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§1. Introduction

It is one of the main problems in the theory of unitary representations
to find a unified way of constructing all irreducible unitary representations
for an arbitrary Lie group G.

Kostant ([97], [10]) has shown a very general method of constructing
unitary representations, using G-homogeneous symplectic spaces and polariza-
tions on them. Related with this, it is required to characterize and classify
G-homogeneous symplectic spaces and G-invariant polarizations. It was
shown by Kostant that every G-homogeneous symplectic space is diffeomorphic
to a covering space of G-orbit in the dual space of the Lie algebra gz of G
when G is a connected, simply connected Lie group and the 1-st and the 2-nd
cohomology spaces of gr vanish (this condition is valid if gz is semisimple).
The outline of Kostant’s method is destribed in [7]and [10], and Kirillov has
given several problems related with Kostant’s works.

In this note, first we shall give an infinitesimal characterization of
polarizations (Theorem 2.2). From the viewpoint of the classification of
polarizations, it seems essential for us to study them in case of orbits of
nilpotent elements (Theorem 2.5). Then the TDS-argument appears on the
stage as a useful instrument for the investigation of polarizations of nilpotent
elements. Using TDS, one can obtain polarizations of nilpotent elements in
some cases (§5). But to count up all the polarizations seems to be a somewhat
complicated problem. In fact, as one can see in Examples 6.2-6.4, there exist
a nilpotent element with no polarizations and also a nilpotent element with
many polarizations. However, when e is a nilpotent element of a special
form, Proposition 5.5 will enable us to find out all polarizations of e.

§2. Characterization of polarizations

Let G be a connected Lie group, gr its Lie algebra and gk=Homz(gz, R)
the dual vector space of gz. The space g} has the G-module structure contra-
gredient to the adjoint representation of G on gz. For an element f in gg,
we denote by G’ the isotropy subgroup of G with respect to f> and by gk the
subalgebra of gz corresponding to G'(i.e., gk ={X € gr; f((X, Y ])=0 for every
Yegr}). Kostant [107] has shown that every G-orbit G(f)=G/G’ has a
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canonical G-invariant symplectic structure.
Let g and g’ be the complexifications of gz and gh. For a complex subal-
gebra p of g, we consider the following conditions:

i) f(», pDH={0},
ii) dimp—dim g’ =dim g—dim p,
iii) pis 4d(G)’-stable,
iv) p+op is a complex subalgebra of g,
where ¢ denotes the conjugation of g with respect to gz.

DeriniTioN 2.1. For fin g% and a complex subalgebra p of g, p is called

1) a weak polarization (in short, w-polarization) of f if p satisfies i)
and ii),

2) a polarization of f if p satisfies i)—iii),

3) an admissible w-polarization of f if p satisfies i), ii) and iv), and

4) an admissible polarization of f if p satisfies i)—iv).

DeriNiTION 2.2. A polarization (or w-polarization) p of f is called

1) real if p=0p, and
2) totally complex if p+op=g (or equivalently pop=g’).

ProrosiTioN 2.1. A polarization p of f contains a’.
Proor. We put V'=g/g’ (the quotient vector space over C). Since
g'={Xeg; (X, Y)=0 for every Y € g},
a non-degenerate skew-symmetric bilinear form o on ¥ is well-defined by
oX, V)=—f[X, Y)) for every X, Y € g,

where X=X+g’, Y=Y+g' ¢ V. We set q=p+g’, and denote by § the sub-
space of ¥ corresponding to q. By the condition i) of polarizations, we have

Sf(a, a))={0}.
Hence (g, §)= {0}, and so, by the non-degeneracy of w, we have
dim § g%dim V:%(dim g—dim g).
Therefore
dim g=dim §+dim g’
1 . . f
gT(dlm g+dim g’)
=dim p,



On Polarizations of Certain Homogeneous Spaces 447

from the condition ii) of polarizations. This relation, combined with pCaq,
implies p=q. Thus we have

g’ .
Q.E.D.
It is easily seen that our (admissible) polarization in the above definition
corresponds to an invariant (admissible) polarization of the homogeneous
space G/G’ with respect to the canonical symplectic structure given by Kos-
tant. Whereas, a weak polarization of f corresponds to an invariant polariza-
tion of the universal covering space of G/G’, considered as a homogeneous
space by the universal covering group of G. And a weak polarization p of f
becomes an invariant polarization of a suitable covering space of G/G’. So,
from the practical viewpoint of the unitary representation of G, it seems to
be essential to study (admissible) w-polarizations of each element in g%.
Throughout this paper we assume that G is a connected semisimple Lie
group. In this case, the G-module g is isomorphic to gz via the Killing form
B. For an element X in gz and a complex subalgebra p of g, wecall p a
polarization (resp. a w-polarization, ete.) of X if p is a polarization (resp. a
w-polarization) of fx, where fx is the element of gf corresponding to X by
the above isomorphism.

The following theorem gives a characterization of a w-polarization:

TueoreMm 2.2. For Xeg and a complex subalgebra p of g, the following
conditions are equivalent :

1) b is a w-polarization of X;

2) pis a parabolic subalgebra of g, and the space [ X, p | coincides with the
nil-radical of P.

Particularly in case that X is a nilpotent element of q, the above conditions
are equivalent to

8) X belongs to the orthogonal complement of b with respect to the Killing
Jorm B of g, and p satisfies the condition ii) of polarizations.

Proor. [1)=2)] Fix a compact real form f of g, and denote by £\Vp the
vector subspace of g generated by f and p. First we shall prove that £\ p=g.

We choose Y, Z ¢ tN\p such that Y+v—1Z €[ X,p]. Then by the condition
B(X, y], p)={0}, we have

B(Y+V—-12Z, Y)=0,
and o
B(Y+V—12, Z)=0.

Hence we have

B(Y, Y)+B(Z, Z)=0.
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Since B is strictly negative definite on f, we have Y=Z2=0. Therefore
CENPBY—1 ENpINLX, p]=4{0},

and ENp)PV—1 (fNp) and [ X, p] are mutually disjoint linear subspaces of
the real vector space p.

Hence
dimg [ENP)BY—1 ENp)]+dimz [X, p]<dimg p.....-(1).

We set n=dim¢g, m=dim¢ g*¥ and /=dim¢p. By the condition ii) of
polarizations, we have

2l=m++n.

Since the kernel of the linear mapping ¢ of p onto [ X, p ] defined by ¢(Y)=
[X, Y] coincides with pN\g* =g*, we have

dimg [ X, p]=dimg p—dimg g*¥ =2(1—m).
So the inequality (1) becomes
2 dimg ((Np) <dimp g*¥ =2m.
Hence
dimz ENp) Zm.
Now we calculate the dimension of f\/p:
dimg (fVp)=dimg f+dimg p—dimz ENp)
=n+2l—m
=2n=dimgg.
Thus we have
tVp=g.

Let G°=Int g denote the group of all inner automorphisms of g, and P
the analytic subgroup of G¢ generated by p. We shall prove that P is a closed
subgroup of G¢. It suffices to show that P is a connected component of the
closure P of Pin G€, since P is connected. From the condition i) of polariza-
tions, we have

B(X, Ad(g)Y)=B(X,Y) for every gePand Yep.
So we have

B(X, Ad(g)Y)=B(X, Y) for every gePand Yep.
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Therefore
t Y{B(X, Ad(exptZ)Y)—B(X, Y)}=0

for every Yep, Z€p and t € R*=R— {0}, where p is the Lie algebra of P.
From the above relation follows

B(X,[Z, Y])=0 for every Yepand Ze€p.
So we have
B(X, [p, »p)=A10}.
The skew-symmetric bilinear form o on g/g* defined by
o(a, v)=—B(X, [u, v])

(where u, v egand a=u-+g* €g/g*, s=v+g* € g/g¥) is non-degenerate, and
so by the condition ii) of polarizations, p/g* is a maximal null-subspace of w.
Therefore § must coincide with p, and P is the connected component of P
containing the unit. Thus P is a closed subgroup of G°.

Next we shall prove that G°/P is compact. Let f be a compact real form
of g¢ and K the analytic subgroup of G® corresponding to f. Then K is
compact, and acts transitively on G°/P. Therefore G°/P is compact.

Let n be the orthogonal complement of p with respect to B. Then, by
conditions of w-polarizations, we have n=[X, p] and [p, n]JCn. The norma-
lizer P’=Nge(n) of nin G° is a subgroup of G with Lie algebra p, and so
includes P. Since P’ is algebraic and G°/P’ is compact, P’ is a parabolic
subgroup of G°. Thus we have proved that p is a parabolic subalgebra of g.

[2)=1)] Let n be the nil-radical of p.
i) Since B is G°-invariant, we have

ii) We set n=dimcg, [=dim¢p and m=dimc g*. g* is included in p
(=the orthogonal complement of n), because

B(n, ¢*)=B(X, p], g%) =B, [ X, ¢*])={0}.
Since the kernel of the linear mapping ¢ of p onto [ X, p] defined by
¢(Y)=[X, Y] coincides with p"N\g*¥ =g*, we have
dim¢ p=dim¢[X, p]+dim¢ g*.

Hence
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dimc[ X, p]=1—m.
On the other hand, we have
dim¢ n=dim¢ g—dim¢ p=n—1.
Thus, by [ X, p]=n, we have [—m=n—1, and p is a w-polarization of X.

[1)=>3)] Since p is parabolic, there exist a Cartan subalgebra § of g
contained in p, a positive root system 4, of g with respect to ), and an
additively closed subset @ of 4., such that

p=H+ X g%

aed V-0
where
—0={—«a; axed}
and
g*={Xe€gq; (adH)X=a(H)X for every He H}.
The element X can be expressed as

X=H+ P caXa,

€4, U(-0)

where He Y, c, €C and 0= X, €g*. From the condition i) of polarizations,
we have

c.=0 for aedU(—0),

because

[ 1= SCHA | 3 g",

aed4, U(-0)
where H, €Y is defined by
B(H,, Hy=a(H) for every He.

So we have

X=H+ Z caXaa

acd -0
and H=0, since X is nilpotent.

Therefore
X= 2 caXa, and B(X, ‘p)={0}'

aed, 0

[8)=1)] This is obvious from definition of w-polarizations. Q.E.D.
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ProrosiTion 2.3. Any semisimple element in gz has an admissible pola-
rization.

Proor. A semisimple element H of gz can be embedded in a Cartan
subalgebra §, of gz. H can be decomposed into H=H,+ H,, where all eigen-
values of ad H, (resp. ad H,) are purely-imaginary (resp. real). Let §) be the
complexification of §, and 4 the non-zero root system of g with respect to .
Now we set

p—b_i- a(l;)=0g + c((HZz)>Og +_f(HZz)=0g ’
Vv=1a(H)>0

where
g*={Xeg; (adH)X=a(H)X for every H € §}.
It follows from

a(H)=0
and

DJ, P]‘—‘ Z CH,+ Z ga + Z ga+ Z ga,
a(H)=0 a(H)=0 a(Hz)>0 _C_‘(Hz)=0
v—-1a(H)>0

that p satisfies conditions i), ii) of polarizations. And

p+op=H+ 2 g%
aA(H3)z0
is a subalgebra of g. Since the centralizer (G)? of H in G°=Intg is connect-
ed, G¥ stabilizes p. Thus p is an admissible polarization of H. Q.E.D.

Lemma 2.4. Let p be a parabolic subalgebra of g, whose nil-radical is 1.
If Hep is a semisimple element, then pN\g? is a paraboic subalgebra of g,
whose nil-radical is nN\g¥.

Proor. Choose a Cartan subalgebra ) of p containing H. Then ¥ is a
Cartan subalgebra of g, and of g together. Now the root space decomposi-
tion of g with respect to § shows the lemma. Q.E.D.

Each element X in gz has the unique decomposition X=H+ e such that &
is semisimple, e is nilpotent and [H, e]=0. The centralizer ¢” of H is reduc-
tive and e belongs to the semisimple part [g7, g7 ] of g~

TueOREM 2.5. Let X=H+e be the decomposition of X as above. Then X
has a w-polarization if and only if e has a w-polarization in the semisimple
part of the centralizer g% of H in g.
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Proor. First, suppose there exists a w-polarization p of X in g. Then,
by Theorem 2.2, p is a parabolic subalgebra of g such that the nil-radical n of
p coincides with [ X, p]. Since H € g%, g? Cp (Proposition 2.1), by Lemma 2.4,
we see that p\g? is a parabolic subalgebra of g¥, whose nil-radical is nNg”.
Since g?=c+g’, cCg* Cp, we have

pNgf=c+(Ng),

where ¢ (resp. g') is the center (resp. semisimple part) of g?. Thus pNg is a
parabolic subalgebra of g/, whose nil-radical is nN\g?. We shall show that
pNg is a w-polarization of e in g. By the characterization theorem of
polarizations (Theorem 2.2), it suffices to show that

Ce, pNgJ=nNg?=nng.
By the choice of p, we have [ X, p]=n. Thus
nNg? DLX, png?]=[e, pNg“]=[e, pNg'J.
We set |
f=ad@|p and h=ad(H)|y,
then A is semisimple and foh=hof. We have
p=Ker(h)Dh(p),

and
S =f(Ker(h)Df(h(¥))
= f(Ker(h))DA(f(p)) (direct sum).
So we have
Sf(Ker(h))=Ker(h) N f(p),
that is,

[X, pNg"]=g"NLX, pl=nNg".
On the other hand,
Le, pNg’JCg'.
Thus
nNg?=Le, pNgJC g
Hence
[e, pNgJ=nNg?=nNg,

and pNg’ is a w-polarization of e in g'.
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Next, suppose that e has a w-polarization p’ in g¢’. p’ is a parabolic suba-
lgebra of ¢', by Theorem 2.2. We denote its nil-radical by n’. We have

g'Ng' Cy, [e, p]=n".
For the semisimple element H in g, we choose an admissible polarization
ps of H in g, whose nil-radical is denoted by n,. (For the proof of this

theorem, p, needs not to be admissible, but it is preferable for a later use to
choose an admissible polarization.) Since H is semisimple, we have

P, =g"7Pn, (direct sum as vector spaces).
Set
p=cDy' Dns,
n=n'Pn;,.
We shall show that p gives a w-polarization of X=H+e¢ in g.
0) p is a subalgebra. In fact,

pDeCa?, ¢ Chs,
thus
[»'De, n, .
Hence
p is a subalgebra.

i) Since c¢Pp’ contains a Cartan subalgebra of g, p is a parabolic suba-
lgebra of g, whose nil-radical coincides with n. And

[X, p]=[X, c+yp'+nJ=[X, p]+[H+e, n,]
=[X, pJ+[e, n, ]Cn'+1t,=n,
since X belongs to the reductive part g” of p’. So we have B([X, p], p)={0}.
ii) We have
2dim p=2(dim p’+dim c+dim n;)
=(dim ¢’ +dim(g’'Ng®)) +2dim ¢+ (dim g—dim g%)
=dim g+dim g*,

since g¥ =(g'Ng*)Pc, g7 =g'Pe.
Q.E.D.

Remark 2.1. It is easily seen from the proof of the above theorem that
pN\g' is a polarization of e in ¢ if and only if p is a polarization of X, and that
pNg’ is an admissible w-polarization in g’ if p is an admissible w-polarization.



454 Hideki Ozek1 and Minoru WAKIMOTO

So we have

1) e has a polarization in ¢’ if and only if X has a polarization,

2) e has an admissible w-polarization in ¢ if X has an admissible
w-polarization.

So the problem to find a polarization for an arbitrary element in a real
semisimple Lie algebra is reduced to the case where the element is nilpotent.
The TDS plays an important role in finding out polarizations of a nilpotent
element. Details of this method will be described in following sections.

ProrosiTion 2.6. Decomgose a real semisimple Lie algebra gr imto the
direct sum (as Lie algebras) of simple ideals :

and let g (resp. g') bethe complexification of gr (resp. gk). Then an element
X= Z X' € gr(X* € g%) has a (admissible) (w-)polarization if and only if each

Xi has a (admissible) (w-)polarization in g'.
Proor. We set /;=rank(g’) and = ﬁ l;=rank(q).
i=1

First, suppose that X has a w-polarization p. Let §) be a Cartan suba-
lgebra of g contained in p, and §’ the image of §) under the canonical projection
n' of g onto g. Since #; is a Lie algebra homomorphism, ¥ is an abelian
subalgebra of ¢’ and ad,«(H) is semisimple for every H € §. So ¥ is contained
in a Cartan subalgebra of g’, and we have

dim f)i é li.

So we have /=dim bg

H}ﬂs

l;=1, since HC ‘;mlb".

1

Hence ¥ is a Cartan subalgebra of ¢, and §H= f} %, Since p is parabolic, we
i=1
have (by using the root space decomposition)

m

= 2 7(p) and 7 (P)=pNg.

We set pi=ri(p). We shall show that p’ is a w-polarization of X'.
By the condition i) (B(X, [b, p])={0}) of polarizations and p= ﬁ‘lp", we
have
B(X', [, p])={0}.

From this relation and the non-degeneracy of » in the proof of Proposition
2.1, we have
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dim p' g—;—(dim o —dim(g)*").
Hence
dim p g%{dim g—dim g%).

By the condition ii) of polarizations, the above inequality “ << is just “ = .
Thus p’ satisfies rthe condition ii) of polarizations, and p’ is a w-polarization
of X?in ¢'.
Next, suppose that X7 has a w-polarization p* in ¢’. Then it is easily seen
that p= f p? is a w-polarization of X.
i=1

As to condition iii) or iv), the equivalence is easily checked. Q.E.D.

§3. Some properties of TDS

In this section we shall give a short description of some properties related
to the TDS, which will become useful tools for the research of w-polarizations
of a nilpotent element as is seen in following sections. Further detailed
discussions of TDS are seen in Kostant ([8]) ete.

DeriniTioN 3.1.  For elements x, e and f in g,
1) (x, e, f) is called an S-triple if
[x, el=e, [x, f1=—F and [e, f]=x.

(2) In the above, x is called the neutral element and e (resp. f) is called
the nil-positive (resp. nil-negative) element of the S-triple.

DeriniTION 8.2, An S-trinple (x, e, f) generates a complex subalgebra
{x, e, f}c of g, isomorphic to 8l(2, C), which is called a TDS (three-dimensional
simple subalgebra) in g associated to (x, e, f).

Notations: 1) For X € g, g* denotes the centralizer of X in g.

2) G°=Int g is the group of all inner automorphisms of g, and (G°)* is
the centralizer of X in G°€.

3) We denote by %Z the set of all integers and half-integers.

Let e be a non-zero nilpotent elenent in g. Then e can be embedded in
an S-triple (x, e, f) as a nil-positive element. We call x a mono-semisimple
element corresponding to e. We remark here that a mono-semisimple element
corresponding to e is never unique, and has the arbitrariness as follows: if x
is a mono-semisimple element corresponding to e, then x added by an element
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in g°"\[e, g] is also a mono-semisimple element corresponding to e. Itis
known (Kostant [8]) that an element x in g is a mono-semisimple element
corresponding to e, if and only if x € e, g] and [x, e]=e. Choose a Cartan
subalgebra Y of g containing x, and denote by 4 the non-zero root system of g
with respect to §). Each root « in 4 determines the element H, in § by the
relation B(H,, H)=a(H) for every HeY. It is known from the representa-
tion theory of 3[(2, C) that the set of eigenvalues of ad,(x) forms a subset of
%:Z. This concludes that the element x belongs to jz= > RH,. For je —;—Z,
aed
we set

g/ ={X € g, ad(x)X=jX}.
The space g; coincides with

2 g% if j=%0,

aed
aA(x)=j
and with
b+ > g° if j=0,
at(zxe)==0
where

g*={Xe€gq; ad(H) X=a(H)X for every H € j}.

The following properties of g; are due to Kostant ([8]):

1) dimg;=dimg.;,

2) dimg*=dim g, +dim g1,

) ¢°C 285

4) ad(e):g;—g;.1 is injective if j<0, and ad(e): g;_1—g; is surjective
if j>0,

5) if i+j=0,g; and g; are mutually orthogonal with respect to the
Killing form B of g.

Let IT={a;, -, a;} be the fundamental root system for an arbitarily fixed
lexicographic linear order in 4. The set {«, --, a;} forms a basis of h* =Hom,
(9, €), and x has the following expression:

!
2= X ax)e,

where {ey, -, &} is the basis of §) dual to {a;, -, ay}. We shall call (a;(x),---,
a(x))g the characteristic of x with respect to II.
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Lemma 81. (Dynkin [47], Kostant [8]) Choose such a linear order in 4
that the element x is contained in the positive Weyl chamber. Then the char-

acteristic of x consists only of 0, % and 1.

Proor. Each eigenspace g; of ad,(x) is a suitable sum of § and g%’s
(€ 4). It is enough to show that each root space g*(1<<i<1) of a simple

root appears only in go, g1 and g;. Since g; coincides with [e, g;_1] for
2

j g%, a root appearing in g; (j g%) is expressed as a sum of a root in g;

and a root in g;_i, both of which are positive roots because x belongs to the

positive Weyl chamber. So a root which appears in g; can not be simple if

. 3 .
j 27. Thus every simple root belongs to go, g 1 and g;. Q.E.D.

Next we define the subalgebra g, of g by
ge=g¢°N 2 g;=g°N[e, gJ,
i>0

and we set (G°), the analytic subgroup of G° generated by g.. Then it follows
from well-known facts about linear nilpotent Lie algebras that (G°), is closed,
connected and simply connected, and that exp |g, is a diffeomorphism of g,
onto (G°),. Further, Kostant ([8] Theorem 38.6) has proved that the following
mappings are bijections:

g% €x +g.={x+X; Xeg.}
1 1

g € (Gc)e

\J

(gx, e, gf) € the set of all S-triples containing e as the nil-positive
element.

Using this bijection, we have

Lemma 8.2. 1) (G°), is a normal subgroup of (G°)°.
2) (G°)® 1s the semi-direct product of (G°), and (G°)*N\(G°)*.

Proor. Subgroups (G°)°, (G°), and (G°)°*N\(G°)* are closed subgroups of
G°. We shall prove that i) each element g € (G°)° has the unique decomposi-
tion g=g’g” where g’ € (G°), and g” € (G°)*N\(G°)* and that ii) (G)°* N\ (G)*
normalizes (G€),. Since (gx, e, gf) is an S-triple containing e as the nil-
positive element, there exists g’ € (G°), satisfying gx=g’x owing to the
existence of the above bijection of (G°), onto x+g,. By putting g”"=g""'g,
we have g” € (G°)°N\(G°)* and g=g’g”. Thus an element ge€ (G°)° has a
decomposition g= g’g”, where g’ € (G°), and g” € (G°)*N\(G°)*. It is enough
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for the uniqueness of this decomposition to show that [(G)*N\(G°)*]N(GC),
contains only the unit. An element g, in [(G°)*N\(G)*]N(G®), satisfies
&&ox = gx, which fact combined with the bijectiveness of the mapping y— yx
of (G°), to x+g. proves g=ggo. So go=1, and the uniqueness of the decom-
position is proved. Next we shall prove ii). Each g€ (G%)*N\(G®)” stabilizes
g°Ng; for every je —;—Z, so the space g, is stable under the adjoint action of
every ge (G°)*N(G)*. Thus we have proved ii) because of (G°),=exp g,.
Q.E.D.

Lemma 3.3. If e is a (non-zero) milpotent element in gr, an S-triple
(=, e, f) can be chosen in gg.

Proor. Let (a/, e, f) be an S-triple containing e as the nil-positive
element. We set

x=—;—(x’+o'x’)=the real part of x’,

f=—12—(f’+6f’)=the real part of f’.

Then (x, e, f) is also an S-triple. Q.E.D.

§4. G-conjugate classess in gz

Let 6 be a Cartan involution of gz, and gr=¥,+p, be the Cartan decom-
position of gz associated to 6, where ¥, is a maximal compactly imbedded
subalgebra of gz. Let b},..., bk be representatives of the G-conjugate classes of
Cartan subalgebras of gz. They can be chosen 6G-stable and such that
5L CHL, Hi CH: and dimphi <dimbhitt for every i, where bhi=bHiNE, (the
toroidal part of hj) and Hi=HjNp, (the vector part of hi). We set b= (5))°
and h,=v—1H:+Hi. The non-zero root system 4‘ of (g, §’) admits the direct
sum decomposition

4F=3{UIiud,
where
25':{05 € At, gacf}s
Zi={ae 4';g*Cyp}
and

Ai={a e 4'; a|h’0}.
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The set Zi=3{\UJXi coincides with the set of all purely-imaginary roots in
4 (i.e., roots which vanish on §%). A lexicographic order in H% compatible to
Hi induces a linear order in 4‘ and determines positive subsystems 4% and
A,

We put

nh=( 2 ¢*)Ngr.

i
a€A+

Notations: 1) Hereafter we write sometimes a_, a,, a, and a instead
of H%, H* BH% and H*. That is, in this paper a, denotes the f-stable Cartan
subalgebra of gz with maximal vector part. A ¢-stable Cartan subalgebra Y,
of gz is called standard relative to a, if the vector part of §, is a subspace of
a,.

2) For a ¢-stable Cartan subalgebra %), of gz notations Y,,5_ 2y, 2, 4, 1o
and so on are used to express ones defined in the same way as above.

ProrosiTion 4.1.  Let e be a (non-zero) nilpotent element in gg.

Then

1) a mono-semisimple element corresponding to e can be chosen
G-congugate to an element in a,, and

2) the element e is G-conjugate to an element in nk.

Proor. 1) By Lemma 3.3, a mono-semisimple element x corresponding
to e exists in gz. Since x is a semisimple element of gz, x can be imbedded
into a standard (relative to a) 6-stable Cartan subalgebra §, of gz under the
adjoint action of G, i.e., there exists g € G such that gx € §,. Since the eigen-
values of ad,(gx) are all real numbers, gx belongs to the vector part of Y,
which is a subspace of a,. Thus we have gx €a,.

2) Replacing x and e by gx and ge, we can assume that the mono-
semisimple element x belongs to a,. And by the action of an element % in
K (k is chosen in the normalizer of a, in K), x is transferred into the closure
of the positive Weyl chamber in a,. Since ke belongs to the l-eigenspace of
ady(kx), we have

kee( X g“)/‘\gRC 2 g*\N\gr=n.
alhai=1 aed]

Q.E.D.

For the sake of simplicity, an S-triple (x, e, f) in g is called standard
with respect to the Iwasawa decomposition gr=£y+a, +ny, if x €a, and e € n,.
Then, from Proposition 4.1, we have the following:

CoroLLARY 4.2.  Ewvery S-triple in gr ts G-conjugate to a standard S-triple.
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Lemma 4.3. For a 0-stable Cartan subalgebra Y, of gz, the conditions 1)
and 2) are equivalent:

1) b has a maximal vector part,
2) 2%, is empty.

Proor. First we note that
D Z,6)=b+ I ¢°
where Z,(§.) denotes the centralizer of §, in g and

ii) 2 g* is 6-stable.

aexy

These facts are seen easily from the definition of 2. Now the condition 1) is
equivalent to

Zy(h)Np=Dg,
which is equivalent to

( 2 99np=1{0}
because of i), and this is equivalent to

Fct
because of ii), and this is equivalent to
2, =¢(empty set).

Thus the statement of Lemma 4.3 has been proved. Q.E.D.

Lemma 4.4. A semisimple element H, can be imbedded by G-action into
such a 0-stable Cartan subalgebra 9, of gr that

a(Hp) =0 foreveryael,
where H} is an element in Yy G-conjugate to H,.

Proor. There exist an element gin G and an integer i (1<i<"k) such
that 4d(g)H, belongs to hi. Among the above g’s and i’s, we choose i as large
as possible (in other words, dim b’ is as large as possible under the condition
that H§ contains an element G-conjugate to H,), and hereafter we fix i and g
as such. We put

Hj=Ad(g)H, and H,=Ni,
and we shall prove that

a(H)) >0 forevery acel,.
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Now suppose that a(H;)=0 for some a € X, and fix a root a € 2, as such.
Since ca= —ala € 2, ), we can choose non-zero vectors es, in g** so that
e.+e_, may be o-stable (i.e., e,+e-, €gr). We also note that e,+e_, € po
since x € ¥,. We set

. =orthogonal complement of H, in Y)_ with respect to the Killing form B,

f){!- =b+ +R(ea + e—a)’
and

ho=H_+b:.

The space §; is a maximal abelian subalgebra of gz, and so a (6-stable) Cartan
subalgebra of gz, the dimension of whose vector part is equal to dim %, 4 1.
Moreover, Hj belongs to §; by the assumption that a(Hj})=0. This contra-
dicts the choice of i (the maximality of the vector part), and so we have

a(Hy)*0 for every ael,.
Thus the proof is accomplished. Q.E.D.

ProrosiTioN 4.5. An element X in gr is G-conjugate to an element in Hi +nj}
Jor some i.

Proor. X has a unique decomposition X=H+e where H (resp. e) is a
semisimple (resp. nilpotent) element in gz and [H, e]=0. The element H is
transferred into some %} by the adjoint action of G. We choose i as large as
possible. Hereafter, for the sake of simplicity, we assume that H itself is
contained in h. Then, due to Lemma 4.4, we have

a(H)>0 for every «ae i
So if we set
d={ae d; a(H)=0},
4’ is included in F§\U4’. The centralizer g7 of H in g is expressed as
g"=b'+ % g%

which is a reductive Lie algebra with the center

3= Zi CHa
aE
aly’=0
and the semisimple part
Y+ X g%
aedq
where
Yy = CH,
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Let I, denote the semisimple part of (gz)”, and L the analytic subgroup of G
generated by Io.

Since

L=b9+( X g¥)Ngr (Where h;=0"Ngr)

ac4’
and
NS, =¢,

H; is a Cartan subalgebra of I, with maximal vector part (Lemma 4.3). And
since e belongs to the semisimple part I, of (gr)?, e is transferred into
( 2 ¢%Ngr by the adjoint action of an element g in L. Thus we have

aed
a(H)=0

proved that

Ad(g)X € hi+nj.
Q.E.D.

§5. The TDS and w-polarizations
In this section we make an investigation into w-polarizations of nilpotent
elements using the TDS.

Prorosition 5.1.  Let x be a mono-semisimple element corresponding to a
(non-zero) nilpotent element e in gr. And assume that the characteristic of x
consists only of integers. Then the subalgebra ), g; of g is a w-polarization

iZo0

of e.
Proor. We set p= > g;. We shall prove that p satisfies the conditions
jz0
i) and ii) of a w-polarization.

i) The orthogonality of e and [p, p] is true because e € g, and B(g;, g;)
={0} for i+;=¢0.

ii) The calculation of the dimension of p:
dim g—dim p=dim } g;,
i<o0
and
dim p—dim g°=dim p—dim go=dim ; a;.
ji>0
Thus we have

dim g—dim p=dim p—dim g°
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since dim g;=dim g_;.
Q.E.D.

ProposiTiON 5.2. Let x be a mono-semisimple element corresponding to a
(nom-zero) nilpotent element e in gr. Asswme that the characteristic of x con-
tains half-integers and that there exists such a subspace V of g-L that 1) V 1is

an abelian subalgebra of g, 2) V is stable under the adjoint action of each
element in go and 3) the dimension of V is a half of dim g-L. Then the

subspace Y, g;+V is a w-polarization of e.
jz0

Proor. We set p= Z g;+ V. By the assumption 1) and 2) on V, p is

a subalgebra of g. And the same discussion as in the proof of Proposition 5.1
shows that p satisfies conditions i) of a w-polarization. So we need only to
calculate the dimension of p:

dimg —dlmp_——dlmg L +dim 2] g;

j=-1

lemg 1 +dim Z G

dim p—dim g*=dim p—(dim g, +dim g%_)

=(dim ] g, + 1 dlmg 1

jZ0

—(dim go +dim g,;;)
L 1
=dim A g,-l—lem g1
Thus we have
dim g—dim p=dim p—dim g°,
and p is a w-polarization of e. Q.E.D.

ProrosiTioN 5.3. A w-polarization p of a nilpotent element e in gg, tf it
exists, contains mono-semisimple elements corresponding to e.

Proor. Let x be a mono-semisimple element corresponding to e, and n
the nil-radical of p. By Theorem 2.2, we have

B(x, m)=B(x, [e, p])
=B(Ex’ eja P)=B(€a p)—_—{O},
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Thus we have

x € nt=p.
Q.E.D.

The following is an easy consequence of the above proposition:

CoroLLARY 5.4. Let p be a w-polarization of a nilpotent element e in gg,
x @ mono-semisimple element corresponding to e, and g; the j-eigenspace of
ady(x). Then we have a direct decomposition (as vector spaces)

p= 2 (g;Np).
je4

ProrosiTioN 5.5. Let e be a nilpotent element in gr written in the follow-

g form: e= Y, e,, where @ 1is a subset of a fundamental root system I =
aep

{ay, -, au} of g with respect to a Cartan subalgebra Y, and e, is a non-zero
element in the root space g*. Then any w-polarization of e, if it ewists,
contains Y.

Proor. First we shall show that there exists a mono-semisimple element
in § corresponding to e. Choose the element e_, in g~*(x € @) so that B(e,,
e_,)=1, and we put

x= 2, c H, (c €0).

The element x belongs to [e, g] because x=[e, X, c,e_,]. So if x satisfies
aED

the relation [x, e ]=e, x is a mono-semisimple element corresponding to e as
is discussed in §3. Since [x, e]= 2. (&, B)cges, the relation [x, e]=e is
a,Beo

equivalent to a system of linear equations:

BZ (@, B)cy=1  for every a € O,
€0

where (a, ) denotes the inner product of H, and H; by the Killing form B.
For the sake of simplicity, by an appropriate rearrangement of «,---, a;, we
assume that 0= {a,,---, a;}, and write c; instead of ¢,,(1<i<k). Then the
above linear equations are rewritten as

_Zka'l (aiy atj)c;=1 for i=1,..., k.
i=

Since the k& x k— matrix ((«;, @;))1=:, j=# is strictly positive definite, the above
system of linear equations has a unique solution, and c,,.--, c, are real
numbers. With such c¢y,---,c;, We have [x, e]=e, which, combined with
the fact that x €[e, gJ, assures us that x is a mono-semisimple element
corresponding to e.
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Next we shall prove that pn 3] g~*={0}. We put
aEoD

W=H—@={ak+1,---,a,},

d={axed; al(x)=1}
and

4"=4—0.

Using the dual basis {ei,---, &;} of {ay, .-, a;}, x has the expansion:

!
x= 2 &+ 2, ci&

i=1 i=k+1
By Corollary 5.4, we have p= >, (bNg,;). We shall make here some inves-
je€ —%—z
1
tigation into pNg_;. The space hr= }; Ce; is a subspace of g°N\go, and it
1

i=k+

is obvious from the definition of & and 4” that

{weights of h» on > g *} 30,
S

{weights of b on Y g~%}={0}

aeo

and

g.1= 2 g%+ 21 g (direct sum as vector spaces).
aeq’ aeP

This implies, with h» Cg° Cp, that the vector space pg_; is the direct sum
of subspaces (b 2 g”%) and (b Y g™%). Assume that pN J g *=¢{0}.
aed’”’ aep aed

k
Then one can find a non-zero element X= ) rie_,, in pN\ 3 g7% We set
i=1 aeod

H= 3 r,H,(=[e, X]€p).

i=1

The element (edH)X is expressed as
k
(adH)X=— 2] riric, aj)e_q,
i,7=1

which is not zero because kx k— matrix ((a;, «;))1=:, j= 18 strictly positive
definite. Choosing a suitable linear combination of X, (adH)X, (adH)*X,---,
(edH)* X (these element are contained in p), there exists an integer
s(1<s=<k) and a subsequence (g1, --, g5) of (1,-.-, k) satisfying that

1) r,=0 for every 1<i<s,
2) a,(H)==a, (H)=x0,
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and

3) 2:1 rg,€-a, €9

we put X /=;§ re,e-«, and H'=[e, X"]. Repeating the above process, we

finally obtain elements X and H in p with the following properties:

i) X= ,-gr"fe‘%i is a non-zero element in p, where (pi,---, pr) is a
subsequence of (1,..-, k),

ii) H=[e, X]= ‘_zf'_,lrpiﬂpi,

and
iii) By (H)=--=8,(H)>*0

The condition iii) can be expressed as

t
i§1rﬁi(api, apj):r (fOI‘ j=1,~'-, t),

where r=3, (H). We can assume that r is a positive number by replacing
X, if necessary, by a scalar multiple of X. We set

1
r?;i:'z—rpi (al’i! aﬂi)

and
* -1
Ap, = 2a17i(a171:9 afpi)
for i=1,..., t. Then the above condition iii) becomes

t
;1 raad, ay)=r (for j=1,...,0).
In the matrix forms, this becomes

(r;l;p' Ty T;‘t)A=(T,- “ty r),

where

( (af;}‘l).aﬁl) """ (“jp ah) >
(a;fp apl) """ (a;!‘n aﬁ,)

So we have

(T’;.,"', r;ﬁ):("a'“, r)A—l'
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Since r is positive by the assumption on r and all matrix elements of 4-! (the
inverse of a Cartan matrix) are non-negative real numbers, every rj(1<i <¢)

t
is a positive number. So }’ r,, is also a positive number. On the other hand,
i=1

by Theorem 2.2, B(e, p)={0} is valid. So B(e, X)=0, i.e., 2':1 rp,=0, which

contradicts the above. This contradiction has arised from the assumption
that pN 3 g~ contains a non-zero element. Thus pN Z g *={0}, and we

aed
have

PAG-1=pN 2, g7*
aed

Since e is in )] g* and the set @ is disjoint with 4", each vector in the
aeo
space [e, 2, g “] has no h)-component, i.e., [e, ) g %] is a subspace of 23 g“.
aeq’”’ ae 4’ a€d
So we have [e, pNg-_1]=[e, W\anA:u g_a]CEe’anAug_a]C a;d g°.

a(x)=0

Denoting by the suffix “1” (resp. “l1.”) placed on the right-hand shoulder
the orthogonal complement in g (resp. go) with respect to B, we have

b=C % 69" Cle, prgilt

a(x)=0
=(Le, pINgo)*=[e, pT Ngo=pNgo.
Thus Hp is proved. Q.E.D.

DeriniTION. A nilpotent element e in g is called principal nilpotent if
dim g°=rank of g.

It is known from the theory of Lie algebras that gz contains a principal
nilpotent element in g if and only if there exist no purely-imaginary roots in
the root system of g with respect to the complexification §) of a Cartan subal-
gebra §, of gz with maximal vector part.

CoRrOLLARY 5.6. Assume that gr contains a principal nilpotent element e
of g. Then e has a unique w-polarization p. Moreover p is a real polariza-
tion of e and a Borel subalgebra of g.

Proor. Due to Kostant ([8]), we can choose a Cartan subalgebra § of g
and a fundamental root system I7 = {«;, ---, &} so that e may be expressed as

1
e= ), e, Asisshown in the proof of Proposition 5.5, x= Z ¢, is a mono-
i=1 i=1
semisimple element corresponding to e. So, by Proposition 5.1, Z} g ; is a
w-polarization of e, and the existence of w-polarizations of e is thus proved

Now let p be any w-polarization of e. By Proposition 5.5, p includes the
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Cartan subalgebra Y, which coincides with g, by the regularity of x. Consider-
ing also the fact that e € p and [e, g;]=g;+1 (j=0), we have }, g;Cp. By
jiz0

the condition ii) (as to the dimension) of w-polarizations, p must coincides
with ) g;. So the uniqueness of w-polarizations is proved.
jiz0

For the w-polarization p of e, subalgebras gp and 4d(g)p (g€ (G°)°) are
also w-polarizations of e, which coincide with p by the uniqueness. Thus p
is a real polarization.

Since x= Z‘j.lei, we have ) g;=bh+ > g* So p is a Borel subalgebra
i= FEY) a>0
of g. Q.E.D.

§6. Some examples

From the point of view of w-polarizations, simple Lie algebras of type
(4) have a distinct property from those of (B) (C) (D) (E) (F) or (G). In case
of type (4), every element has a w-polarization, while in other cases, the
existence of w-polarizations does not necessarily hold. The number of
w-polarizations or admissible polarizations is somewhat complicated (Exam-
ples 6.2-6.4), and it seems to be a difficult problem to find out or to control all
the w-polarizations or admissible w-polarizations for an arbitrarily given
element in gz.

ProrosiTiON 6.1.  Assume that gz is a real semisimple Lie algebra of type
(4) (i.e., all the stmple factor of gr are simple Lie algebras of type (4)). Then
every (non-zero) nilpotent element e in gr has a w-polarization.

Proor. By Proposition 2.6, we can assume that gz is simple. Let x be a
mono-semisimple element corresponding to e, and Y) a Cartan subalgebra of g
containing x. Let IT={a;, -, a;} be a simple root system, arranged accord-
ing to the Dynkin diagram. (So any positive root « € 4. can be written
a=a;+ -+a;.) The element » may be assumed contained in the closure of
the positive Weyl chamber. Let (ai,---,a;) be the characteristic of x with
respect to I7:

!
x = Z a; &
i=1

where {ey,---, &} is the basis of ) dual to ay,.--, ;. We put
m=the number of 1 in (a;, .-, a)),
and (¢1,---,tn) be the subsequence of (ai,---,a;) such that

a;,=1 A1=j=m).
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For the convenience of notations, we set
to=0 and ¢,..=1+1,
and
Ci=(ai),j<i<tj+1 for j=0,..., m.
Let p; be the multiplicity of —%‘ in C;, and (sy,-, s,) the subsequence

of C; such that an:—;“ (1=<i<p;j). For every j(0<;j<m), we set

+_
ﬂ] . Z es;’
1=¢cven
= Z 15
7 iGaa Y

!
}.

The following statements are obvious from the fact that e € g; and ad(e) is a

linear isomorphism of g-L onto g L

ay={ aed;ax) =1, alup=

vof o[

A}:{ a€d; alx) =~;}3—, a(uy)

1) PJ=0 or szza
2) The cardinal number of the set 49 is equal to that of Al

We set
4" = \m/ A3,
=0
¢ =X g G(=12).
aeEA

Then it is easily seen from our way of construction that g"_% (i=1,2) is an

abelian subalgebra of g, that the space g_1 is the direct sum of g'_1 and

2 2
g% L, and that g7 _ 1 (i=1, 2) is stable under the adjoint action of g,. So,
by Proposition 5.2, p'= 3} g;+ g"__;_ (i=1, 2) is a w-polarization of e.

iZ0

Q.E.D.

CoROLLARY 6.2. Ewvery element in q semisimple Lie algebra of type (A)
has a w-polarization.
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Proor. Each element X in gz has the unique decomposition X=H+e,
where H (resp. e) is a semisimple (resp. nilpotent) element in gz and [ H, e ]=0.
Since the semisimple part of g” is also semisimple of type (4), X has a
w-polarization by Theorem 2.5 and Proposition 6.1. Q.E.D.

CoroLLARY 6.3. Ewvery nilpotent element in a semisimple Lie algebra of
type (AL) and (AIL) has an admissible w-polarization.

Proor. The Satake diagram of a simple Lie algebra of type (4I) or (A1)
does not contain arrows. When gz is of type (AI) or (4II), 4i (j=0,..., m
and :=0, 1) is o-stable. So every nilpotent element in gz has a real w-
polarization. ' Q.E.D.

The following example shows that a nilpotent element in a simple Lie
algebra of type (AIII) has not necessarily an admissible w-polarization.

Example 6.1. gr=3u (3, 3)

The Satake diagram of gz is

ay az
[ [ Das.
(643 g

We put

e=eq teq,
1
x=€1+85—7(52+64)-

Then x is a mono-semisimple element corresponding to e, and the character-

istic of x is (1, —%, 0, —%, 1). For the sake of simplicity, we express a
5
root a= 2, a;c; by
i=1
(a1, -, as) if « is positive, and
—(—ay,--, —as) if a is negative.

We set
4, =4{(10000), (00001), (11111), —(01110)}.
AL;_={(11000), (11100), —(00010), —(00110)},

A’%={—(01000), —(01100), (00011), (00111)},
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41 =4'21\J4*1
2 2 2

4y ={+(00100), +(11110), +(01111)}.

Then
_ : 3
g: ={0} if |z|2—2—
gi = Z, g if i=-—5-or 1,
90=b+ 2 Qa s
_ —a if j—— 1 _
%= a€ed_; g it i= 2’ L

Let p be a w-polarization of e. From HCp (Proposition 5.5) and g°Cp, we
have

P> 2 g;-
iz0
And by the proof of Proposition 5.5, we have

(g 4g7%)={0}.

So, if we suppose PN\g_;=x4{0}, p includes g~V o 1110 If g (1D 'y
then g~ *1=[g°11D g~V Cp which contradicts the fact that pg=*1={0}.
If 1119 Cp, then

g_alz[g_(llllo), g(OIIIO)]Cp,

which is also a contradiction. Hence g_;\p= {0}, and by the condition ii) of
polarizations, we have

dim(prg_1) =%dim g1

We set
Vi= qg (i=1, 2).

a€di
2

Then 7Vi(i=1, 2) is an abelian subalgebra of g and ad(g)-irreducible, and
dimpV "=—“12—dim gL . So, by Proposition 5.2,

b= T gV (=12
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is a w-polarization of e, and p must coincide with p; or p,. Since ca;=as_;
(1<i<5), we have op;=p,, so we have

prt+opi=p;+op.= 2 g

i=_ 1
=77

which is not a subalgebra. Thus a w-polarization of e cannot be admissible.
In the following examples, we fix a 0-stable Cartan subalgebra %, of gz
with maximal vector part, where 6 is the Cartan involution associated to a
fixed Cartan decomposition gr=Ff;+p,. In the non-zero root system 4 of g
with respect to the complexification %) of Y, is introduced a lexicographic
linear order compatible to the vector part §, of Y),. Let 4, be the set of all
positive roots and IT={«,, .-, a;} the fundamental system of 4.. We set

A, ={a€d.;alh, =0},

and
g*={Xe€g; ad(H) X=a(H)X for every Heb},
for « € 4. We choose e, € g* (for a € 4) such that
B(ey, e_,)=1, and oce,=e,,,
where oca € 4 is defined by
(ca)(H)=a(cH) for every Heb.

Let {e),---, &} be the basis of § dual to {ay, -, a;}.

Notation: A root a= }; a,a; is denoted by (ai,--,a;) if «>0, and by
—(—ay,---, —a;) if a<0. o
Example 6.2. gz=0(8, 2) (the normal form of type (B:))
ar
The Satake diagram of gz is O==0, and each root vector is contained

in gz. The characteristics of mono-semisimple elements corresponding to
non-zero nilpotent elements in gz are as follow:

1
(0, T) ,(1,0) and (,1).
There are three G°-conjugate classes of non-zero nilpotent elements in gx.

1 (o, %) <i.e., x=% ez)

In this case e=e, .24, is a nil-positive element corresponding to x. This is
because x satisfies x € [e, g7"*]C[e, g] and [x, e]=e. We set
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4%—= {az, o+ s},

and
Ao:{al, —al}.
Then we have gL= 2. g% go=b+ X2 g%
2 a€edl aE€ 4y
2
and

dim g°=dim go+dim g1 =4+2=6.
2

Since dim g=10, the dimension of a w-polarization of e, if it exists, must be
equal to 8. The dimension of a parabolic subalgebra of g is, however, equal
to 6,7 or 10, and so by Theorem 2.2, ¢ has not a w-polarization.

2) 1,0 (e, x=¢)

In this case, e=eq,.q, is a nil-positive element corresponding to x. We
have

g1 =g gt gotien
go=bh+g*+g~ %,
g-1 :g—dl+g—(a1+az)+g—(a1+2a2).

Since a w-polarization of e contains %) by Proposition 5.5, w-polarizations of
e are exhausted by the following three:

plz Z gf,

jZ0
p2=h+g+g%+g™",
ps=h+g1+g g,
p, is conjugate to p; under Aut(g), while p; is conjugate to none of them.
3) (1,1 (.e, x=¢;+ey)

In this case, e=e, +e,, is a nil-positive element corresponding to «x.
Since e is a principal nilpotent element of g, e has the unique w-polarization
and it is an admissible polarization of e (Corollary 5.6).

Example 6.3. The normal form of type (G;).

[04] (0%
The Satake diagram of gz is O >0.
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The characteristics of semisimple elements in the closure of the positive Weyl
chamber of H which can be mono-semisimple elements of nilpotent elements
in g are as follow:

(5-9), (0,4), 1,0 and @, 1)

(see Dynkin [47] p. 176).

1 x=(% 0).

e=e2,3 is a nilpositive element corresponding to x. We set

A—é«: {(13 0): (13 1)) (1> 2), (15 3)}’

4o ={=(0, D} .
Then
gL= 2 g% go=b+ 2 g%
ae€ 4y

aedl_
2
and

dim g°=dim go+dim g;_:4+4=8.

Since dim g=14, the dimension of a w-polarization, if it exists, should be
equal to 11. The dimension of a parabolic subalgebra of g is, however, equal
to 8, 9 or 14, and so by Theorem 2.2, e has no w-polarizations.

2) x=<0, %
In this case e=e( 2 is a nilpositive element corresponding to x. We set
di={a € 4; a(x)=j} forjE%Z.
That is
43 ={{, 3), (2, 3)},

4, ={Q1, 2)},
A_21_={(0, 1)) (1:1)},

4y ={'-t(1, 0)}a
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and
4=¢ if |j|=2.

Since g’=Cal+g‘1'°’+g'“'°)+g1+g% , we have
POgotatgs

by Proposition 2.1 and Proposition 5.5. p cannot contain f, because f€p and
g°Cp implies p=g. So pNg-1={0}. Thus, by the condition ii) of polariza-
tions, gL 2= {0}. Since g1 is ad(go)-irreducible, we have p)g_,;_ . So

we have

g-1=[g- 1,92 1C[p, p]CH,

which contradicts the fact that f&p. Thus we have proved that e has no
w-polarizations. (But for the above discussion, it may be shown only by
calculating the dimension of g°(dim g°=8) that e has no w-polarizations.)

3) x=(1,0)
e=e,1)+ e,z is a nilpositive element in gz corresponding to x.
We set
4,={(, 3)},
4,=4{1,0), 1, 1), 1, 2), (4, 3)},
4o={=%(0, 1)}.
Then we have
go=bh+ a;dog”‘,
and

gi= 2 g%g-i= 2 g° if i=1.
Q€ d;

Q€ d;
W-polarizations of e containing § are exhausted by the following three:
= jzgzogj’
p2=b+ X g;+¢*P+g7"?,
j=1

ps=h+ X gi+g "V +g .
izl
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It is easily seen that p; is G°-conjugate to p;, and not to p;. We cannot tell
whether there exists a w-polarization of e other than the above three or not.

H x=Q,1

A nilpotent element e in gz corresponding to x is a principal nilpotent
element of g, and so e has the unique w-polarization, according to Corollary
5.6.

Example 6.4. (F II)
The Satake diagram of gz is @—e—>0——0.

The characteristics of elements in the closure of the positive Weyl chamber
of §) which can be mono-semisimple elements corresponding to nilpotent ele-

ments in gz are (0, 0,0, —%—) and (0, 0, 0, 1).

x=<0, 0,0, %)

e=e(1232) IS a nil-positive element corresponding to x. We have
dim g*=dim go+ dim gL
=22+8=30.

Since dim g=52, the dimension of a w-polarization, if it exists, should be equal
to 41. The dimension of a parabolic subalgebra of g is, however, equal to 28,
29, 30, 31, 32, 37 or 52, and so by Theorem 2.2, ¢ has no w-polarizations.

2) x=(0,0,0,1)

In this case, e=-eo01)+ 231y is a nilpositive element corresponding to e.
Since the characteristic of x consists only of integers, e has a w-polarization
(Proposition 5.1). Let p be any w-polarization of e. The same discussion as
in the proof of Proposition 5.5 is valid in this case, and we have H)Cp. By a
simple calculation of roots using this fact and g°N\go Cp (Proposition 2.1), one
can see that goCp, and so Z} g;Cp. Now, by the condition ii) of polarization,

p must coincide with 3, g, Thus e has the unique w-polarization, and it is
jz0

an admissible polarization of e.

Note: A non-compact real form of type (F,) is (FI) (=the normal form)
or (FII). And so Example 6.4 implies that in a non-compact real form of
type (F,) there exists a nilpotent element with no w-polarizations.

Note: By a similar discussion, we can see that there exists an element
in gr with no w-polarizations if a certain simple factor of gz is the normal



On Polarizations of Certain Homogeneous Spaces 477

form of type (B) (C) (D) (E) (F) or (G).

§7. P-orbits in n

In this section, the notion of polarizations is slightly modified. For an
element X in g and a subalgebra p of g, we consider the following conditions:

i) B, [p, pD=A0};

ii) dimp—dim g¥=dim g—dim p:

iii) pis 4d((G°)¥)-stable;

iv) p+op is a complex subalgebra of g.

DeriniTioN 7.1. Let X €g. A complex subalgebra p of g is called

1) a w-polarization of X if p satisfies i) and ii),
2) a polarization of X if p satisfies i)—iii),
3) an admissible w-polarization of X if p satisfies i), ii) and iv).

The arguments and propositions in the previous sections are all valid for
such definitions.

In §6, we gave examples of nilpotent elements with no polarizations.
Now there arises the problem “is every parabolic subalgebra of g obtained as
a w-polarization of a nilpotent element?”

Prorosition 7.1.  Let p be a parabolic subalgebra of g, whose nil-radical is
.

1) If e is an element tn nt such that (e, p |=n, the P-orbit through e is an
open subset of n.

2) The set of e in n such that [e, p]=n 1s, 1f not empty, an open, dense
and connected subset of n.

Proor. 1) By Theorem 2.2, p is a w-polarization of e, and so g°Cp.
Define a mapping ¢ of P to n by ¢(p)=Ad(p)e, where P is the parabolic
subgroup of G¢ with Lie algebra p. Then

dim(Img)=dim p—dim g°
=dim g—dim p=dim n.

Thus the image of ¢ is open in n.
2) For each e € n, define a linear mapping 4, of p to n by 4.(X)=[e, X]
(for every X € p). Then we have

{e en; [e, p]=n}

={e € n; the rank of 4, is dim n}.
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Thus the condition “[e, p]=n" is expressed by using a certain polynomial
function f on n as “the value of f at e¢ does not vanish,” and the set of e

satisfying the above condition is (if not empty) open, dense and connected in
. Q.E.D.

CoroLLARY 7.2. Let P be a parabolic subgroup of G¢ with Lie algebra p
whose nil-radical is n. Assume that p is a w-polarization of e and e simulta-
neously (e, e’ € n). Then e and e’ are P-conjugate.

Proor. We set
w={Xen;[X, pl=n}.

Since n’ is an open, dense, connected subset of 1 (Proposition 7.1), n’ is a
single P-orbit. And, by Theorem 2.2, we have e, ¢’ € 1t'. Q.E.D.

ProrosiTioN 7.3. Let e be a nilpotent element in g, p,(i=1,2) a w-polariza-
tion of e, and P(i=1, 2) the parabolic subgroup of G corresponding to p;.
Assume that (G°)° is contained in Py and that p, is GC-conjugate to p,. Then
P, cotncides with ps.

Proor. By the assumtion, there exists an element g in GC such that
Ad(gpr=p.. Since p, is a w-polarization of e, 4d(g~')p,=p: is a w-polariza-
tion of 4d(g ')e. Thus p, is a w-polarization of e and Ad(g ')e, and so e is
Py-conjugate to 4d(g )e (Corollary 7.2). Choose an element p € P; such that
Ad(g')e=Ad(p)e. Then we have

gp€ (G C P

Hence ge P, and p,=Ad(gph=pn
Q.E.D.

The following is an immediate consequence from Proposition 2.1 and
Proposition 7.3:

CoroLLARY 7.4. Let e be a wilpotent element in g, such that (G°)° is
connected. Then any two w-polarizations of e are not G°-conjugate.

Note: (G°)*is not necessarily connected. For example, in Example 6.3.3),
e=equ1)+ eaz) has at least three w-polarizations p;, p, and p;. Among them,
ps is GC-conjugate to p, and not to p,. So, by Corollary 7.4, (G°)° is not
connected.

ProrosiTioN 7.5. If e is a principal nilpotent element of g, (G°)° is a
conmected subgroup of G€.

Proor. Let x be a mono-semisimple element corresponding to e. The
isotropy subgroup H=(G°)* is a Cartan subgroup of G¢ with Lie algebra §H=g".
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It suffices to show that HN(G®)® contains only the unit (Lemma 3.2). Choose
the linear order in the non-zero root system of g with respect to § such that
x belongs to the positive Weyl chamber, and let IT={«a;,..-, a;} (resp. 4.) be
the fundamental (resp. positive) root system. We can assume that

1l
€= Z edi)
i=1
from the GC-conjugacy of principal nilpotent elements of g (Kostant [87]).
For any ge HN(G®)?, we have
Ad(gles,=eaq, for 1<5i<1,

1l
and so Ad(g) is the identity mapping on H+ 3 g*:.
i=1

Therefore Ad(g) is the identity on Hh+ > g% Since the Killing form B

ac4,
a

induces a non-degenerate, 4d( g)-invariant pairing between > g*and X} g~¢,
a€d, a€d,

Ad(g) is the identity also on ] g%, Hence g is the unit of G°.

aed,

Q.E.D.
Note: In the above proposition, “G°=Int g” is essential.

ProrosiTion 7.6. A Borel-subalgebra b of g is a w-polarization of a prin-
cipal nilpotent element contained in the nil-radical n of b.

Proor. Let e € n be a principal nilpotent element. Then we have
.o 1 /. _ 1/ s e
dim b——2—<d1m g+ rank (g)>—T(d1m g+dimg >,

B(e, [b, b])=B(e, 1)=1{0}.
Thus b is a w-polarization of e. Q.E.D.

Prorposition 7.7. Let g be a (complex) semisimple Lie algebra of type (A);
then every parabolic subalgebra is a w-polarization of a nilpotent element in g.

Proor. It suffices to show the proposition in the case where g is simple
(Proposition 2.6). Again it suffices to show the proposition for the Lie algebra
g=End(V) where 7 isan n-dimensional complex vector space. In this
case, for a parabolic subalgebra p of g, we can choose a decreasing sequence

V=VoO V1D )Vm={0}
of subspaces of V7 such that
p={x € End(V); «(V,)V;, i=1,..., m—1}.
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Furthermore we have
n={x € End(V); x (V) Vi1, i=1,..., m—1},
P={geAut(V); glVy)CV; i=1,.., m—1}.
For an element v € V, we set
r(w)=max{i;ve V;}.

Then an element g in Aut(?) belongs to P if and only if 7(g(v))=r(v) for
allve V.

Consider the adjoint action of P on n. To show the existence of an
element e in n satisfying [e, p]=n, it is sufficient to show that there exists
an element e in n such that the P-orbit of e in n is open, or equivalently that
there exists a non-empty open set O in n such that any two elements in O are
conjugate to each other by an element in P.

Let a;=dim(V;_1/V3) (i=1,..., m).

Then f} a;=n. Reorder the a;’s so that

i=

-

by by <.eooe <bn,
and set

ah :bl,
Gf,'zb,'—bi_l (l=2,, m)

From the definition, we have
> (m+1—i)a;=n.
i=1

Consider the set

O0={x e n; rank (5" D =ay,..., rank (x) =ctp_1}.
One can show that

O={x € n; rank (2™ ) =>ay,..., rank () = a,,_1},

and hence O is an open set in n. We shall show that O satisfies the required
property.
In general, for a nilpotent mapping f of 7 such that f”=0, we can choose

a sequence {U;} of subspaces of ¥ such that i) dim U;=dim f(U)), f"*(U)=
{0} for each i, and ii) ¥ decomposes into the direct sum of {f7(U)}i_1,..,

m;j=0,1..,m-1
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(the ordered set {dimU;} is an invariance of f).
Suppose x € 0. Then, we have
dim U,' =,;.

An inductive argument would show that, for an element v in x/(u;), r(v) is
determined only by (j, i) and is independent of x. Suppose x, x” € 0. Choose
{U;}, {U!} as above for x and x’ respectively. Then the set of isomorphisms
U;— U; induces an automorphism g of ¥ such that x g=gx’. Furthermore
g € Psince

7(g(@)=7(v) for every veV.

An inductive argument shows that, for a non-zero vector v in x/(U;)
G=1,...,m; j=0,..., m—i), y(v) is determined only by i and j, and is inde-
pendent of x. Thus g preserves r, and hence g belongs to P.

Q.E.D.

Note: We have a conjecture that, for any parabolic subalgebra p of g,
there exists a nilpotent element in n with a w-polarization p, or equivalently,
that any (P, n) is a pre-homogeneous vector space. This conjecture is correct
if 1) P is a Borel subgroup of G° (Proposition 7.6) or 2) g is a semisimple Lie
algebra of type (A4) (Proposition 7.7), and further, from case-wise discussions,
we can assert that the conjecture is true when g is a simple Lie algebra of
type (Es) (Fy) (G3) or a simple Lie algebra of lower ranks of type (B) (C) (D).
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