_α) = l, and we put

χ= Σ caHa (ca eC).
aeφ

The element x belongs to [_e, g] because x = [_e, Σ cae-a]. So if x satisfies
Ct€φ

the relation [_x, e~] = e, x is a mono-semisimple element corresponding to e as
is discussed in §3. Since [>, e ] = Σ fe $)cβeβ> the relation [>, e~} — e is

<*,βeφ

equivalent to a system of linear equations:

Σ (ft, β)cβ = l for every a e Φ,
βeφ

where (α, β) denotes the inner product of Ha and Hβ by the Killing form B.
For the sake of simplicity, by an appropriate rearrangement of αi, - ,α/, we
assume that Φ={au •,#*}, and write c{ instead of cai(l^i<^k)- Then the
above linear equations are rewritten as

k

Σ (<Xi, <Xj)cj = 1 for i = 1, , h.

Since the kxk— matrix ((aiy aj))^,^ is strictly positive definite, the above
system of linear equations has a unique solution, and cu ,ck are real
numbers. With such ci, ,c*, we have [_χ,e~] = e, which, combined with
the fact that x e [>, Q], assures us that x is a mono-semisimple element
corresponding to e.
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Next we shall prove that pΓΛ Σ g " α = {0}. We put

Ψ = Π-Φ=iah+u ,*l},

Δf={aeΔ;a(x) = l}

and

Δ"=Δ'-Φ.

Using the dual basis {εi,...,β/} of {αi, ..,α/}, x has the expansion:

k I

χ= Σ*i+ Σ CiSi.
i=l i=k+l

By Corollary 5.4, we have p = Σ (P^Qj)- We shall make here some inves-
jζΊΓz

i

tigation into $>Γ\g_i. The space £)r = Σ Ce, is a subspace of geΠg0, and it

is obvious from the definition of Ψ and Δ" that

{weights of ί)r on Σ Q~a} τt> 0,

{weights of ΐ)F on Σ g-*} = {0}
aςφ

and
9-1= Σ Q~a+ Σ Q~a (direct sum as vector spaces).

This implies, with ΐ)vCQe O , that the vector space £Λg_i is the direct sum
of subspaces (pr\ Σ Q~a) and (pr\ Σ g"α). Assume that pί\

k

Then one can find a non-zero element Z = Σ r* e_α. in pΛ Σ g~α We set
i = 1 * « e ί)

The element (adH)X is expressed as

(adH)X=- Σ

which is not zero because kxk— matrix ((α, , ay))i^f/^* is strictly positive
definite. Choosing a suitable linear combination of X,(adH)X, (adH)2X9 9

(adHy^X (these element are contained in £), there exists an integer
^s<.k) and a subsequence (gi, , ̂ s) of (1, , k) satisfying that

1) Tq.-^O for every l<^ί<^s,

2) α
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and

3) Σ rqie.atζp

we put X'= ΣrQie-ai and # ' = [>, X'] Repeating the above process, we
* = 1

finally obtain elements X and H in p with the following properties:

i) X= Σrp.e-ap is a non-zero element in p, where (pu -9pt) is a

subsequence of (1, , A),

and

The condition iii) can be expressed as

t
Σ rPi(aPi, aPj)=r (for ; = 1, . , 0,

where r=βPl(H). We can assume that r is a positive number by replacing
X, if necessary, by a scalar multiple of X. We set

and

for i = l,.. , ί. Then the above condition iii) becomes

Σ τ%(o$0 ap)=r (for ; = 1,.. ,

In the matrix forms, this becomes

0*l5 , r£)J = (r,.. ,r),

where

/ (a%ap) (a%ap) \
A \ '' ' )

\ (o$t9aPl)
So we have
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Since r is positive by the assumption on r and all matrix elements of A'1 (the
inverse of a Cartan matrix) are non-negative real numbers, every r£(l <ί i ̂  0

is a positive number. So Σ r̂ . is also a positive number. On the other hand,

by Theorem 2.2, B(e,p) = {0} is valid. So £(e, X) = 0, i.e., Σ ^ = 0, which

contradicts the above. This contradiction has arised from the assumption
that pΓ\ Σ 9"α contains a non-zero element. Thus pΓ\ Σ 8~β = {0}ί and we

aςφ ctξφ

have

Since e is in Σ gα and the set Φ is disjoint with J " each vector in the
aeφ

space Qe, Σ 9~αH has no ί)-component, i.e., [_e, Σ Q~~aJ is a subspace of ΣI gα

Σ β~βI]C[>, Σ Q~a^C Σ 9α

Denoting by the suffix "_]_" (resp. "JL") placed on the right-hand shoulder
the orthogonal complement in g (resp. g0) with respect to B, we have

5=( Σ β ^ C C

Thus ήCt> is proved. Q.E.D.

DEFINITION. A nilpotent element e in g is called principal nilpotent if
dim Qe=rank of g.

It is known from the theory of Lie algebras that QR contains a principal
nilpotent element in g if and only if there exist no purely-imaginary roots in
the root system of g with respect to the complexification ΐ) of a Cartan subal-
gebra £)0 of QR with maximal vector part.

COROLLARY 5.6. Assume that QR contains a principal nilpotent element e
of g. Then e has a unique w-polarization p. Moreover p is a real polariza-
tion of e and a Borel subalgebra of g.

PROOF. Due to Kostant ([8]), we can choose a Cartan subalgebra f) of g
and a fundamental root system Π={au•••,#/} so that e may be expressed as

e= Σ ee<. As is shown in the proof of Proposition 5.5, x= f] ε. is SL mono-

semisimple element corresponding to e. So, by Proposition 5.1, Σ 9/ is a

w-polarization of e, and the existence of w-polarizations of e is thus proved.
Now let p be any w-polarization of e. By Proposition 5.5, p includes the
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Cartan subalgebra ί), which coincides with g0 by the regularity of x. Consider-
ing also the fact that e ep and [e, gyH=gy+i (/^0), we have Σ QjCP By

yiso

the condition ii) (as to the dimension) of w-polarizations, p must coincides
with Σ 9y So the uniqueness of w-polarizations is proved.

y=;o

For the w-polarization p of e, subalgebras up and ̂ 4d(g):p (ge (Gc)e) are
also w-polarizations of e, which coincide with p by the uniqueness. Thus p
is a real polarization.

Since x = Σ e, , we have Σfiy = ή+ Σ 9"- So ^ is a Borel subalgebra
ι = l y=;0 « > 0

ofβ. Q.E.D.

§6. Some examples

From the point of view of w-polarizations, simple Lie algebras of type
(A) have a distinct property from those of (B) (C) (D) (E) (F) or (G). In case
of type (^0, every element has a w-polarization, while in other cases, the
existence of w-polarizations does not necessarily hold. The number of
w-polarizations or admissible polarizations is somewhat complicated (Exam-
ples 6.2-6.4), and it seems to be a difficult problem to find out or to control all
the w-polarizations or admissible w-polarizations for an arbitrarily given
element in QR.

PROPOSITION 6.1. Assume that QR is a real semisimple Lie algebra of type
{A) (i.e., all the simple factor of $R are simple Lie algebras of type (A)). Then
every (non-zero) nilpotent element e in QR has a w-polarization.

PROOF. By Proposition 2.6, we can assume that QR is simple. Let x be a
mono-semisimple element corresponding to e, and ί) a Cartan subalgebra of g
containing x. Let Π = {au -,ai\ be a simple root system, arranged accord-
ing to the Dynkin diagram. (So any positive root a e Δ+ can be written
α=αH hαy.) The element x may be assumed contained in the closure of
the positive Weyl chamber. Let (αi, ,α/) be the characteristic of x with
respect to Π:

i

X= Σ ai εi
t = l

where {εi, ,ε/} is the basis of f) dual to αi, ,α/. We put

m=the number of 1 in (αi, , α,),

and (ίi, ,ίm) be the subsequence of (αi, ,α/) such that
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For the convenience of notations, we set

to = O and tm+ι = l + l9

and

CJ = (ai\j<i<tJ+1 for = 0, , m.

Let pj be the multiplicity of -=- in Ch and (si, , ŝ .) the subsequence

of Cy such that α, = - — (l<^<ίpy). For every j(0<sj<*m)9 we set

= Σ Sst,i= even
j =

= even

<=odd

±-,

The following statements are obvious from the fact that e e gi and ad(e) is a
linear isomorphism of g_j_ onto QΛ_:

2 2

1) # = 0 or Pj^2,

2) The cardinal number of the set A) is equal to that of A).
We set

( i = 1 ' 2 )

Then it is easily seen from our way of construction that g^-J^ (ί = l, 2) is an

abelian subalgebra of g, that the space g__i_ is the direct sum of gL-A. and
2 2

g2__i_ , and that g'__L (i = l, 2) is stable under the adjoint action of g0. So,
by Proposition 5.2, p*= Σ gy+ g'.-i- (̂  = 1, 2) is a w-polarization of e.

y^o 2

Q.E.D.

COROLLARY 6.2. Every element in a semisimple Lie algebra of type (A)
has a w-polarization.
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PROOF. Each element X in QR has the unique decomposition X=±=H+e,
where H (resp. e) is a semisimple (resp. nilpotent) element in QR and [_H, e~] = 0.
Since the semisimple part of QH is also semisimple of type (A), X has a
w-polarization by Theorem 2.5 and Proposition 6.1. Q.E.D.

COROLLARY 6.3. Every nilpotent element in a semisimple Lie algebra of
type (Aΐ) and (Aΐΐ) has an admissible w-polarization.

PROOF. The Satake diagram of a simple Lie algebra of type (̂ 41) or
does not contain arrows. When QR is of type (̂ 41) or (̂ 411), A) (/=0, , m
and ί = 0, 1) is σ-stable. So every nilpotent element in QR has a real w-
polarization. Q. E. D.

The following example shows that a nilpotent element in a simple Lie
algebra of type (̂ 4111) has not necessarily an admissible w-polarization.

Example 6.1. QR = $U (3, 3)

The Satake diagram of $R is

We put

1
2

Then x is a mono-semisimple element corresponding to e, and the character-

istic of x is (1, —-4-, 0, —-S-, 1) F o r t h e sake of simplicity, we express a
5

root a— Σι ai&i by
ί = l

(oi, . , o5) if α is positive, and

— ( —αi, , — α5) if a is negative.

We set

Jι ={(10000), (00001), (11111), -(OHIO)}.

J1^_ = {(11000), (11100), -(00010), -(00110)},

J 2 j_ = {-(01000), -(01100), (00011), (00111)},
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2 2 2

Jo ={±(00100), ±(11110), ±(01111)}.

Then

if \i\>~

3, = Σ g" if ϊ = 4 -

go=ΐ>+ Σ gα ,

fl» = Σ $~a if i = — - s - , — 1.

Let p be a w-polarization of e. From £)CP (Proposition 5.5) and g * O , we
have

P ̂  Σ gy

And by the proof of Proposition 5.5, we have

So, if we suppose png_i^{0}, p includes g - ( l l i n ) or g(°1110>. If

then g"αi = [g ( 0 1 1 1 1 ), g~ ( 1 1 1 1 1 ) ]O, which contradicts the fact that

I f

which is also a contradiction. Hence g_iΛ£= {0}, and by the condition ii) of
polarizations, we have

We set

Then P"(ί = l, 2) is an abelian subalgebra of g and αcZ(go)-irreducible, and

' = -ir-dimg__L . So

= Σ
£0

imP' = -ir-dimg__L . So, by Proposition 5.2,
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is a w-polarization of e, and p must coincide with px or p2. Since σαz = α 5 _ ,
^ ί < s 5 ) , we have σ^i=p2, so we have

Ϊ>i+<rt>i=ψ2+σϊ>2= Σ 9/,

which is not a subalgebra. Thus a w-polarization of e cannot be admissible.
In the following examples, we fix a 0-stable Cartan subalgebra ί)0 of QR

with maximal vector part, where θ is the Cartan involution associated to a
fixed Cartan decomposition QR=t0 + p0. In the non-zero root system Δ of g
with respect to the complexification ί) of lj0, is introduced a lexicographic
linear order compatible to the vector part ί)+ of f>0. Let J+ be the set of all
positive roots and Π={au -,aι} the fundamental system of J+. We set

and

Qa = {Xe Q; ad(H)X=a(H)X for every He $},

for α e i We choose e α eg α (for α e J ) such that

B(ea, e_«) = l, and (Tβ^^β,,,,,

where σα 6 J is defined by

(σa)(H)=α(σ£Γ) for every

Let {ei,.. ,ε/} be the basis of ί) dual to {αi, ,α/}.

Notation: A root α = Σ αf α, is denoted by (αi, .,o/) if α>0, and by

- ( - α i , . . , -o/) if α<0.

Example 6.2. g^=o(3, 2) (the normal form of type (B2))

The Satake diagram of QR is O = ^ O , and each root vector is contained
in QR. The characteristics of mono-semisimple elements corresponding to
non-zero nilpotent elements in QR are as follow:

d' 0) a n d d'1)-

There are three Gc-conjugate classes of non-zero nilpotent elements in QR.

In this case e = eai+2a2 is a nil-positive element corresponding to x. This is
because Λ; satisfies x e Qe, g~(1>2)HCCβ5 gH and £x9 e^\ = e. We set
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and

Then we have 9-^_= Σ Qa, 9o = ΐ)+ Σ Qa,
2 a e j_i_ α e Jo

2

and

dim ge=dimg0 + dim 0 ^ = 4 + 2 = 6.
2

Since dim g = 10, the dimension of a w-polarization of e, if it exists, must be
equal to 8. The dimension of a parabolic subalgebra of g is, however, equal
to 6,7 or 10, and so by Theorem 2.2, e has not a w-polarization.

2) (1,0) (i.e.,* = e i )

In this case, e = eaι+cί2 is a nil-positive element corresponding to x. We
have

β _ i = β " β l + β - ( β l + β l ) + 8 - ( Λ l + 2 β ϊ ) .

Since a w-polarization of e contains ΐ) by Proposition 5.5, w-polarizations of
e are exhausted by the following three:

Pi = Σ βy,
yaso

is conjugate to :p3 under Aut(g), while pi is conjugate to none of them.

3) (1,1) (i.e., * =

In this case, e = eai + ea2 is a nil-positive element corresponding to x.
Since e is a principal nilpotent element of g, e has the unique w-polarization
and it is an admissible polarization of e (Corollary 5.6).

Example 6.3. The normal form of type (G2).

ax a2

The Satake diagram of g# is O >Q.
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The characteristics of semisimple elements in the closure of the positive Weyl
chamber of ί) which can be mono-semisimple elements of nilpotent elements
in g* are as follow:

(4"'°)' (°'ΊΓ)' (^Φand (1,1)

(see Dynkin [4] p. 176).

e = e(2,3) is a nilpositive element corresponding to x. We set

J ^ = {(l,0),(l,l),(l,2),(l,3)},

Jo ={±(0,1)}.

Then

<U_ = Σ 9*, Qo=$ + Σ flβ,
2 « 6 Π «**

2

and

dim ge = di

Since dimg = 14, the dimension of a w-polarization, if it exists, should be
equal to 11. The dimension of a parabolic subalgebra of g is, however, equal
to 8, 9 or 14, and so by Theorem 2.2, e has no w-polarizations.

2) - ( 0 ,

In this case e = e(ii2) is a nilpositive element corresponding to x. We set

Δj = {a ζ Δ a(x) = /} for e - i- Z.

That is

J_|_={(1,3),(2,3)},

^i ={(1,2)},

J J _ = {(0,1),(1,1)},
Δ

Δo ={±(1,0)},
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and

Jj=φ if |/|

Since g'=Cex + g(1'0) + g-(1 0 ) + gx + g_3_ , we have

by Proposition 2.1 and Proposition 5.5. p cannot contain /, because /ep and
QeCP implies £=g. So png_i = {0}. Thus, by the condition ii) of polariza-
tions, pΛg__i_ # {0}. Since g__i_ is αd(go)-irreducible, we have Jθg__i_ . So

2 2 2

we have

which contradicts the fact that fξp. Thus we have proved that e has no
w-polarizations. (But for the above discussion, it may be shown only by
calculating the dimension of g*(dimg*=8) that e has no w-polarizations.)

3) * = (l,0)

e = e(ifi) + e(i,2) is a nilpositive element in g* corresponding to x.

We set

Λ2 = {(2, 3)},

Ji = {(l,0), (1,1), (1,2), (1,3)},

Then we have

= ή + Σ gα,
at Jo

and

0ι= Σ gΛ, Q-i= Σ Q~a if J ^ l .

W-polarizations of e containing ^ are exhausted by the following three :
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It is easily seen that £3 is Gc-conjugate to p2, and not to px. We cannot tell
whether there exists a w-polarization of e other than the above three or not.

4) * = (1,1)

A nilpotent element e in ĝ  corresponding to x is a principal nilpotent
element of g, and so e has the unique w-polarization, according to Corollary
5.6.

Example 6.4. (FII)

The Satake diagram of ĝ  is • = > • O .

The characteristics of elements in the closure of the positive Weyl chamber
of ΐ) which can be mono-semisimple elements corresponding to nilpotent ele-

ments in QR are (o, 0, 0, - | Λ and (0, 0, 0, 1).

e = e(i232) is a nil-positive element corresponding to x. We have

dim Qe=dim g0 + dim gj^

=22 + 8=30.

Since dim g=52, the dimension of a w-polarization, if it exists, should be equal
to 41. The dimension of a parabolic subalgebra of g is, however, equal to 28,
29, 30, 31, 32, 37 or 52, and so by Theorem 2.2, e has no w-polarizations.

2) * = (0, 0,0,1)

In this case, e = e(Oooi) + β(i23i) is a nilpositive element corresponding to e.
Since the characteristic of x consists only of integers, e has a w-polarization
(Proposition 5.1). Let p be any w-polarization of e. The same discussion as
in the proof of Proposition 5.5 is valid in this case, and we have ί)Ct> By a
simple calculation of roots using this fact and geΛg0 O (Proposition 2.1), one
can see that g 0 O , and so Σ β/O Now, by the condition ii) of polarization,j-°
p must coincide with Σ 9/ Thus e has the unique w-polarization, and it is

an admissible polarization of e.

Note: A non-compact real form of type (F4) is (Fϊ) (=the normal form)
or (i^II). And so Example 6.4 implies that in a non-compact real form of
type (F4) there exists a nilpotent element with no w-polarizations.

Note: By a similar discussion, we can see that there exists an element
in QR with no w-polarizations if a certain simple factor of QR is the normal
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form of type (B) (C) (D) (E) (F) or (G).

§ 7. P-orbits in n

In this section, the notion of polarizations is slightly modified. For an
element X in g and a subalgebra p of g, we consider the following conditions:

i) Λ(X,Q>, « ) = {<>};
ii) dim p —dim g x = dim g — dim p:
iii) p is A d((Gc) ^-stable
iv) t> + tf£ is a complex subalgebra of g.

DEFINITION 7.1. Let Xeg. A complex subalgebra p of g is called

1) a w-polarization of X if p satisfies i) and ii),
2) a polarization of X if p satisfies i)—iii),
3) an admissible w-polarization of X if p satisfies i), ii) and iv).

The arguments and propositions in the previous sections are all valid for
such definitions.

In §6, we gave examples of nilpotent elements with no polarizations.
Now there arises the problem "is every parabolic subalgebra of g obtained as
a w-polarization of a nilpotent element?"

PROPOSITION 7.1. Let p be a parabolic subalgebra of g, whose nil-radical is
xx.

1) // e is an element in π such that Qe, pH = n, the P-orbit through e is an
open subset of n.

2) The set of e in n such that Qe, t>H=n is, if not empty, an open, dense
and connected subset of π.

PROOF. 1) By Theorem 2.2, p is a w-polarization of e, and so g* C P
Define a mapping φ of P to n by φ(p) = Λd(p)e, where P is the parabolic
subgroup of Gc with Lie algebra p. Then

#O = dim p — dim ge

=dim g—dim £=dim π.

Thus the image of φ is open in n.
2) For each e e π, define a linear mapping Ae of p to π by Ae(X) = [_e,

(for every X e p). Then we have

{een; [e, p] = π}

= {e en; the rank of Ae is dimπ}.
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Thus the condition "[e, pj=n" is expressed by using a certain polynomial
function / on n as "the value of / at e does not vanish," and the set of e
satisfying the above condition is (if not empty) open, dense and connected in
π. Q.E.D.

COROLLARY 7.2. Let P be a parabolic subgroup of Gc with Lie algebra p
whose nil-radical is π. Assume that p is a w-polarization of e and e' simulta-
neously (e, er e π). Then e and e' are P-conjugate.

PROOF. We set

Since π' is an open, dense, connected subset of π (Proposition 7.1), v! is a
single P-orbit. And, by Theorem 2.2, we have e, e1 e n'. Q.E.D.

PROPOSITION 7.3. Let ebea nilpotent element in g, £,•(£ = 1,2) a w-polariza-
tion of e, and P, (£ = l, 2) the parabolic subgroup of Gc corresponding to pi.
Assume that (Gc)e is contained in Pi and that £i is Gc-conjugate to p2. Then
pi coincides with p2.

PROOF. By the assumtion, there exists an element g in Gc such that
Λd(g)pι=p2. Since p2 is a w-polarization of e, Ad(g~1)p2=pί is a w-polariza-
tion of Ad(g~ι)e. Thus pi is a w-polarization of e and Ad(g~λ)e, and so e is
Pi-conjugate to Ad(g~ι)e (Corollary 7.2). Choose an element pe Pi such that
Ad(g~1)e = Ad(p)e. Then we have

Hence g e Pi, and p2 = Ad( g)pι = pλ

Q.E.D.

The following is an immediate consequence from Proposition 2.1 and
Proposition 7.3:

COROLLARY 7.4. Let e be a nilpotent element in g, such that (Gc)e is
connected. Then any two w-polarizations of e are not Gc-conjugate.

Note: (Gc)e is not necessarily connected. For example, in Example 6.3.3),
e = β(n) + e(i2) has at least three w-polarizations pu p2 and £3. Among them,
£3 is Gc-conjugate to p2 and not to plm So, by Corollary 7.4, (Gc)e is not
connected.

PROPOSITION 7.5. If e is a principal nilpotent element of g, (Gc)e is a
connected subgroup of Gc.

PROOF. Let x be a mono-semisimple element corresponding to e. The
isotropy subgroup H=(GC)X is a Cartan subgroup of Gc with Lie algebra f)=g*.
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It suffices to show that HΓ\(Gc)e contains only the unit (Lemma 3.2). Choose
the linear order in the non-zero root system of g with respect to ί) such that
x belongs to the positive Weyl chamber, and let ZΓ={αi, , at} (resp. Δ+) be
the fundamental (resp. positive) root system. We can assume that

/
e = 2_ι eat0

ί = 1

from the Gc-conjugacy of principal nilpotent elements of g (Kostant [8]]).
For any ge Hr\(Gc)\ we have

Ad(g)ea. — ea. for 1< '̂<ΞZ,

and so Ad(g) is the identity mapping on ί)+ Σ Qai

Therefore Ad(g) is the identity on f)+ Σ Qa> Since the Killing form B

induces a non-degenerate, Jd(#)-invariant pairing between Σ gαand Σ 9~α>
α 6 J+ CL € Δ+

Ad(g) is the identity also on Σ Q~a Hence g is the unit of Gc.

Q.E.D.

Note: In the above proposition, "Gc = Int g" is essential.

PROPOSITION 7.6. A Borel-subalgebra b of g is a w-polarization of a prin-
cipal nilpotent element contained in the nil-radical π of b.

PROOF. Let e en be a principal nilpotent element. Then we have

dim b=-^-(dim g + rank (g)J=-—(dim g + dim ge\

Thus b is a w-polarization of e. Q.E. D.

PROPOSITION 7.7. Let g be a (complex) semisimple Lie algebra of type (A);
then every parabolic subalgebra is a w-polarization of a nilpotent element in g.

PROOF. It suffices to show the proposition in the case where g is simple
(Proposition 2.6). Again it suffices to show the proposition for the Lie algebra
g=End(F) where V is an rc-dimensional complex vector space. In this
case, for a parabolic subalgebra p of g, we can choose a decreasing sequence

of subspaces of V such that

p={xeEnά(V);x(VdCVh £ = 1,..., m-1}.
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Furthermore we have

n={χ cEnd(V); x(Vi)cri+u i = l,.. , m-1},

P={geAut(V);g(Vi)CVh £ = 1,..., m-1}.

For an element v e V, we set

r(v)=ma,x{ί; v e V{}.

Then an element g in Aut(F) belongs to P if and only if r(g(v)) = γ(v) for
all v e V.

Consider the adjoint action of P on π. To show the existence of an
element e in π satisfying [e, tG=it, it is sufficient to show that there exists
an element e in n such that the P-orbit of e in n is open, or equivalently that
there exists a non-empty open set O in π such that any two elements in O are
conjugate to each other by an element in P.

Let ai = dim(Vi-ι/Fi) (z = l,. , m).

Then Σai = n. Reorder the α, 's so that

and set

From the definition, we have

Consider the set

0={x en;

One can show that

0={x 6 n;

and hence O is an open set in it. We shall show that O satisfies the required
property.

In general, for a nilpotent mapping / of V such that fm = 0, we can choose
a sequence {C/z } of subspaces of V such that i) dimί7z =dim/(ί7z ), fm~i(Ui) =
{0} for each i, and ii) V decomposes into the direct sum of {/y(£/*•)}/=i,...,
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(the ordered set {dimt/z } is an invariance of/).

Suppose x e O. Then, we have

dim Ui=<Xi.

An inductive argument would show that, for an element v in χj(ui), γ(v) is
determined only by (y, ί) and is independent of x. Suppose x, x 6 0. Choose
{Ui}, {lift as above for x and χr respectively. Then the set of isomorphisms
JJ. ijjr. induces an automorphism goϊ V such that xg=gχr. Furthermore
ge P since

r(g(v)) = γ(v) for every υ e V.

An inductive argument shows that, for a non-zero vector v in xJ(Ui)
(ί = l,•••, m;j = 0, . , πι — ί), γ(v) is determined only by ί and y, and is inde-
pendent of x. Thus g preserves 7% and hence g belongs to P.

Q.E.D.

Note: We have a conjecture that, for any parabolic subalgebra p of g,
there exists a nilpotent element in rt with a w-polarization p, or equivalently,
that any (P, rt) is a pre-homogeneous vector space. This conjecture is correct
if 1) P is a Borel subgroup of Gc (Proposition 7.6) or 2) g is a semisimple Lie
algebra of type (A) (Proposition 7.7), and further, from case-wise discussions,
we can assert that the conjecture is true when g is a simple Lie algebra of
type (E6) (F4) (G2) or a simple Lie algebra of lower ranks of type (B) (C) (Z>).
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