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Let A(¢) be an Nx N matrix of pseudo-differential operators of order <1
which depend on a parameter ¢:. Here the term "pseudo-differential operator”
will be understood as described in the preceding paper [107], which has been
designed to be the introductory part of the present paper. Certain pseudo-
commutativity relations are assumed for A(¢). Let us write L=D,+ 4(¢),
D,=%%. Here we study the Cauchy problem which consists in finding a

solution & =(u1, us, -, un), u; € 2'(R;)(212)), to the equation
with initial condition

95limi=a,
110
when f=(f1, fo, -, ), £; € D' (R})(212),) and a=(au, as,--, aw), a; € (D12):
are arbitrarily given. It was shown in [107] that if a solution i exists, then
f must admit the 2j:-canonical extension. The energy inequalities of
Friedrichs-Lewy type are assumed for L. Even if L is a system of differential
operators, our treatments will give rise to some simplification and refinement
to our related paper [97].

In Section 1 we shall show the approximation theorems, which are the
analogues of the results [97] established for a system of differential operators.
Sections 2 and 3 are devoted to the studies of the uniqueness and existence
theorems for the Cauchy problem. In Section 4 we consider the pseudo-
differential system with constant coefficients. The discussions are made here
about the well-posedness in the L? norm and its connection with the energy
inequalities. In Section 5 a characterization of regular hyperbolicity of a
pseudo-differential operator is given. This is an analogue of our recent result
established in [97] for a differential operator. Section 6 is concerned with
generalization of S. Kaplan’s result [117] about the Cauchy problem for para-
bolic equation. The method developed in Sections 2 and 3 will much simplify
his treatments. In the final section the Cauchy problem for ordinary differ-
ential operators is considered. It is shown that the method developed in
Sections 2, 3 and 4 also lead to generalization of basic theorem in [1].



398 Mitsuyuki ITaNo and Kiyoshi YosHIDA

1. Approximation theorem

Let R,.1=R xR, be an (n+1)-dimensional Euclidean space with generic
points (¢, x), x=(xy,---, x,) and &,,; =5 x 5, be its dual with point (z, &), ¢

=(¢1,--, &,). We write |x|=( i} x3)Y? and for an n-tuple p=(p1,---, p») of
i=1

non-negative integers we write |p|=pi+---+pn, x?=x81-xir, DE=D}-..Din
with Djz%aixj. By D, we mean —ll~§t— The Fourier transform, ¢, ¢ ¢
#(R,), is defined by $(E)=S¢(x)e"'<"’f>dx, which is extended by continuity
to a temperate distribution u € #'(R,) by the formula <i, ¢>=<u, >,

where <x, §>= Z x;€].

We shall contmue to employ the notations in our preceding paper [107].
We have considered there the spaces 2,((2}:),)=2}e(2}:)., (2;).((2]:),) and
2,(242).)(R;},,) and have shown that these spaces are reflexive, ultraborno-
logical and Souslin. Let A4(¢) be an OP,-valued C> function of ¢ € R,, that is,
A(t) € €, in the notation used in [10]. For any u € 2'(R})((2]:).) (resp.
21((212):)), A(t)u is well defined, belongs to the space 2'(R})((27:).) (resp.
2,((2}),)) and the map u — A(¢)u is continuous. If A(¢) is an Nx N matrix
of operators 4,(t) € 6%, then we shall also write 4(¢) € €%,. If, for a vector
distribution i =(u,, -, uy), each component u; belongs to the same space
2;((212):), then we shall write i € 2,((2}:),). When confusion appears
impossible, we shall use a similar abbreviation.

Let 4 and S be operators with symbols |&| and (1+ |&|%)"/? respectively.
We shall denote by A(D,) the operator with symbol A(¢). Let us consider
A(t) € G%,. In what follows, we assume that for any 7>0 and any real 2
there exists a constant C, r such that

() ”(S_X/T(t)sh_/T(t))/?“(o)gC)u,T“/?“(r—l), 0<:< T, 2 €C5(R,),

N
where we mean by [|7]|-) the norm defined by ||2||%,= 2 lI%ll%, and ||xj]|H=
i/

( @y glz,(é)|2(1+ |$|2)’d$> As shown in Section 4 in [107], a singular
integral operator in the sense of A.P. Calderén [ 3] has the pseudo-commuta-
tivity (x). For a differential operator with constant coefficients, the com-
mutativity in question is trivially satisfied. For any real s we can find a
constant C{*) such that ||(S™4(£)S*— 4(2))7]|(sy= C§¥|Z|(s+»-1) and the adjoint
operator 4*(¢) has also the property (x). In fact, for any 7, 7; € C3(R,) the
inequalities

|21, (SAHX)S*— A¥(e)12) | = | (S*A()S™— A(e)11, )]
é ”(ij(t)s—x_ j(t)),?lH(-r+1)”72”(r—1)
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< CS V2ol Z2ll¢r-1)

imply [|(SA*(2)S*— A*()7:2l(0) < CS70|Z2l | -1
To prove the approximation theorem below (Theorem 1) we shall need
the following two lemmas. For any ¢>0 we put S,=1+¢4. Then we have

LemMma 1. For any x € #(R,), Sz'x belongs to the space #(s.1(R.) and
it converges in # (R,) to x as € | 0.

L+ e H?

Tte|é] is bounded and we can write

Proor. For a fixed e,

28(s+1)/2 a_ (A+]e]DHM2 2\s/2 5
aA+1¢1% (Sz1x) = itele] A+ [&1®)°22(8),

and therefore S:lx € ;. 1)(R,). If we write

(1+ |&]2)*2(Ssin—2)" = 1)(1+ BE6)

(rerer

__ ¢&l&] 2\s/2.5
= W(1+IE|)/Z(E)’

then OS%S 1 and T i |§||$| converges to 0 for any fixed & as ¢ | 0.

Thus we see that ||Sz'x—x]| ;) converges to 0 as ¢ | 0.

Remark. Evidently ||Szlx||y<]|x||(sy and we see from the Banach-
Steinhaus theorem that Sz!x converges to x in s (R,) uniformly when x
varies in a compact subset of o ,(R,).

Lemma 2. Let A(t) € €., Then we have

(i) Forany T>0 and ¢ with 0 <e<1, there exists a constant C$ such
that

”(SEIZO)SE_*Z(t)),?“(s)é C(TS)H/?H(s+r—l)a Og t é Ts ? € %(s+r—1)(Rn)~

(il) For any 2 € #(.r_1y(Ry), ||(Se14(t)S:— A(¢))7||(s) converges to 0 as
ey 0.

Proor. We may assume 7 € C3(R,), for C7(R,) is dense in +#(;,,-1)(R»)
and 7—>||(Sz14(t)Se — A(2))7||() is semi-continuous from below.
(i) For each ¢, 0<<¢< T, the operator B(t) SA(t)—A®t)S is of order

<r. Putting R=4—S5, wehave |R(&)| <

W and therefore the oper-

ator RA(¢:)— A(¢)R is of order <r—1. Thus the operator B,(¢t)=A44()— A(¢)4
is of order <r and we can write S,4(t)— A(¢:)S.=¢B.(t). Putting I.(z)=
A(t)— Sz A(t) Se, for any 7 € #,)(R,) we have
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> ¢ = _e(4+aHM2 s
Ir':(®i= 1ted Bl(t)ﬂ?—ws B:(1)z,

2\1/2 i .
where % <1 and S7'B;(z) is of order <r—1. Thus we obtain

I1(A(@)— Se* A@) S lisy= 1T eIy < IS B1 ()2l (5y < C2N 2l (54715

where C{’ is a constant.

.. 8(1+ lEIZ)l/Z
(D 1+el€]
(i), we see by the Banach-Steinhaus theorem that litlnll(S; LA@)Se— A2l ()

€l0

=0 for any 7 € #)(R,).

converges pointwise to 0 as ¢} 0. If we let ¢} 0 in

For any real numbers 7, s we shall denote by +#,,(R;.,) the space of
u € 2'(R;,,) such that ¢u belongs to the space #,(R;.1)[5,p. 51] when ¢ is
taken arbitrarily in C3(R). The topology in #,,(R;,,) is defined by the
semi-norms #, o (R;.1) 3 u — ||ulle. . By #E (Ri.,) we mean the adjoint
space of #_,, _(R;,1), which consists of all v € #,,(R;,,) with support
C[0, TJx R, for some T>0. It is to be noticed that # ,(R;.;) and

# «.s)(Ri:1) may be identified for |o| <L (cf. Proposition 7 in [8, p. 4167])
(a,5) 2

and that in the space #, (R, ,,) the following conditions are equivalent (cf.
Theorem 1 in [8, p. 4107)):
. 1

( 1 ) 0->T .

(ii) For any u € # o(R;.1), u has the 2}:-boundary value .@2:-1i11rnu

tio

(10, p. 3757.

(iii) For any u € #, (R;.,), u has the distributional boundary value
lilrnu (7, p. 127.
tlo
and similarly the following conditions are equivalent (cf. Theorem 2 in [8,
p. 4137]):

. 1

(i) o> -5

(ii)’ For any u € #,, (R;,1), u has the 2/ :-canonical extension over
t=0 [10, p. 379].

(iii)’ For any u € #,, (R;.1), u has the canonical extension over =0
(7, p. 12].

Let i € #(, (R;,,) and assume that 4(s) € €/,, with />|c|. Then A(t)i
€ & s-r(Ri) and @— A(t)i is a continuous map of 2 ,(R;.,) into
H# (s, s-r(R},1) (cf. Proposition 14 in [10, p. 8857). From the equality S/I*.(t)2

212 .
=% S/7'Bi(t)7 for any 7€ C3(R,.1) we have |[|S/I.()Z]l0,9=
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C¥|1Zllc0,s+r—1+- In the same way as in the proof of Proposition 14 in [10,
p. 3857, we have immediately the following

CoroLLARY 1. Let A(t) € €}, with = |6|. Then

(i) For any T>0 and e with 0<e <1, there exists a constant C%5 such
that

(S22 4(2)Se— A@N)2|lr, ) < CE 21|20 517-1)5
0=<t<T, 7€ #usir1y(Risy)-

(i) For any 2 € # o, csr-1y(Rii), (S5 4()Se — A(t))2||(vs) comverges to 0
as e 0.

Let 4(z) € €, with any fixed real r. With the aid of Lemmas 1 and 2 we
can show the following

TureoreM 1 (Approximation theorem). Let i € # (o .,r-1)(R):1) and assume
that

Li=D,i+ A@)i=f € #0,(R}1),

giz-li}‘nl—i:ﬁ? € X(s)(Rn).
tlo

Then there exists a sequence {\;}, v; € C5(R,.1) such that
(1) ¥i>iin Loser-nRi),
(i) Lyp;—f in #0,o(Riin),
(ii) (0, ) > a im #(Ry)

as j—> oo,

Proor. Put i.=S:zli, ﬂ=S;1f and @.=S:'a for ¢>0. Then i.c€
J?(O,s+r)(R;+1), fé € =9f(0,.(;-(»1)(R:[+1)> 556 € %(s+l)(ﬁn) and we can WI‘ite

L(iie) :fe + fe(ﬂe),

where Fo(iie)=A(t)iie— Ss* A(t)Seite € #(0,5.1)(R}+1) and lilm fie=d,. Further-
tio

more, we see from Lemmas 1 and 2 that

(1) le—> i in '}?(O,s+r—1)(R;+l)a
(2) j_‘:e ’_’f in %(O,S)(R;+1)$
(3) f'é(l'ie)—>0 in j(o,s)(R;+l)’

(4) &5 —>a in %(s)(Rn)
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ase|0. We note here Dyiio=fc+ I'c(iie) — A(t)iie € # 0,0y (Rfrr)-
For sufficiently small &>0 if we put #'=i., € £, s:n(Ris), fr=Ffe+
ffo(ﬁfu) € .9?7(0’8+1)(R;+1) and &lzaeo € .}f(s+1)(R,,), then L#! =f1, li}’n pl=a' and
tio

we have

5) 9t ! in #eo,cin(Ryi),
(6) fA+P.GH—>F in By (Rir),
) at—a' in ARy

as ¢ | 0 and moreover D,dt € # o . 1)(R}i1).

Determine #*, k=2, 8,..., successively, by #*=3k"1, ff=Fi1+ I (941) and
at=ak'. Then o* € B . r1:0(Riw1), Li*=F* € # 0,51 1(R}+1) and ltigl ph=
ate '}f(s-rk)(Rn) Ct;f(s)(Rn) and we have th)k € 3?(0,3_,_;,_1)(1_{;4,1). Thus le €
j(l,s+r+k—2)(R;+l) for r<\1and #* € j(l,s+k—1)(1—{;+1) for r>1.

Let us take k£ so that £>2—r (resp. k=r) in the case where r <1 (resp.
r>1). There exists a sequence {;}, v; € C5(R,,1), such that +; converges in
Ha ssrrn-2y(Rir1) (resp. in # oo 1)(Ri:1)) to o* for r<1 (resp. for r>1).
Then v, Ly; and ,(0,-) converge in #,sir—1)(Ryi1), #(0,(Ry+1) and
# y(Rs) to v*, Li* and *(0, -) respectively as j— oo.

Let 0> ~% and suppose A(¢) € €},) with 1= |c|. In the same way as

in the proof of the theorem we can prove the Afollowing
CoroLLARY 2. Let it € #(, o, r_1)(R;:1) and assume that
Lu :f € '}?(a.s)(l_{;+1)s

2p-limi=a € # ) (R,)
tio

Sfor any real y. Then there exists a sequence {;}, v; € C3(R,41), such that
(1) > . Hser-1(Ri),
() Lyy>f i BB,
(dii) ¥;(0,)—>a in #uy(Ry)

as j—» oo,

Let 0, s be any real numbers and r a fixed positive real number. Accord-
ing to S. Kaplan [117] we shall use the notation (%) to denote the space %,
[5, p. 367, where k=k, s =(c>+2%(£))"'*2°(8), A(E)= A+ £ |2 A I(R;11)s
A CNRED, A (RS, ) and the like will have obvious meanings. We shall
denote the norm in o by ||-||,,s. Then we see from Proposition 5 in [8,



Energy Inequalities and the Cauchy Problem for a Pseudo-Differential System 403

p. 4137 that the canonical extension u_ exists for every u € o “9)(R},,) if and
r

2
every u € 4 “)(R},,) if and only if o>

only if 7> — and from Corollary 1 in [8, p. 4127 that lilm u exists for
tio

.
2
case the trace map u—u(0, ) of /) into #(,,s_,2(R,) is an epimorphism
(cf. Theorem 1 in [6, p. 217]). It is also to be noticed that - *(R;,;) and

A @9(R}..) may be identified for |7| <—£— (cf. Proposition 7 in [8, p. 416)).

and lifnu € f(a-+s—712)(Rn)- In this
tlo

In the same way as in the proof of Proposition 14 in [10, p. 385 ] we can prove
that (4(¢) € €, Ir=|0c|, is a continuous linear map of /9 (R;,,) into
A @s=I(Ry,,) for any real numbers ¢, s. Similarly we have the following

CororLLArY 1. Let A(t) € €,y with Ir=|c|. Then

(i) For any T>0 and ¢ with 0<e <1, there exists a constant C5 s such
that

(Se2 4(6)Se— ADN)2llo,s < CENI2lo 55715
0<t<T,2€ X" N(R;Ly).

(i) For any 2 € A+ "D(R:. ), [I(Sz14(t)S: — A(2))2||,,s converges to 0
as el 0.

COROLLARY 2. Let o‘>——’2— and A(t) € G}, with Ir=|d|. Let @€

A @s+r=D(R* Y and assume that
Li=F € (R,

Dp-limi=a € #)(R,)
tlo

Sfor any real v. Then there exists a sequence {;}, ¥; € Cy(R,.1), such that

(i) i~ in AR,
(i) Ly—f in AN Ry,

(iii) 1}1‘(0, ')—)C_i m f(,)(Rn)

as j— oo,

2. Uniqueness and existence theorems for the Cauchy problem (I)

For the sake of simplicity we assume 4(¢) € €3, in this and next sections.
Let H be a slab [0, T]x R,, T>0, and denote by 2,((212).)(H) the set of
distributions € 2'(H) which can be extended to distributions € 2,;((2%2).).
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The quotient topology is induced in 2;((21:).)(H). Similarly for 2'(H) and
9'((—oo, TD.

Consider the Cauchy problem:

Li=f in H,
®) /

u=2p-limi=a
10

for given ff 2;((212).)(H) and a € (2}2),. If a solution i € 2;((212),)(H)
exists, then f must have the 2/:-canonical extension f. over :=0 and i-
satisfies the equation
L@i)=f.—i0,Qa.
Conversely, if 7€ 2'((—oo, T)((2}2),) vanishing for :<0 is a solution of
Li=f.—i0,®a, that is,
@ (@, Lw)=((f-, @) —i@ @), @eC(—oo0, T)xRy),

where (( , )) means the scalar product between 2'((—oo, TN((2%:).) and
2((—o0, T))R.(2D12),, then the restriction i |H € 2,((2}:).)(H) is a solution
of the Cauchy problem (8) (cf. Corollary 3 in [10, p. 3987]). The equation (9)
implies Green’s formula:

(((Lir)-, w))— (&, L*®)) =i(iLo, ®0).

Let f € 2,(25).)(H), a, G €(2}2), and assume that f has a two-sided
27:-canonical extension f_. The problem to find a solution i € 2;((21:).)(H)
of the equation Li=f in H with the conditions &,=g&, ﬁTEQ’Lz-lir? i=4 is

t1
reduced to the problem of finding % € 2,((2}:),) with supp? CH such that
10) (@, L*w)=((f, @) —i(&, @) +i(F, #r), B € C3(Ra10),

where (( , )) means the scalar product between 2;((2}:).) and 2,&(22)..
The equation (10) implies Green’s formula:

(L), w)—((a_, L*w)) = —i{(ir, wr)— (&o, #o)}.
In Sections 2 and 3, L will be assumed to admit the inequality :
t
(Efy M 16, )Ty = Cr((18(0, |[7) +SOHL$(t’, it de),
Oét_-é__ T, $€ C;(Rn+1)a

where Cr is a constant. We shall agree to write (E%, 1) if (E%), 1 )r holds
true for every 7>0.
We shall often need the following lemma (cf. Lemma 4 in [9, p. 78]).
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Lemma 3. Let r(t) and o(t) be two real-valued functions defined in the
interval 0t T and suppose that r is continuous and o is mon-decreasing.
Then the inequality

r(t) =< Clo(t)+ S;r(t’) dt")(C>0 18 a constant)
implies
r(t) < CeCo(t).

Let s be arbitrarily chosen. If we apply the inequality (E%, 1 )r to S°¢
instead of §, then the pseudo-commutativity (x) and Lemma 3 yield the
following inequality :

(Bl Ve 13, it = CRUO, it + (1L, litadr),

0=:<T, ¢ € C5(Ry11),

where C{' is a constant. We can also apply Lemma 3 to conclude that if
(E%, 1 )r holds for L and B(z) € €, then so does for L'=L+ B(t).

Let us denote by &£9(#(;) the space of #(R,)-valued continuous func-
tions of ¢ defined on [0, ). Then we have

ProrosiTioN 1. Suppose (E%, 1) holds for L. If, for a given i€
H(0,5(Ryi1), Lu—-f € #o,5(Ry) and hm i=a € #y(R,) hold, then €

&t (sy) and & satisfies the inequality (E 2, T ), that 1s,

I, it = ‘S’(Ilall<s>+g 7, Hlode).

In particular, if f=0 and a=0, then i=0.

Proor. In virtue of Theorem 1 there exists a sequence {¢;}, ¢ € Co(R.+1),
with properties mentioned there and we have

18362, =Bt it = CAIFO, )~ O, e+
+{ 1La, 9 — Lo @, Dl a,

which means that {¢.(¢,-)} is a Cauchy sequence in ¢9(#)). Let # be the
limit of {g,}. Clearly 7% coincides with # as a distribution and # satisfies
(E%, 1) and the proposition is proved.

Let u € #(o,5y(R;+1). Then u may be considered as an #(,(R,)-valued
measurable function u(z,.) defined for almost everywhere ¢ e (0, =) and
T
Sollu(t, INéydt <+ oo for any T7>0. Thus almost all points ¢, € (0, =) are

Lebesgue points of u(z, -):
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lim o S e’y )= uCta, llgeyde’ =0,

Let ¢, be a Lebesgue point of u(t,-). For any ¢ € C7(R,) such that ¢=>0,
S¢(t)dt=1 and supp ¢ C[—1, 17, we have for any small ¢>0

e (5wt vdemuten)|

- ”—élﬁgﬁé(“t:st—w (u(t, )= ulto, -))dt H(s)

<3Pty )= uta, .
Thus we see that u(z, ) is the section of u for :t=1:,.

If i € # 0, 5(Rivy) and Li=f € # (o 5(R;:1), then & may be considered as
an J#(-valued continuous function of ¢e€ (0, o0). In fact, let £,>0 be a

sufficiently small Lebesgue point of i(z, ). Then lim# exists in o#(,(R,) and
tlto

therefore i is an s, (R,)-valued continuous function of ¢ € [z, o), where ¢,
can be chosen arbitrarily small.

For any 0, s we denote by £, ,,(H) the space of all distributions u € 2'(H)
such that there exists a distribution U € s, ,(R,.;) with U=u in H. The
norm of u is defined by ||u||¢,sy=1inf||U||,,s), the infimum being taken over all
such U.

In the following Propositions 2 through 7 we assume that (E?, 1 )z holds

for L.

ProrosiTiOoN 2. If i € 2,((2}2).)(H), Li=0 in H and .@Lz-hm =0, then
#=0 in H.

Proor. Since i € 2;((2}:),)(H) there exist integers k, [ such that
il € # . ,(H). Suppose that £<0. From the relation D,ii=— A(¢)ii € #,;-1,(H)
it follows that & € £ (4.1,-1)(H). Repeating this procedure, we see that @ €
H#0,1-n(H), and applying Proposition 1 we can conclude that #=0 in A.

ProrosiTion 3. For any given g€ # o (H) and B € #(R,), s being a
real number, the Cauchy problem :

L*3=g in H,
(11) {

lims=4

(T

has a solution v € # (o \(H) such that 7 =1ilm17 exists in #5(R,) and such that
tio

the inmequality
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T T
17y, 130 Dlorde = €201l + 1186, lisyde)
holds, where Cr is a constant.

Proor. Consider the space H_ = (R,) X #(o,-s)(H) and its subspace
A={(@(0, ), Li): i € C;(H)}. Then the map

T
L A5 @00, ), L) (@, ), 8, Ddi—iCar, B)
is continuous. In fact, from the energy inequality (E?Z ;, 1 )r for L we have

[, @G, ), g Nai—itar, &)

T
< max [|aCe, o 186 e de+larlc o8l
. T R T
S NCED (120, it + | ILaG, e d) 2Bl + o1 llode),
which implies the inequality

1l VCEP B+ 1125 )

Thus there exists (i7, 9) € H,y such that
T . T .
(12) SO(Lﬁ(t, ')) ﬁ(t’ '))dt_l(ﬁo, ?):So(ii(ta ')’ g<t> '))dt—"(ﬁ'T> ,é)

and

T T
72+ § 156, lizd) VT Bliy+ 118G, ko)

From Green’s formula (12) we see that ||7|| is a solution of the Cauchy problem
(11), which completes the proof.

We shall say that (CP)(, holds for L if the Cauchy problem:
Li=f in H,
(13) {

limi=a
tlo

has a solution @ € # ,(H) for any given fe # ¢ o(H) and @€ #(R,).
Then we have the following

ProposiTioN 4. If (CP), holds for L, then so does it for L'=L+ B(¢),
B(t) € @(o).
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Proor. Let (CP), hold for L and consider the Cauchy problem:
L'i=Fh in A,
{ lim =7
for any given kh € 5, (H) and 7 € #,(R,).
Let #° € o#(o,(H) be chosen so that
{ L=k  in H,

lim #°=7.

If there exists a @ € #(,;)(H) such that
{ Liv=—B@)w— B(¢)3°,

lim #%=0,
tlo

then #=2"+# will be the solution to be found. The method of successive
approximation will be successful to this end.

Put #°=0 and determine @' € 5, ;(H) successively by
{ L' '=— B()w' — B(¢)%°

lim @**1=0.
10

Then L(#'*'—#")= — B(t)(@' — ') and we have from (EZ, 1)z for L
G =), it = Cor @, i ds

< o[ S G, lids

C.rT) o
< Cex D) gup it Iz, 0St< T,
! 0st’=T

and therefore ||(@'*" —@')(t, +)||(s)= C. 7, Where C ; is a constant independent
of I, //. Thus {#'} is a Cauchy sequence in &%(#(,), t € [0, T). If we put

w=lim#', then @ will be the solution as desired.

]
Prorosition 5. If (CP)(y holds for some s, then it does also for any s.

Proor. Let (CP)(,hold for L. This means that the set 4={(4(0, -), L¢):
¢ €Cy(H)} is dense in Hy=# (X #,(H). Let s be any real number.
Then the map [S*~*]: (&, f)—> (S *a, S°~°f) is an isomorphism of H(,, onto



Energy Inequalities and the Cauchy Problem for a Pseudo-Differential System 409

Hy and [S°~°](A) is also dense in H(,. If we put =54, § € C5(H),
then we have

(‘SS/_S(VS)(O’ '))9 SS/_SL$)=(3;(O> '): SS/_SLSS_S"‘/—;)
=0, ), Ly + B(t)y),

where B(:)=S"""°LS*¥ —L=8""4()S*">"—4() is of order <0. Thus
(CP)s, holds for L'=L+ B(¢) and therefore so does it for L.

ProrosiTioN 6. If for any f € H0,(H) and a € #y(R,) the Cauchy
problem (8) has a solution i € 2;((21:).)(H), then i € 5, s(H)

Proor. There exist integers &, ! such that @ € s ,,(H). Suppose that
k<0. Then from the equation D,ﬁzf—I(t)ﬁ we see that D,i € o, y(H),
s;=min(s—k, [—1) and therefore & € #.1,:,(H), s;=min(l—1, s;). Repeating
this procedure, we can find s" such that i € s# (H). For any (&, f) € H
=3 (5)(Ry) X #0,5)(H) a solution of the Cauchy problem (13) belongs to the

space fj #0.m(H). Since a solution is unique in 2;((212),)(H) for f and &,

we see from the closed graph theorem that (&, f)—»zl is a continuous map of
H,, into 2;((2;2).)(H). The space +#,(R,) and #,(H) are both of type
(F). Thus by Theorem A in A. Grothendieck [4, p. 16] there exists a fixed
m such that the corresponding solution # belonging to the space # ) (H) for
every (&, f‘) € H,,.

Suppose that m<s. For any g€ # - (H) and B € #»(R,) there exist
sequences {g;}, {4;}, & € Cy(H), B; € C3(R,) such that g, G, converge to g, B
in o o,m(H), 5 my(R4) as j=oo respectively. Denote by #; a unique solution
€ #o,m(H) of the Cauchy problem (13) associated with g; and G, Owing to
(Etn M), {3;} is a Cauchy sequence in &%(# ), ¢t € [0, T), and therefore v,
has the limit % € #,m)(H) and ¥ is a solution of the Cauchy problem (13)
associated with g and B. In virtue of Proposition 5, it follows that # €
H#0,-sy(H), which was to be proved.

Prorosition 7. (CP)y holds for L if and only if the conditions that

€ H 0,0 (H), L*w=0 in H and lim #=0 imply #=0 in H.
11T

Proor. Let (CP), hold for L and @ € 5#o,-(H) and assume that L*% =0
in H with lim#=0. For any fe Cy(H) let @ € #, (H) be a solution of

. 11T

Li=f. Since (Ef, 1 )r holds for L, there exists a sequence {¢;}, 4; € C5(H),
T

vanishing near t=0 and we haveSO(Lq?j(t, 2, w(t, +))dt=0. Thus #=0 in H.

To prove the converse, it suffices to show that 4= {(8(0, -), L§): 4 € C5(H)}
is dense in H = (s\(R,) X # 0,(H). Let (i@, %) € H._,, such that
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[ @i, w6, Na—iGo, H=0,  Feczam,

which implies Z*#=0 in H and lim#=0. Thus we see that #=0 in H and
t1T
B =0, completing the proof.
ProrosiTion 8. Let (CP)«y hold for L. Then the energy inequality
(E%y 1) tmplies the following :
Eloy )z 118, oy = CrUIGO, lleo+ [ I1E6E, Dllarde)

Ogtg T) $€C§(Rn+1)-

Proor. From the fact that (CP), holds for L in any slab H; =[0, T, ]
X R,, 0< T; < T, we see by the preceding proposition that the conditions
W € #o,—s(H1), L*9%=0 in H; and lim %#=0 imply #=0. in H,, and therefore

T
by Proposition 3 we can conclude thatl; (Et,y 1 )r holds for L. In virtue of the
pseudo-commutativity (x) and Lemma 3 we see that (E¢,, 1 )r implies (E{; 1 )7
for any s, completing the proof.

We shall say that (CP)¢;, holds for L if the Cauchy problem:

-

{ Ll-i:f in R;+1,

limi=a

(14)

has a solution @ € o (R, ) for any given g€ 5#(,5\(R;};1) and @ € 5 (R,).
Consider the Cauchy problem:
Li=f  in R}y,
(15)
2p-limi=a
tio

for given ae (242), and f € 2'(R7))((242),), which has the 2j:-canonical
extension f.. For the Cauchy problem (15) we can prove with necessary
modifications the analogues of Propositions 2 through 8, which were obtained
for the slab H.

TueoreM 2. Suppose (E%y, 1) holds for L. Then
(1) A solution of the Cauchy problem (15) is unique in 2'(RF)((212)x).
(2) For any given g€ #, (Ryi1), the equation L*W=g in R;,, has a

solution w € #Y (R, such that 7=li{nﬁ;’ exists in #(R.) and
tlo0

7l + {8, o de < €. g, o de
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with a constant C,.

(8) The following conditions are equivalent:

(i) (CP)g, holds for some real s.

(ii) (CP)g, holds for every real s.

(ili) (CP)g, holds for L'=L+ B(z) with B(z) € €.

(v) If we #F (Riy) and Lin=0 in R}, then w=0.

If each of these conditions is satisfied, then the energy inequality (El, 1)
holds true for any s.

Let k£ be a non-negative integer and s a real number. Along the same
line as in the proofs of Proposition 5 and Corollary 3 in [9, p. 89, p. 907 we
can obtain

Prorosition 9. Suppose (E?, 1) and (CP)g, hold for L. Then for any
f €#u Ry and & € # 4. 5(R,) the Cauchy problem (14) has a unique solu-
tion i € # (ri1,5-1)(Rj41) and i has the following properties:

(1) (1-2,‘“, D?fl)Géb(t)('#(}ws))x“'Xéﬂt)(‘}f(s))s
. % . . k-1 .
(i) JZO I1D7a (2, lfrs—i = Cr(l|@l|fer s+ 'Zo | D7 £ (0, Messo1-pn+
= j=

kot Y
+ 2 [ IDIFC, Morspde), 05T
for any T>0.

Applying the interpolation theorem for the Hilbert scales and proceeding
along the same lines as in the proof of Corollary 4 in [9, p. 96 we can obtain

Prorosition 10. Suppose (E%, 1) and (CP)y, hold for L. Then for any
f€#u o(Ris) and @ € #(,.5y(Ry), 0 being a non-negative number, the Cauchy

problem (14) has a unique solution i € # (.15 1)(Ri:1) and (&, f)—i is a
continuous map of H . s(Ru) X #(eo(Riv1) 1mto #ir,s—1y(Risy).

Next we show the following

Tureorem 3. Suppose (E%, 1) and (CP)y, hold for L. Let 6=k-+d with
non-negative integer k and ~—%— <0"§—%*. Then for anyf € # (5, 5(Ri+1) and
& € H (o1 5(Ry) the Cauchy problem (15) has a unique solution i € # ,.1,s-1)(R;i+1)

and i has the following properties:
(i ) (ﬁ’ ) D’;ﬂ') € éa(t)('}f(d+5)) KX é’?(.}f(a’+s)),

(i) (a, f)—»zi i8 a continuous map of H . s (Ry) X #,,(Riiy) into
H(as1,s-1)(Rys1)-
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Proor. As shown in Theorem 2 a solution of the Cauchy problem (15)
is unique in 2'(R})((212).). We shall first consider the case 6 =0. Owing
to Proposition 9 and Corollary 8, there exists a solution # € #(,,1,s-1)(Ry+1)
and # has the property (ii). We have only to show that (i,..., D%i)e€
ENH (ors)) X - X EWH (). Clearly @ € £Y(H#,+s)) and feé’?(%(ﬁs_l,z)) for

o>—1— and therefore D,i=f— A\ ()i € £9(# +5-1)). Repeating this process,
2 ( )
we see that (i) holds true.

1
] 2
to the space # . (R;+1). If we put

Next, consider the case ——--<c<0. The canonical extension f. belongs

. f- : PN
g= D= 2D ie. D,g—id(D.)g=f-,

where 1(&)=(1+|£|2)"2and 2(D,) € €7, then g € .}'f%(,+1,s)(]_{,‘;+1),—;—<0'+ 1<1.
From Corollary 3 in [8, p. 419] we see that lim g exists and equals 0. The

tl0
Cauchy problem (15) can be written in the form

{ Dy(i—g)+ AW)(i—=—id(D,)g— A@®)g  in Ry,
24:-lim (i — @) =a,
tio0

1
-
unique solution 3= — g € #(o12,5-2)(R;1 1) NEWH (1 5y) and therefore &t =75+ g

€ #ior1,s-1y(Ris )NEWH (15)). In view of the closed graph theorem it
follows that (&, f)—»ﬂ is a continuous map of #(,,y(R,) X # (R;i:;) into
H#11,5-1)(Ri+1). This completes the proof of the theorem.

where —iA(D,)g— A(t)g € 9?(,+1,s_1)(R;+1), o+1> Thus there exists a

We shall close this section with some remarks on energy inequalities.

ProrositioN 11.  If the following inequality for L:
~ > > h - ->
(B 1 161, DTy = Cr(||8(20, ‘)”(20)‘|‘St 1L (2, )% dt), ¢ € C5(Ry11)

holds for any to, t1, 0t,<1t, < T with a constant Cr, then the condition that

W€ Ho,(H)y, L*n=0 in H and lim%=0 imply w=0 in H is equivalent to
tHT
saying that the inequality for L*:

(Ely 4 ) 1180, DMy = C1UC, o+, 12, Mrde), & € C5(Rnr)

holds for any to, t1, 0=to < t; < T, where C} is a constant.
If this is the case, then (El,, 1) holds true for L.
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Proor. We may take s=0. Suppose a solution of the Cauchy problem
for L* is unique in 5#,0)(H). Then it is unique in 5#o,0)(H1), H1=[0, t1 ] x R,.
We shall first show that it is also unique in s#,0)(H"), H =[to, t1]x R,. Let
W € #0,0(H), L*#%=0 in A and lim #=0. Let ¢; be a Lebesgue point of the

t1t
# 0)(R,)-valued function #(z,-) defined on (¢, z,). Then #% has the section

w(th, )= € #)(R,) for t=t;. The Cauchy problem L*#;=0 in (0, t;) X R,

with initial condition lim @, =4 has a unique solution &, € #,0)([0, 51X R.,).
t11g

If we put W= in [t{, t1)x R, and W=, in (0, t,]x R,, then L* W=0 in

(0, ¢,) X R, and lim #=0. Our assumption implies #=0 and therefore #=0.
ttt

Thus, replacing 0, T by t,, £, in the proof of Proposition 3, and repeating
the same procedure as given there, we see that for given g€ 5,0 (H) and
B € # )(R,) the Cauchy problem L*3=g in H' with initial condition lims= Jei

tttr
has a unique solution % € s#o,0)(H’) and v satisfies the following:

1 N t
17110y + S’ 15(2, lloydt = C'T(H:GH(O)JFSt 18z, llcoydt),

where 7=1im# and C7 is a constant. As a result, we can conclude that
tlto

(El, 3 )r holds true for any ¢ € C5(R,.1).
The converse is trivial, since the approximation theorem holds for L*.

ProposiTion 12.  Suppose (E?y, 1 )r holds for L and L*. Then
(i) (EY, *)r holds for L and L*.
(i) (CP)y holds for L if and only if (Ely, | )r holds for L*.

Proor. (i) Let 2, ¢, be any two points such that 0<:,<¢; < T. Then
Proposition 3 implies that for any given G € # ) (R,) the Cauchy problem

{ L*5=0 in A,

where H;=[0, t;]x R,, has a solution o € #,0(H;) such that [|3(0, +)||0y=
C1l|Bl0y with a constant C; independent of ¢,. From the fact that (E%, 1t )r
holds for L* it follows that

132, Iy = C|5(0, ')H(O)éCzH/é”(o), 0=t <.

From Green’s formula

Sil (Lﬂ'<t/9 ')3 B(t/a '))dt/': _i{(ﬁ'(tla ')a B—))-(a(toa ')3 '?)(tO’ '))}
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for any i € C5(R,.1), we have
[ (i1, ), B)| < Ca{lliCto, llcoyl|9 2oy )0y +

121
+{ Iz, ol @, lwde}

= CulBlladll i, Mo+ ILEE, Hlwdsh,

where C, C; and C, are constants independent of ¢, and ¢,. This implies
that we have with a constant Cr

131
[|@(21, lloy= Cr(||@(to 3)”(0)"’& [[La(t', +)lloydt”).

Combining (i) with Proposition 11 leads to (ii), which completes the proof.

8. Uniqueness and existence theorems for the Cauchy problem (II)

Let o, s be any real numbers and write c=k-+0¢’ with integer £ and

; <o'< ; Then we have the following

Prorosition 13.  Suppose (E%, 1) and (CP)y, hold for L. Then

(i) For any @ € # . s(Ra ) and f € # (s, 5y(R}.1), where f s assumed to
have the 2:-canonical extension f < € # (s, 5y(R;fi1), the Cauchy problem (15) has
a unique solution it € #, 1, 1y(Rji1).

(ii) Let @ € 2'(R})(212),) and assume that Di:-limi exists, Li= f
tlo

€ # (s, 5(Ri1) and the 2Di:-canonical extemsion f~ exists in Jf(,,s)(R,,H) for
some real 6, s. Then it € #(,.1,-1y(R)y1). In particular, if a=0 then i€

*}?(a+1,s—l)(R;+1)'

Proor. Consider the case £=0. In Theorem 2 we have shown that
there exists a solution i € #.1,,-1y(R;,,) for the Cauchy problem (I5).
Since a solution of the Cauchy problem (15) ios unique in 2'(R})((212).) we

have only to show that if a=0 then i.€ #,.1,:-1)(R;:;). Suppose a=0.
Then ltilnol(zi,-..,D',’ﬁ)=0. In fact, if k=0 then llmu—QLZ-ltlfrolu—O Let
k>0. Then the condition f-€f<k+, - o(Rity1) implies ltlfrg(f, ., D%~ lf)-—
%%z-lim(f,--., D 1f)=0 (cf. Theorem 3 in [8, p. 4197). Since ltizg A=
lim A'(¢)i=---=0, it follows from the equation D,i=f— A(¢)i that lim D,ii=0.

Then from the equation D?ii ——D,f+ id'(t)ii+ A(¢)D,ii we obtain 11m D%ii=0.
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Repeating this procedure, we see that lim(zi,- .., D*1)=0. In the case where

o <L by Theorem 3 in [ 8, p. 419 | we have ii. € f(,ﬂ ssyRi). Leto' = é

Then i e;ﬂ,ﬂ —es— 1+E)(R,,+1)C./f(, s)(R,,H), 0<e<1l, and therefore
(D;—i2(Dy))i~ —f-—A Wit-—id(Dy) i€ .;f(,, s-1)(R;1). Consequently i €
H (ws1,5-1(Rirr)-

Consider the case where £t <<0. We shall reason by descending induction
over k. Assume that the results are valid for any £+1. Let f € Hsy (Riv1)
with f~ € éf((, o(Rr1), 0=k+0 and & € #,.(R,). Let ge x’(,“,s)(R,,H) be
such that

Dig—id(D.)g=Ff-.

Then it follows from Corollary 3 in [10, p. 3937 that Qiz-lirln g=0. The
tlo

Cauchy problem (15) can be written in the form
D(i—g)+ A@) i —g)=—id(D)g—A()g  in Ry,
27-lim (i — g)=a,
tio

where —id(D,)g— A(t)g € i(ﬁl,s,l)(}?;ﬂ). Then there exists a solution
D=d—F € H iz, (Ris1) and therefore i=7+7¢€ #os1,s-1)(Ry1). In par-
ticular, if @=0 then % € #,,1,,-1)(R;;;). Thus the proof is complete.

ProrosiTioN 14. Suppose (E%, 1) and (CP)y, kold for L. For any gwen
3 ejf(, o(R}y1) there exists a unique solution o e#(,ﬂ ssny(Ri) of Ly =h.
1

Proor. First we let 6> ——5 The problem to find a solution % € (2}).¢

((242),) for Li=Ph is equivalent to the one to find a solution & € 2 (R})((2%2).)
of the Cauchy problem Lii= f f =h|R;,, € H# (r.5(Ry:1), with initial condition

27 limii=0. Thus we see that there exists a solution & € # 1 - 1)(R}:1)
tio

and ii. Eéf(,,+1,s_1)(R,,+1). Moreover we can conclude that # is unique in
(21):(212).).

Let 0 —%. We can then show the existence of a solution 7€

i(ﬁl,s_l)(ﬁ,’;ﬂ) by proceeding along the same line as in the proof of Proposi-
tion 18. And the proof is now complete.

Tueorem 4. Suppose (E?, 1)~ and (CP)oy hold for L. Then for any
k€ (2)).((2}2),) there exists a unique solution v € (2}).((2}2),) of Lv=h and
h—% is a continuous map of (2,).((2}2),) onto itself.

Proor. Let {¢;} be a sequence of real numbers such that 1, <0<t; <t,<---
and lim¢;=o0 and put U;=(t;, t;,2). Then {U;};¢,1.. is an open covering

jreo
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of (¢y, ). We can choose a partition of unity {¢;} subordinate to the cover-

ing. Then k= f}0¢j7i. Consider the equations
F=

Li}l’:qu}_;s ]:0) 1,"'7

where ¢Ji € i(,j,s j)(R;+1) for some real numbers ¢;, s;. In virtue of Proposi-
tion 14 it follows that there exists a solution #; € (2}).((2%2).). From our
assumption that (E%, 1) holds for L we see that , vanishes for :<¢z;. Thus

<

= 2 7, is well defined in the space (2/).((2}:).) and # is unique in

=0
(21):(212)2).
Let us consider the map

L (2D):((21)2) 2 9> Lv € (2)).((212)>),

which is linear, continuous and onto. Since the space (2/).((2}:),) is ultra-
bornological and Souslin (Corollary 1 in [10, p. 374]), we see from Corollary
in [16, p. 604 ] that [/ is an epimorphism. Thus the proof is complete.

Now we can state the following theorem which is an immediate conse-
quence of Theorem 4 and the discussions given just before Lemma 3.

TueoreMm 5. Suppose (E%, 1) and (CP)y, hold for L. Then for any
a € (25, and f € 2'(R)(2512),), where f 18 assumed to have the 27,-canonical
extension f~ € (2)).((212),), the Cauchy problem (15) has a unique solution
i € 2/ (R})(212),) and (&, f-)—» ii 18 a continuous map under the topology of
(212): % (27).(212):) and the topology of (2}).((212)).

4. Pseudo-differential operators with constant coeflicients

Let 4; € OP,, i, j=1,2,..., N, such that %(Aijqﬁ):zi,-j(%(b), k=1,2,.., N,

k k
hold for any ¢ € C7(R,). Then there exist distributions T4, € 2'(R,), with
which we can write 4;;u= T, *'u, u € (2}2),, where by ' we mean the partial
convolution with respect to the variable x. By taking ¢ as u we see that
T4, € (27:),. We shall denote by A (resp. T,) the Nx N matrix with entries

A;;(resp. Ta,). Then we can write 4i= T,xii. Themap I:d— 1+ |£] 27 %
T.(8)d is a bounded operator of L*(E,) into itself and its norm is given by
the formula

2| =ess. sup |(1+ |&]2) 72 T4(8)],

where we mean by |X| the operator norm of a matrix X. Thus fAi (&) is a
locally summable function for i, j=1, 2,..., N and
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| Ta(®)| < CA+ 6|57

with a constant C=]|I||.
In this section we shall deal with the operator L=D,+ 4, where 4 € OP,
is a convolution operator given above.

Prorosition 15, If i€ 2'(RY)(2}:),) satisfies Li=0 im R},, and
252 lim =0, then Z=0 in R},;.
tlo0

Proor. By Proposition 9 we see that 4 may be considered as a 2/:-valued
C= function of ¢. If we write Az=T.,«'a with a T.€(2}:), such that
| T4(8)] < C(A+ |€]?)'?, then the Fourier transformation of D,i+ 4(¢:)a with
respect to x is written in the form

D, &)+ Ta()i(t, £)=0.

Since eif4®* is a locally summable function of ¢, T4 is well defined as

2/(8,)-valued €= function of ¢ and D,(eT49*j)=0 and therefore U(&)=

eTa®i(s &) € 9/(E,). On the other hand, from 2}:-limu=0 we see that
ti0

lim z=1im #=0. Thus U(§)=0 as a distribution. Thus we can conclude
140 110

that 2=0 as a distribution.

We shall say the Cauchy problem for L is well posed in the L? norm if
for any @ € C7(R,) the Cauchy problem:

La=0 in (0, T)x R,

=

limi=a

has a unique solution @ € #%(# (o)), 0=t < T, and
1z (e, )lloy= Crl|Z(0, *)]|(0 0=:=T,

where 7>0 is arbitrary.
Then the Cauchy problem for L is well posed in the L? norm if and only if

|e=i 14| < 7, 0<t<T.
If we put k=(log C7)/ T, then

e Ta® < Cret, 0=t < oo,
and therefore

Ie—(ifA(E)Hal)tl <Cr, 0<t< oco.

In [17, p. 4117 G. Strang gave a necessary and sufficient condition in
order that a Kowalewski system may be strongly hyperbolic. In connection
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with his studies we shall show the following

PropositioN 16.  The following conditions are equivalent :
(1) The Cauchy problem for L is well posed in the L? norm.
(2) (E%, 1) holds for L and (EY, | ) holds for L*.

3) (E?%, 1) holds for L and (E%, | ) holds for L*.

4) (FE%4, 1) holds for L.

Proor Since the implications (2)=(3), (8)=(4) are trivial, we have
only to show the implications (1)=(2) and (4)=_>:(1).
(1)=(2). For any i € C7(R,.,) if we put f=Li, then we have

Di(t, &)+ Ta(®)i(t, &)=1(, &),

and therefore

4 . A 4 .4 "3
ﬁ(t, 5)26“’1%“(5)'12(0, $)+lg0 e—:TA(E)(f—t )f(t/, 5)dt/,
which implies that (£, 1) holds for L and similarly (£}, | ) holds for L*.
(4)=(1). Consider the set 4={(#(0, -), L§): § € C3(,+1)}. Then the set
A is dense in #y(R,) X # 0,0 (R;i+1). In fact, let (—if, &) be any element
of #0y)(R,) X #F,0,(R;,1) such that

[ @i, o, 56, Da—io, ), H=0.

This means that L*%=0 in R},,, and therefore the preceding proposition
implies #=0 and S=0. Thus there exists a sequence {4,}, ; € C;(R,.1), such
that Lg; >0 in o 0)(R; ;1) and ¢;(0, -)—>a. In virtue of (E?%, 1) we see that
{i(t, -)} is a Cauchy sequence in &9(#)). If we put #=1im ¢;, then

jooo

@ € &%(# (o)) and for any T>0 we have ||a(¢, )|l = Crll@l/0), 0=t = T.

Let ¥ be a family of Nx N matrices M(¢&) of measurable functions of &.
As an analogue of a result of H.-O. Kreiss [12, p. 71; 13, p. 1137, we can show
the following

Prorosition 17.  The following conditions are equivalent:

1) e < C forall t=0 and Me§ a.e. on 5,

(1) For any complex number s with Re s>0 there exists a constant C
such that for all Me g

(M(&)—sI)'<C/Res a.e.on E,.

(2) There exist a constant C and a matriz S, whose entries are measur-
able functions of &, such that for all Me

KOINERGIEY
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and
Xy Bygeeeeneennn bin
— 0 %3 bogeeeenn-- ban ae. on 5,
0 e 0 xy

where 0 =>Rex, =Rex;=>---=Rexy and |b;;| <C|Rex;]|.

(8) There exist a constant C and a positive definite Hermitian matrix
H(¢) such that for all M€

|H&) |, |HY(&)|<Cand HM+M*H=0 ae.on 5,
The proposition with M(¢&) replaced by —i TA(E)—kI yields the following
CoroLLARY 3. The following conditions are equivalent:

(1) |eUTa®+D < C for 10 and a.e. on F,.
(2) There exist a constant C and ¢ matrixz S such that

SO, SOl =C

and
21 Brgeeeeeeneee. bin
§F.5-12 0 %y bogeooonnn ban ae. on 5,
| 0 xy

where k=Imx; = - =Imxy and |b;| < C(|Imx;—k|).
(8) There exist a constant C and a positive definite Hermitian matrix
H(&) such that

|H® |, 1HY@)|=C and —i(HE) Ta®)— TAOHE)SKC ae. on 5,

ProrosiTiOoN 18,  Suppose T4(&) 18 positive homogeneous of degree r>0,
that is, Ta(A&)=2" T4(&) for 2>0. For the operator L=D,+ A(¢), the energy
inequality (E(zol 1 1) holds if and only if the eigenvalues z; of the matrix TA(8)
are real and Ta(&) is symmetrizable.

Proor. Suppose (E%) 1) holds for L. Let x¢), j=1,2,.., N, be the
eigenvalues of T4(¢). From that (E%, 1) holds for L it follows by Corollary 8
(2) that £ =Imx;(¢) and %;(1&)=21"%;(¢), and therefore f, =>1Imzx;(¢). On the
other hand, that (EZ, | ) holds for L means that (E2, | ) holds for L'=D,— 4.
In the same way as above, we can conclude that 0 = —Imzx;(¢), and therefore
Imx;(§)=0 for j=1, 2,..., N.
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_ From the relation le=iTa®| < Cp, 0t < T, together with the fact that
T4(&) is positive homogeneous of degree r, we may take k=0, and by Corollary
3 (2) we can conclude that 5;,=0 for any i,;. Taking H(&)=S5*(¢)5(¢), we
see that H(¢) is a positive definite Hermitian matrix, A(¢), H'(¢) are bounded
and H(&) T4(¢) is Hermitian.

The converse is well known [3, p. 1117].

Let 4 €OP,, r>0 and %(¢), j=1, 2,..., N, be the characteristic roots of
the matrix T4(€). If there exist constants C>0 and C, such that

Imx(§)=—Cl|&|"+C,,

then the Cauchy problem for the operator L=D,+ A is well posed in the L*
norm. In fact, we have for any 7>0

| e a®) < (142 Ta@)| + - +(@0)V | Ta(@)|V-De! mpx tmxs®
SCQAF| &7+ F (2| DOV e T
i;(b7 Oigtzg T.

For example, the Cauchy problem for the operator D,—il’(D,), (&)=
1+ |&]®Y? is well posed in the L? norm.

Let us consider a pseudo-differential operator with the form:
P(D)=Dy+ 3 4,077,
=

where 4; are convolution operators such that 4; € OP,. For any given
a=(0o, -, Um-1), &; € (D]2), and f € 2 (R})((2412).), where f is assumed to have
the 27:-canonical extension f. € (2}),((24:),), the problem to find a solution
u € 2'(R})((2%:),) of the Cauchy problem

PD)u=f  in Ry,

(16)
@iz-lilm (u, Dyu,-.-, D7 'u)=a
10

is reduced to the problem to find w € (2}).((2:),) such that
m—1
IHU::fo+ ;§L1)?6@§Tk3

m—k—1
where 1,=—i(@n_s-1+ 2 Ap-1) (9, p. 82]) and u=w|R;;;).. We
v=1
shall use the notation I'(@)=(10, -+, Tm-1)-

On the other hand, by the Calderén transformation

v;=8"7Dju, j=1, 2,..., m,
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the Cauchy problem (16) can be written in the form

Ly=D;o+ Av=f  in R}y,
am N
D72-lim 3=,
tio

Where fz((), ] Oa f)> l§=(sm-1a0" ] am—l):

0 -S 0o, 0
|
0 oo 0 -5
Ap S Ay (ST A,

and 4 € OP,, r=max(1, r;+(1 —J)-
Let us denote by [E%, 1 ] the following energy inequality:

m—1 .
LE% 1 : ]Z=O D3ty llfm-1- ;)<CT(Z 1Dip(0, HIzp-1-5+
t
+ {126, Dt de), 0= T, B € C(Ry)
with a constant Cr. We shall use the notations [E?%, | ], [El, 1], [E& 1]
and the like with obvious meanings. If [E%, 1 ] holds for P, then [E3, | ]

holds for P*=D7+ 3 7-44,;D7~7. In fact, if we put ¢(t)=@(—t) for any
¢ € C5(R,.1), then P*(D)¢=P(D)¢ and

T 1D, -1 = CxCE, IDIHO, lfn-1-p+
+{ 1P, sy, 0=e=T,

which implies

T NDI(—t, oo S CrCE, IDIBO, s+

+{" 1, it ae.
Similarly if [E, 1 ] holds for P, then [E}, | ] holds for P*.

Prorosition 19. Suppose [E?, 1] holds true for P. For any f€
H0,5(Ri1) and @ € #pm-1y(R,) X -+ X # 0y(R,) the Cauchy problem (16) has a
unique solution u € 2'(R})((212),) and u has the properties

(1) D;u € é’g(%(s+m—l—i))>]‘=0: 1,"'3 m_l;
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SN 2 (o %! 2
(i1) _Zo 1 Djult, Hlfnss-1-5 =CF( Zollaf”(m+s-1—j)+
i= i=

+{ i, ey

with a constant C®.

Proor. Uniqueness of a solution is trivial by Proposition 15. It is
sufficient to show that the set 4= {(I"(,), P§): ¢ € C3(R,1)}, do=(8(0, *),---,
D7=1¢(0, +)), is dense in (H#(sim 1y(Ry) X -+ X H#(5)(Ry)) X H# (0,5)(Ryys1)- Let
B e# ) (Ry) X XH _mi1(Ry) and w € #7 _ (R}, ;) such that

[Poce, , wit, War+ @, H=0,  pe4

Then P*w=0 in R},,, and therefore w=0 and 5=0.
If for any @ € C3(R,..) the Cauchy problem:
{ P(D)u=0 in (0, T)% R,

lim(u, D;u,- ey D't”_lu):a,
tio0

where 7>0 is arbitrary, has a unique solution u € #9(s#(n-1)) such that
D{u € é'?(.?f(m_l_j>),j:0, l,A--, m—l, and

m—1 . o m=1 .
jZ::o”D?u(ts ')”(Zm—l—j)écT( ]§OHD5U(0: ')||<2m—1—j) ’ 0=:<=T

with a constant Cr, then we shall say that P satisfies the property (W).
Let L be the operator associated with P by the Calderén transformation.
Then we have the following

TueoreMm 6.  The following conditions are equivalent :

(1) P satisfies the property (W).

(2) [E%, 1] holds for Pand [E}, | ] holds for P*,

8) [E?%, 1] holds for P.

(4) The Cauchy problem for L is well posed in the L? norm.
(B) (El) 1) holds for L and (EY, | ) holds for L*.

(6) (E%, 1) holds for L.

Proor. The conditions (4), (5) and (6) are equivalent by Proposition 16
and the equivalences of (2) and (5), (8) and (6) are trivial by the definition.
The implication (8)=> (1) is an immediate consequence of the preceding
proposition. We have only to show the implication (1)=(4). Let a=(«o,---,
®m-1) € C5(R,). Then (S""'ay, S %ay,..., Ap-1) € (P12),, Where C7(R,) is
dense in (2;:),. Since the property (#) holds also true of the initial data
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(S ay,..., ap_1) € (212)x, the Cauchy problem for L is well posed in the L?
norm.

Now let us consider the case where 4; can be written in the form
Aj”—‘A?Aj—FBj, ]:1, 2,--«, m,

where TAg (&) are positive homogeneous of degree 0, TA;? (&) continuous on
|¢| =1 and B; of order <;—1. We put

PA(D)=D7+ 3 A% D73,
i=1
Then we have the following

Prorosition 20. [E?,1)] holds for P(D) if and only if the roots of the
polynomial Py(z, &) of v are real and distinct.

Proor. Suppose [E?%,1]] holds for P(D). _Then (E%)I1) holds for L.
L can be written in the form L= 4°4+ B, where T4s(¢) is positive homogeneous
of degree 0, 7T'4(&) continuous on |£| =1 and B of order<<0. Thus we see by
Lemma 3 that (E%,1) holds also for Lo=A4°4. Observe that Py(c, &) is the
minimal polynomial of the matrix 74(¢). In virtue of Proposition 18 we see
that the roots are real and distinct.

Conversely, suppose the roots of Py(r, §)=0 are real and distinct. Then
by necessary modifications of the proofs of Theorems 24 and 25 in A.P.
Calderén [3, p. 109, p. 110] there exists a positive definite Hermitian matrix
H(¢) such that H(&) T4(&)= T%:«(&)H(&). Applying Corollary 3 and Lemma
3 we see that [ £%,]1] holds for P.

CoroLLARY 4. In the case where the coefficients of the operators AS, j=

1,2,..., m, are real, [ E%, 1 ] holds for P if and only if the roots of Py(r, £)=0
are real and distinct.

5. A characterization of regular hyperbolicity

In our previous paper [9, p. 101] it is shown that a differential operator

m—1
P(D)=Dr+ . 2 a;,(t, x)DiD?, a; , € B, is regularly hyperbolic if and

=0 j+lpl=m

only if, for any fixed T>0, P(D) satisfies the energy inequality:

- m—1 . m—1 X
CEW 1] jZ:O||D?¢(t1, Mm-1-5 = Cx( ZO||D¥¢(to, Mm-1-5+
- =

131
+, 1P, Awds,  0SHu=u=<T,  $eCiRurn),
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where Cr is a constant.

The aim of this section is to generalize this result to a pseudo-differential

operator.
T. Batabon [ 1] has investigated the Cauchy problem for a pseudo-differen-
tial operators with the form:

P(D)=Dp+ 3 A(0)D1,

where A;(¢)=A;(t, x, D,) is a pseudo-diffenertial operator of order j in the
sense of J.J. Kohn and L. Nirenberg, which depends smoothly on ¢ and its
asymptotic expansion has only operators of integral order.

Let B be the space of all B.. singular integral operators in the sense of
A.P. Calderodn [3, 14] with semi-norms {p,}»=0, 1,...:

(& e o] )

Pm: K—||K||,= max {sup

o=slal=2z Lisl=1
where ||K]||,, is the norm of B,, singular integral operator K.
Consider a pseudo-differential operator with the form
P(D)=Dy+ 5 40D}, 4()=AY0)4'+ By(o),
s

where A49(t)=AYt, x, D,) are B-valued continuous functions of s € R, and
Bi(¢t) €€ ;_;,. We shall give a characterization of the regular hyperbolicity
of P(D) by making use of the energy inequalities.

We shall denote by P°(D) the principal part of P(D):
PUD)=Dy+ 3, 4Y0) 4Dy~
and we put
PG, (D) =D+ 3, 4320, x0, D)ADY,
where the point (zo, x,) is fixed. Let T be any fixed positive number.

ProrosiTioN 21.  Suppose the following energy inequality [El,, 1] holds
for P(D):

- m—1 . m—1 X
[Ety 1 1: 5 1Di(r, w1 = Cr(E 1D G0, on-s-5F
= i=

3!
+{IPOE, Mwdt's  0=6=H=T,  geCG(Ra),
0
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where Cr is a constant. Then [ES, 1] holds for P§,,.,(D) with a constant
independent of (to, x0) € [0, T]x R,.

Proor. Let (¢, x0) €[0, T)x R,. For any fixed 7€ (0, T] we take 4 so
large that ¢, <t;=1t0+ % < T. Let ¢.(¢t, x)=u(A(t—1ty), A(x—x,)) for any

u € C5(R,,1). Then we have

(18) Z IDidr(t1, Il m-1-5 = Cz( Z 1Diér(tos lim-1-5F

+{ 1@, Hllwd),

where

IDig s, Miorop= | 5 a2 TINDIDu G,

1pl=m—1—j

1Dto, Migorop= | 3 220107 YDIDI,

Ipl=m—1—j

Moreover, we can write
P(D)$=Digr+ X AYOA D79+ 2, Bi()DT 7y,
i= i=
where

A?(t)AjD’t”'J‘qSX_ m= nS6<AO)(t %, 5)] Z I Dm i <l(t'—to), l) i<x—x0, E>d5

(2 )"

an
~@ny

oD, 2, 181D 20— 10), et

=2 A3+ b0, - w0, D) 4D A— 1), A — w0,
and therefore

IPDIBIs oy S A2 I(Pa s« PIIAGE—10), oy +

+C A ,Zi”(l_”‘ 1€12) 2 Dy 7a(a(t—t0), *)lloy
P
where C; is a constant independent of » but depends on B;. Thus we have

(1@, dlade 2w 1P 1, 2 D, e+

e 8 (1G4 12197 Dr7ad, Do
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In the case where n =2 we can expand the operator A?<%+ to, —’;—+ X0,

Dx) f in the form

/

(Lt to, Zot o, D) =al( bt E o )f

= d(m)

+2 X a{m<'3—+t03 —5;—+xo>szfa

m=11]=1

where {G;,} be a system of Giraud operators associated with a complete ortho-
normal system of spherical harmonics of degree m and d(m)= g(m)— g(m—2),

g(m)=<m+n—1>, and we set g(—1)=g(—2)=0. Since sup aé(Tt+t0,

n—1
. 3 . n=2
%ero) <, sup afm(%ﬂo, %HO) < C'm 2| Ao, |Gimf |0y < C'm 2
-1
ull £ llo, With 7m= —i"(N7 )—"r<m)(r<m;f”)) and d(m)< C'm"?, where C’

is a constant independent of (o, x,) [3, 14], we obtain with a constant C”
independent of (zo, x0)

¢ i
a9) st to, At xe, D)ADEI, )
¢+ Em ) IliDrule’, o
In the case where n=1 we can write

(Lt to, 20, D) F a4t te, Bt w4

+a{<-£—+to, > + x0 limg “—f—(L)-dy,

2 A elodiz—y>ex—y

where al(z, -) and ai(z, -) are B.-valued continuous function of . Thus the

estimate (19) remains valid.
Dividing both sides of (18) by Am-1-@/2 letting 1— o and applying
Lebesgue’s convergence theorem we obtain the estimate

m—1 . N m—1 L.
@) BN DG = (L DO, et
t , ,
{122 o (DI, ),

where C7 is a constant independent of (zy, xo) and u.
If we take u(z, x)e'<*%> &,=(1, 0,..., 0), instead of u(z, x), then we get
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i(¢, £—¢&) as the partial Fourier transform and we have

m=1 P m=-1 P
@D L {IC4(D.+ o))" Dju, Il = Cr( & (AD:+£0)" " Diu @, oy +
= Jj=

[ .
PR Dyue =)W, llwyde,

where A(D,+ &) is defined by (A(D,+&)u)" = |&+&,|i.
It is evident that

(P?to, xo)(‘D) uei<x‘50>)A

=Dra(t, §—€&o)+ _%1 0(AD(to, x0, E)1E1'DP (2, §—&)
i<
=Drua(t, §—§0) ﬁl 0(AN (2o, x0, E—E&0) | E—&|"DP70(t, §—E0)+
~
+ 55 00D o, 20, S — 18— E0DF i, §— 60+
P

+ f:1 (@(AD(to, x0, &) —0(AN (20, 0, E—E))|E—&o |’ D7 a(e, £ —&o).
=
From the following estimates:

|a(A9)(to, %oy E)(|E)—16—E0|D)| S Co(1+ |£—&,|HU-DI2

and
|O‘(A?)(t09 X0, 5)_6(A?)(t0, X0y €—€O)| |$_EOII
— 0 § _ 0 §—%o _ j
o€t 50, 5 ) =010, 50, E= ) 16201
§ §—&o ‘ i
<C _ )i
S T Temg, |16 7%
<2C‘5_—50|j< 1 _ 2\(j-1)/2
= 3|5|+|5—-Eo|=64(+|€ &%) )
we obtain

I P?to,xo)(D)ue"<x,Eo>)A l

_S_ ID'tnu(ta E—$O)+ jg:lo.(A(})(to, X0, ’S)‘eljD’;‘n—jﬁ(ta 6_50)‘

+(C2+Cy) Z'fl A+ [6—& | DY D Ta(t, §—&o)l,

and therefore
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14 .
@ (P Due ), s

3 m—1C% .
< [ 1Pl D, Hwde +C3 S | 1D, lln-1-5de'

where C;, Cs, C, and C% are constants independent of (z,, xo).
There exists a constant Cs such that

R R L BN PN
5

< CRAL+ 6121
Thus we obtain the following estimate from (20), (21) and (22)

1 m—1 Ml i ] ~ m—1 1
< =S iDu@, oy = Cr{C; X [|S™" " Diu(0, )|«
5 j=0 7j=0

3 m=1(% . B
2 1P DY, Dllwdt' +C§ | 1Dy -1t

By Lemma 3 we see that [£}, 1] holds for P{, ,,(D) with a constant inde-
pendent of (2o, xo) €[0, T) X R, and u. By letting 7, 1 T, we see that [E{, 1]
holds for P ., (D) with the same constant. Thus the proof is complete.

Let 2;(¢, %, &), j=1, 2,..., m, be the roots of the algebraic equation
P°(t, x, v, £)=0 with respect to r. If (i) 4;(¢, x, &) are real for j=1,2,..., m
and (ii) there exists a positive constant dr depending on T such that
| 2;(ty %, &) —24(t, %, §)| =d7, j5=k, hold for : € [0, T], x € R, and ¢ € E, with
|&€] =1, then P is said to be regularly hyperbolic.

. Tueorem 7. P is regularly hyperbolic if [El,,1l] holds for P(D). The
converse holds true when there exists a constant Cr such that

[[43@) =AY No=Cr|t—¢], 0=t ¢/ <T.

Proor. Suppose [£Y,1!] hold for P(D). Then, it follows from the
preceding proposition that [ Ef, 1] holds for P{, .., (D), (¢o, x0) € [0, T]x R,,
with a constant independent of (¢, xo). Owing to Theorem 6, (E},1!) holds
for LY, ., (D), the system of linear operators corresponding to P{, ., (D) under
the Calderén transformation, and therefore from Proposition 18 we see that
for any fixed (¢o, xo) the roots 2;(¢¢, %o, &), j=1, 2,..., m, are real and distinct.

For any ¢/, ¢’ €&, on |&é|=1 we denote by [ the spherical distance
between &', & and &(s), 0<s<I<r, a point on an arc of a great circle with
end points &, &’. Writing 6(4,)=A4;(¢, x, &), we have
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0,
A5 ds

A~ ~ I n N
1Aty 5, 0= Ay, %, €)1 = §, 55 A 56

=f(%

where M is a constant and I <7x|& —¢&”|.
Let us consider the set

0

’ 1lzd <Ml
0&; ) F=0

A\J’(ta Xy S(S))

@:{(‘4\?(% X '))"'3 *AAfn(t’ X ')): t€ [03 T:la x € Rn},

where A%, x, -) are continuous functions of ¢ € 5, on |&| =1 with parameter
(t, x), and equip & with the uniform convergence topology. Since the set &

is equicontinuous and uniformly bounded, its closure & is compact. For any

(B, ---, B,) € & the polynomial Q(c, &)=t"+ 3 B;(&)r"/ in © have simple
i=1

zeros only. Let 4, be its discriminant. Since it is a continuous function of

(B, .-, B,) €3 and &€ 7, with |&|=1, it follows that 4,(&)=dr>0 for a
constant dr depending on T.

Conversely, suppose P is regularly hyperbolic. By means of the Calderon
transformation v;=S"7Dj 'y, j=1, 2,..., m, we are reduced to consider the
system of linear operators

Ly=Dp+ AW A5+ B@)d,  5=(v1, -, Um),

where the eigenvalues of the matrix 4°(, x, &) are (¢, , £), j=1, 2,..., m.
Owing to Theorem 25 in [3, p. 1107, we see that there exists an Nx N matrix
N(t) whose elements are continuous linear operators of the space # ) (R,)
into itself for every ¢ and which satisfies the following properties:

(i) N(@) is a positive definite Hermitian matrix and ¢— N(¢) is con-
tinuous.

() NN@A@)S—SA*@)NEN2 0y < Ml|2ll0y, 0=t < T, 2 € C5(R,) with
a constant M.

By Proposition 22 below (which will be proved in the next section) we
see that (E},1!) holds for L and therefore [E};,1|] holds for P(D). Thus the
proof is complete.

CoroLLARY 5.  Assume that A%¢, x, &), j=1,2,...,m,arereal. If [El, 1]
holds for P(D), then P is regularly hyperbolic.

If A%(¢) is B-valued €™~ function of ¢ and B;(¢) € €7}, for each j, then
we can consider the formal adjoint operator P*(D). Suppose [E?%, 1 ] holds
for P(D) and P*(D). Then in the same way as in the proof of Proposition 8
in [9, p. 100] we can show that [£}, 1] holds for P(D) and [E}, | ] for
P, .0(D). Thus we have the following
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CoroLLARY 6. If [E?%, 1 ] holds for P(D) and P*(D), then P is regularly
hyperbolic.

6. A generalization of Kaplan’s treatment on parabolic operators

Let 4(t) € €,,. We shall first give a sufficient condition in order that
(E%,1)) may hold for L=D,+ A(s).

ProrosiTiON 22. Let H(z),0 <t < oo, be an Nx N positive definite matrizx
whose elements are continuous linear operators of the space 5 o) (R,) into itself
for each t and suppose that for any T>0

(i) There exists a constant 7, such that
T2t SEOL D12, 0SEST, 2 Ci(R,

(ii) H(¢) is locally Lipsitzian:
I(HE) —HENZ o0y < CrllZlly| e =¢'l, 0=t, /< T, 2e€C3(Ry),
(iii) There exists a constant Cr such that
I(H@ A@) — A HZ 0y = CrllZlloy 0=t<T, 17€C7(R).
Then (Elytl) holds for L.

Proor. For any i€ C3(R,.,) weput f=Li, h*(t)=(H@®)a(, -), a(z, +))
and consider Dini’s derivates D.(A%(t)). Then we have

DL (h*(1)) < Crlli(t, l%y + | (H@) D, +), (e, ) — (H@)a(, -), Dyii(e, )|
< Crllae, i+ | ((H) A@) — A*@© H@) (e, -), a(e, )|+
+2[1£(t, ol A, )l
< (Cr+CPlite, 12 +2IIfC, Dol H@a, o
< 7(Cr+ CPRAE) +2(r ) Y2N| £ 2, +)llcoyh(2)

with a constant C7. Put 2C=7,.(Cr+C7). From the fact that D_h*=2hD_h
for h(:)>0 and D_A%2<0 for h(z)=0 we obtain

D_(e W) < e’C'(TT)UZHf(t, lcoys
and therefore
31

(e, ‘)||<0)§TTCC(I‘"“’)”ﬁ(to, ‘)||(0)+7'T§, € C('—tl)”f(ta oyt
0

0§to§t1§ T.
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On the other hand, from the inequality
— D, (t) < CR)+T Y2 (2, +)llcoy)

we obtain

ty -
o, Moy = 7re e, Do+ 72 e IFt, oy

t
which completes the proof.
Prorosition 23. If we assume in Proposition 22 that
H'0)((21)) C#(R,)  for each t, 0=t < oo,
then (EY,%|) holds for L*.

Proor. From the condition (i), it follows that A-!(¢) exists and has the
property (i). For any ¢, ¢ with 0<¢, ' < T, we obtain

ICH () — B N2l o= I(H @) (H) — He)YH )2l oy
S CrTR1E =121l 0y
If we put ¢(¢, -)=H"'(t)7 € #,,(R,) for any 7 € C3(R,), then we have
I(H @ A*@) — A H ()2l o= | H(2) (A*(2) H(t) — H(t) A, llcoy
=77C7ll8(2, lloy
=T7%Crll2l0y-
Applying the preceding proposition, we see that (£%,1!) holds for L*.

Let A(z) be an element of €, r>0, satisfying the pseudo-commutativity
() and assume there exists an Nx N positive definite matrix H(z), 0<: < oo,
whose elements are continuous linear operators of s, (R,) into itself for
each ¢, and assume H(z) has the following properties: (i) There exists a con-

stant 7, such that% 12]1%) < (H®)2, D <T7l12ll%, 0=t < T, for 7 € C5(Ry).
T

(ii) There exists a constant Cr such that ||(H(¢)— H(')Z||0y = Crl|Z|l0y|t — '],
0<t, ' T, for 7 € C3(R,) and (iii)’ (H(:)A(¢)z, 7) is coercive in the sense:
Im (H(t) A()2, 2) < tol|211% — 22ll2113, 10, 0=t < T, 7 € C5(R,)

with constants u;=4,(T) and zxo=u(T)>0.
S. Kaplan [117] has investigated the Cauchy problem for the parabolic
operator with the form:

0

-0 _
0t M(z)= ot

| IZ:Z aa(ty x)D;', aq € gf?(RnJrl)

and M(t) is assumed to be uniformly strongly elliptic, where m is a positive
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integer. The operator M(z) satisfies the condition (iii)’ with N=1, H(t)=1
and r=2m.

We shall first note that the following energy inequality holds true for
L=D,+ A(2).

Tueorem 8. For any it € # o, s.r(H), H=[0, T X R,, there exists a con-
stant Cr such that

t
@) e, Mwrin+ N80 Dlfeende < oo, Everim+
0
t
+ILaG DlEd),  0Sw=n<T.
ty

Proor. For any i € C5(R,.1), if we put f———Lﬁ, then we have
D_(H(t)a(s, +), iz, +))
< K||i(t, )2+ i{(H@)Dyii(t, +), iz, +))— (H@)i(t, +), Deii(t, +)}
= Klla(t, % +2Im(i(t,), H)f(2, -)+2Im(H() A0z, -), it )
<2|(H@)f(t, ), a(t, )| —2mllit, D0+ @Cuo+ KOl i, i

with a constant K. Putting 4%(¢)=(H()i(s, +), i(t, +)), we obtain

R2(ty) — B3 (te) <2 S: \(HOF G, »), 1, )| di—

’1 13
—2(laGe, Mtmde+ @t KO i, it ds,
o 0

and therefore if we put #=S"°""/%j, then we can write
t >
19, MRasrrn = Trl3Cen, N S 2 I EOLS 7%, §747729) | di—
[
t o
_2'[‘15‘ H'i}(t, ')“(zs+1)dt+(2ﬂ0+K)St Hv(t3 ‘)H(Zs-H*IZ)dt,
0 0
where
|(ﬁ(t)LSs+r/217, Ss+r/21-})l
< |(H(£)S "2 Lo, S™71%5) | + | (H(e)(A(£)S*+ 12— S*+712 4(2)), S*+7/%D) |
=S G, Dl ) Nlesemn+ CalloCty Dllesrr-nll3Ct, Dllessry

For any given ¢>0 there exists a constant C(¢) such that

13, Ol r-1 =13, llErn+CENBE, .
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Applying the Schwarz inequality, we have the estimate with a constant C’(¢)

o t
2 1(HOLS 125, 577120)] de <36 G, s di+
0 to
t ¢
+CO 1L, Dtde+ €@ N, itde.
0 0

Taking e =—;’—/j1 and applying Lemma 3 in Section 2, we obtain the inequality

with a constant C; such that

1
||1_)(t13 °)||(2s+r12)+gtl[|a(ts ')”(23+r)dt§CT(”i(t0> ')||(2.9+r/2)+
0

3
+1zae, iz,

which will yield the estimate (23) since C7(H) is dense in (o ,,(H). Thus
the proof is complete.

By modifying the method developed in Sections 2 and 8 we shall show
the uniqueness and existence theorems for the Cauchy problem:

Li=f inH,
@) { f in

Dp:-lim i =a
tio
for any preassigned @ € (2%:), and f € 2,(212).)(H), where f is assumed to
have the 27:-canonical extension f..
From now on, we assume that 4(¢) € €2,.

TueoreMm 9. If i€ 2,((272).)(H) and i s a solution of the Cauchy
problem Lii=0 in H with initial condition .@’Lz-}ilrgl =0, then ii=0.

Proor. There exists real numbers ¢, s such that & € ' (H). From
the equation D,ii=— A(t)i € '~ "(H) we see that i € #+"s="(H). Thus
we may assume that ¢ =0. From the energy inequality in the preceding
theorem we can conclude that i =0.

We shall say that (CP)/,, holds for L if the Cauchy problem (24) has a
solution & € # 0 s.ry(H) for any given fe€# o (H) and & € # ., 2)(Rn).
Then, in the same way as in the proof of Propositions 4 and 5 we have

PropositionN 4. If (CP)/,, holds for L, then it also holds for L'=L+ B(¢),
B(t) € @(,_1).
Prorosition 5. If (CP){,, holds for some s, then it does for any s.

Next we shall show an analogue of Proposition 7.



434 Mitsuyuki ITano and Kiyoshi YosHipa

Prorosition 7. (CP). holds for L if and only if the conditions that
B €A o, (H), L*#=0 in H and @/Lz'-linrl #=0 imply w=0 in H.
t1

Proor. Let (CP)(,, hold for L and w € 5#,-(H) and assume that L*w=0
in H with 9Lz-11m w=0. For any f € C(H), let i € # .., (H) be a solution

of Li= f From the fact that the energy inequality (23) holds true, there
exists a sequence {g;}, ¢; € C;(H) vanishing near :=0 and we have

T
So(qu’,.(z, D), @(t, ))dt=0. Thus =0 in H.

To prove the converse, we first show that 4={(g(0, -), L§): § € Cy(H)}
is dense in (., 2)(Ry) X H 0,(H). Let (iB, #) € # (s ri2y(Ry) X #Ho,-5(H)
such that

[ @, 5, 5, Vi~ iGo, =0, e,

which implies L*#%=0 in H, and 9Lz-hm #=0. Thus we see that @#=0 in H

and §=0. For any f € #(0,5(H) and la € H(s+r12)(R,) there exists a sequence
{8}, 8; € C5(H), such that §;(0, -), Lg; converge in #.,2(Rn), #0,(H) to &,
f respectively as j— . From the energy inequality (23) we see that {g;} is
a Cauchy sequence in s ., (H). Let i be the limit of the sequence {g;}.
Then i satisfies the equation Li=f in H with 2 Lz-hm i=a. From the fact

that @ € #,s+-(H) and Dyii € # o, (H) we see that i € ¢ (H).

Proposition 24. Suppose (CP){,, holds for L. For any f € ¥ (H), k
being any non-negative integer, and & € H# (r:1)2)r+5(R») there exists a unique
solution i € " *+D7I(H) of the Cauchy problem (24). Furthermore i satisfies
the inequality

i , E ot
(25) jA;O”Dfﬁ(t, M+ x-jrrmn+ EO SOIIDiﬁ(t’, M+ —jrndt’
=l
= Cr(lall%+g+120m+ ,-Z=:0 1Df 0, DlEs+-1/20m+
ot )
+ 2 [ D47, e pmde)

with a constant Cr.

Proor. If k=0 this result is already shown in Theorem 8 and Proposi-
tion 7. Let f € 9 (H) and @ € # (s, 32)(R,). Then the Cauchy problem (24)
has a unique solution @ € #*”**)(H). Furthermore i satisfies the inequality:

(26) Il (e, ')”(zs+(3/2)r)+g [1&(t", IEsrzndt =< Cr(||EC0, H|IE @20+

t
+ I, Dt nde.
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Put #=D,i. Then # € ") (H) and we have Li=D,f+id'(t)i € # o, s(H),
and therefore

t
15, M+ § 1 DNl srde S Cal3, i+
t o t ,
+{ IDF, litade+ { 123w, li%de),

where C, is a constant. Applying Lemma 3 in Section 2, we obtain with a
constant C;

@D 150, Mot | 15 e dt’ < CUBO, i+
+{ I, Hligan.
From (26) and (27) we have with a constant Cr
e, Messcormm+1DiCes e+ {16, lsande+

t -
+S°||Dtﬂ'(t/, ')H(zs+r)dt§CT(Hﬂ'(0, °)||(Zs+(312)r)+uf(0, ')”(2s+r/2)+

[N t -
017, DMltende+  IDFE, 7y de).
Repeating this procedure, we obtain the inequality (25).

We note here that #*7(H), k being non-negetive integer, has the
equivalent norm

(T
( 'Zogo Dillud, .)“(Zs—i»(k—j)r)dt,)l/z.

j=

With the aid of the interpolation theorem for the Hilbert scales, we can
show

CoroLLARY 7, Suppose (CP){,, holds for L. For anyf e I(H), 0 =0

and @ € H#(, 54,2 (Ry) there exists a unique solution of the Cauchy problem (24)
and (&, f)— il is a continuous map of H#.sr2)(Ra) x HO(H) into " (H).

We shall denote by o *)(g_) the space which is a restriction of the
space A I (R;,,) to (—oo, T]x R, and similarly for 2,((2}.).)(H.). By
Proposition 7 in [8, p. 416 ] we see that for every ii € (9 (H) with |0 <%

its canonical extension @ . over =0 belongs to the space £ " (H.).
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Prorosition 25. Suppose (CP)!,, holds for L. For any f € A (H),
—;—<o‘ <0and @ € # (1 sir2(Ry) there exists a unique solution i € X “"(H)
of the Cauchy problem (24).

Proor. For any given f € #“*)(H) we shall consider g satisfying the
equation

D,g—il’(D)g=Ff-.

Then g€ “*"*)(H_) and therefore ng-lilm g=0. The Cauchy problem (24)
tlo

can be written in the form

8) { D(a—g)+ A@) i —g)=—id"(D)g—A(t)g  in H,

21-lim (i — g)=a,
tlo

where —i2"(D.)g— Z(t)g‘ € A ST (HL), % <0+r<r. Thus there exists a
unique solution =i — g € 4 “***~"(H) and therefore i =3+ g € 4" (H).

Let 0, s be any real numbers and write c=kr+0¢’ with integer %k and

—%<o"§—r—~. We are now prepared to show the following theorem, a

generalization of a result of S. Kaplan [11, p. 1807].

Treorem 10.  Suppose (CP)/y, holds for L. For any @ € # (. s1,2(Rx) and
f e O(H) with f. € 4 “(H.), there exists a unique solution & € "+ )(H)
of the Cauchy problem (24). In particular, if a=0 then i.€ X 9 (H.).

Proor. Consider the case £=0. In Corollary 7 we have shown that
there exists a solution # € #“*7-*)(H). Since a solution of the Cauchy problem
is unique in 2,((2}2).)(H), we have only to show that if @a=0 then i#. €
A @+ (H_)., Suppose @=0. Then lilm (i,---, D¥)=0. In fact, if k=0 then

tio N . ,
lim #=92}lim#=0. Let £>0. Then the condition f.e€ . *+"9(H.)

10 tlo, . 5 -
implies li{n(f,-u, D’;‘lf)=@§;z-lilm(f,..-, D¥1f)=0 (cf. Theorem 3 in [8§,
tio tio

p. 4197]). In the same way as in the proof of Proposition 13 we can prove
that li{n(zi,-. ., D%i)=0. In the case ¢'< —;—, Theorem 3 in [8, p. 419] implies
tlo

immediately & € o4t 9(H.). Let J’=—£—. Then i. € =6+O(H.)C

A st(H)), 0<e<r. Combining with the relation D,(ﬁ~)=f-—/f(t)ﬁ~ €
o ©5)(H_) shows that & € &+ 5)(H.).

Consider the case where £<0. We shall reason by descending ipduction
over k. Assume that the results hold true of any k+1. Let f~ € A (H),
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o=kr+0d', and @ € #(, 5172 (R,). Let ge £+ (H_) be a solution of the
equation

Dig—iX(D)g=Ff-.
Then _@gz-lilm Z=0. The Cauchy problem (24) can be written in the form (28)
ti0

and —id’(D,)g— A(¢)g € A “*"°~")(H_), and therefore there exists a solution
p=d—gex ") H)and i=9+g € X" (H). Especially, if =0 then
i€ CTI(H).

Along the same line as in the proof of the preceding theorem we can
prove the following

ProposiTioN 26.  Suppose (CP)l,, holds for L. For any he X (H.)
there exists a unique solution v € % ©+"(H_) of Li=h.

The following theorems are the analogues of Theorems 4 and 5 and can
be proved in a similar way, so the proofs are omitted.

TueoreM 11.  Suppose (CP)/,, holds for L. Then for any k € (2}).((2}2),)
there exists a unique solution € (24).((242),) of Lo=Fh and k— % is a continu-
ous map of (241),((2%2),) onto itself.

Tureorem 12.  Suppose (CP)/,, holds for L. Then for any a € (2472, and
f € 2'(R))(2]2).), which has the 2 :-canonical extension fﬁ € (2)).((22)x), the
Cauchy problem (24) has a unique solution i € 2'(Ry)((212),) and (&, f~)—+ i~
18 a continuous map under the topology of (212), % (24}).((21:),) and the topology
of (27).((212):).

7. Notes on a system of ordinary differential operators

Let L be a system of ordinary differential operators of the form
L=D,+ A(¢), where A(:) is an Nx N matrix of C~ functions on R; and

consider the Cauchy problem:
Li=f in R*
(29) {

lim i=a
tlo

for any preassigned f €2'(R*) and @aeC”. If i € 2'(R*) exists, then f has
the canonical extension f. € 2} and

(30) L(i)=f.—ias.

Conversely, if 7 € 2/ satisfies the equation (30), then the restriction
#=7v|R" is a solution of the Cauchy problem (29) and #=1i ., where by 2/ we
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mean the closed subspace of 2’(R) with support CR".
Now we shall show that our considerations in the present paper can also
be applied to the Cauchy problem for ordinary differential system as a special

case.
For any ¢ € C5(R)

§en=#en+ ] $ @,
whence for any T>0
61 = 1800 + 1160 e+ max | 4[] 1) | dr, 0= 0=0=T.
By Lemma 3 in Section 2, we can find a constant C7 such that
B 16| =Crl1d)| + (1260 do), 0=n=n=T, §eCaR).

Similarly, for the formal adjoint L* of L we have

t
11

(82) 18| SCr(18en)| +| 1190 de), 0Stu=n=T, §eC3(R).

We shall first show the following
TueoreM 12. If i€ 2'(R*Y) satisfies Li=0 in t>0 and limi=0, then

tlo
i =0.

Proor. In the same way as in the proof of Proposition 8 in [7, p. 227 we
see that # € £7(R*). By the energy inequality (31) we have immediately # =0
in R*.

In what follows we shall show the existence theorems for the Cauchy
problem (29).

Proposition 27. Let 6> ——% . Forany aeC” and f € #(R") there

exists a unique solution i € # ,.1\(R*) of the Cauchy problem (29).

Proor. (1) Let o=k be a non-negative integer. First consider the
case k=0. The set 4={(#(0), L§): § € C;(R*)} is dense in C" x # ,(R*). In
fact, let (i@, @) € CY x #%,(R*) such that

(L, ) —i(F0), B)=0, e C5(R).

Then we see that L*#%=0 in R*. By the energy inequality (32) we conclude
that #=0 in R* and therefore G =0.

For any & € C" and f € # 1y(R") there exists a sequence {¢;}, §; € C5(R"),
such that ¢;(0), Lg, converge in C" and # 4 (R") to &, f respectively as j— oco.



Energy Inequalities and the Cauchy Problem for a Pseudo-Differential System 439

By the energy inequality (81) we see that §; is a Cauchy sequence in &(R™).
Let @ be the limit of ;. Then i € £%(R*) is a solution of the Cauchy problem
(24). From the equation D,a=f—ff(t)ﬁ € #o)(R*) we see that i@ € #(R™).
Let k=1and f € #1,(R*). Then #=D,i € #o,(R*)and Ls=D,f+id'(t)i
€ # h(R"), and therefore 7 € #1),(R*), which implies # € # ) (R").
In the case where c=£k_>2, repeating this procedure, we see that
ice j(k+1)(ﬁ+)- .
(2) Let ¢ be a non-negative real number. For any @€ C" and fe€
# (R*) there exists a solution @ € #;,1)(R*) of the Cauchy problem (29),
where k=[0¢]. Since D,ﬁzf——ff(t)ﬁ € #(R*) we see that i € #.1)(R™).
(8) Let o be such that —%<0<0. For any f € #H(R*) if we define
g by the equation (D+—i)g’=f~, then ge 3?(,+1)(R+) and ltilnol g§=0. The

Cauchy problem (29) can be written in the form
{ Dy(i— @)+ A@)a—g)=—ig—AQ)g,
lim (i —@)=a
im (- g =a,
where —ig—Z(z)g’ € 9??(”1)(1?). Thus there exists a solution ?=i—ge€
H# (512)(R") and therefore i=9+ g € #(,.1)(R*). Thus the proof is complete.

In the same way as in the proof of Proposition 13 we can prove the
following

ProposiTION 28. Let ¢ be any real mumber. For any ae€C" and fe
H o (R*) with f. € #,H(R") there exists a unique solution i € #y(RY). In
particular, tf @=0 then u € # . 1,(R").

As an extension of Theorem 37 in E. Berz [2, p. 32] we have

ProrosiTion 29. Let ¢ be any real number. For any k€ .}?(,)(R+) there
exists a unique solution v € # 1) (R*).

The following two theorems are the analogues of Theorems 4 and 5 and
these can be proved in a similar way.

Tueorem 13.  For any k € 9/, there exists a unique solution v € @, of the
equation Li=h and h— v is a continuous map of D', onto itself.

TueoreMm 14. For any @ € C" and f € 2'(R*) with the canonical extension
f~ there exists a unique solution i € 2'(R*) of the Cauchy problem (29) and
(@, f-)—> i~ is a continuous map under the topology C" x 2. and the topology
2.

Let us consider an ordinary differential operator
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P(D)=D7+ flaj(t)DT'j, a; € C(R).

Substituting w;=D{ 'u, j=1, 2,..., m, then we obtain the equivalent system:

D;le—u]'+1=0 for ]=1, 2,--‘, m—l,
Diu,+ Zl aj()um-jr1=f.
7=

Thus we have

CoroLrLARY 8. For any h € 9/, there exists a unique solution v € 2, of
the equation Pv=Ah.

CoroLLARY 9. For any (o, @n-1) €C" and fe€ 2'(R*) with the can-
onical extension f., there exists a unique solution u € 2'(R*) of the Cauchy
problem :

{ Pu=f in R",
lifn (u> Dt”’;"'; D;n—lu):(ao, (24 PREED QM—I)'
tlo

We can prove an analogue of Theorem 37 in E. Berz [ 2, p. 32].

Prorosition 30. Let I be a non-negative integer such that | <m and let
he 2. Then the unique solution v € @', of Pv="h is a canonical distribution
and lirln(v|R+)=~~=li5nD',"‘1"(v|R+):O when [<m, if and only tf h can be

ti0 tlio

written in the form h=D)g, where ge 2 s a canowical distribution.

Prooe. Let A be written in the form h=D!g, g€ 2/ being canonical.
Suppose [=0. Then, in virtue of Corollary 1 in [7, p. 197, the restriction
u=v|R" is a solution of the Cauchy problem:

Pu=nh in R,

lim (u, D;u,---, D?"'u)=0
10

and v=u_.

By the induction on / we shall prove the v is a canonical distribution and
lilm(u,m, D7~ '"1y)=0. Let />0 and suppose the assertion is true for I—1,
tio

0<!<m. Consider the equation Pw=D!"'g. Then we 2} is canonical and
lilm(w|R+)=-~=1i§nD’;'“(w]R+)=O, and therefore w,..., D7 '~'w are canon-
tlo tio

ical. If we put v=Dw+x, then

m .
Px= —ij;l:a}(t)DQ”"w.
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Thus x € 2/ is canonical and lifn (x|R+)=~--=lilmD’,””(x|R+)=0 and there-
ti0 tlo

fore v=Dw+x is canonical and li{n(u,--., D71 y)=0 for I<m.
tio
Conversely, let v be canonical and lim(u,..., D7 '"'u)=0 when I<m.
110

Put Ykzﬁ_lT)'t’f:l. Owing to the relation (16) in [10, p. 3927, we have

m 1 .
(—'Dp'v+ 3 3 (—0X(}) Yie(Dhay( YD ~70)) = Yrvh.
i=1k=1

Since v is canonical and lim (u,..., D7~ 1"'u)=0, I<m, we see that v, D;v,...,
tlo

D7~y are canonical and therefore the left hand side of the equation is canon-
ical. Thus Y,k is a canonical distribution, which implies that we can write
h=D/g, with a canonical g. The proof is thus complete.

Prorosition 31. Let {i.,}.cr be a directed set in £%(R*) and put ftszL in
2'(RY). If f, can be written in the form f‘,zD,g', i R*, where g, € &2(R")
and g.(0)=0, and if @,0), g converge in C~, &¥(R™) to &, g respectively, then
i, converges in EY(RY) to @ and @ satisfies the equation Li =f wm R* and
i1 (0)=a, where f”:D,g’.

Proor. Consider the Cauchy problem:

There exists a unique solution 7, € #}(R*) and %, converges in &}(R*) to v
when ¢ run through I. Then # is a solution of the Cauchy problem L= g in
R* with %(0)=0. On the other hand, from the equation D,s,= g’,—](t)?zb we
have D,;#,(0)=0. If we put #,=D,?+#, then
{ Li,=id’(t), in R*,

lim w,=a(0),

tlo
where 47(¢)d € £}(R*). Thus there exists a unique solution %, € £2(R*). Since
2,(0), A(t)%, converge in CY, #X(R*) to o, A(t)v respectively, w, converges in

&%R*) to w. Consequently #,=D,s,+#, converges in &%(R*) to a=D, v+
and @ satisfies Lé=f in R* and @(0)=a, completing the proof.
Consider the Cauchy problem
Li=k in R,
(33)

7(0)=a



442 Mitsuyuki ITano and Kiyoshi YosHipA

for any preasigned a € CV and & € 2'(R), where #(0) is the value of # in the
sense of S. Lojasiewicz. By Theorem 5 in [10, p. 3927] and Theorem 14, if
k€ 2(R) has no mass on :=0 and the restrictions s =% |R* and h,=h|R"
have the canonical extensions %,. and &; over :=0, then, owing to Theorem 5
in [10, p. 392] and Theorem 14, there exists a unique solution 7 € 2'(R) of
the Cauchy problem (83), and 7, =4%|R", 3,=7%| R~ satisfy the equations

L(#1)=h,-—iad,
L(33)=h5 +iad,
Thus we have the following

THEOREM 15. Let {3.}..; be a directed set in &Y(R) and put h=L%, in
2'(R). If k, can be written in the form h,=D,g., where g, € &%(R) and g,(0)=0,

and if 9,(0), g, converge in CV, &%(R) to a, g respectively, then ¥, converges in
&%(R) to v and ¥ satisfies the equation Ls=h and 3(0)=a, where h=D,g.

Let us again consider the differential operator P(D). The discussions
made for a system will allow to show the following

TueoREM 16. Let {v.}..; be a directed set in &3(R) and put h,=Pv, in
2’(R). If the values (v.(0), D;v,(0),..., D* 1v,(0))=a, exist and if h, can be
written in the form h,=D!g, 0=1<m, where g, € £%(R) and (g.(0), D;g.(0),
oy D471 2,(0))=0, then v, belongs to the space &7~ '(R). If a,, g. converge in
C”, ¢%(R) to a, g respectively, then v, converges in &7 '(R) to v and v satisfies
the equation Pv=nh and (v(0), D,v(0),.-., D7 v(Q))=a.

Proor. Since the values (g.(0),.--, Di~!g.,(0)) exist, Djg, has no mass on
t=0 and the restrictions (D{g,)|R*, (D}g.)| R~ have the canonical extensions
over =0 for each j, 0<;</. Put v{=v,|R*, vi=v,|R",hi=h,|R" and h7 =
k.| R~ and consider the Cauchy problems

Pyt=h} in R", Py;=h; in R-,
ltifr(}(vf,m, DrYwh=a, li?g(vf,u-, D7 p7)a,.
t

The reasonings made in the proofs of Propositions 80, 81 will show that v»,=
vi+ov7 €77 (R) and that v, converges in €7 /(R) to v, which satisfies Pv=h
and (v(0), D;v(0),.-., D?7'v(0))=0. This completes the proof.

In closing this paper let us add a comment on the coerciveness considered
in Section 6. Let us consider the operator L=D,+ 4, where 4 is an Nx N
matrix of convolution operators and A4 € OP,, r>0, and assume that L is
parabolic in the sense of I.G. Petrowski. If we let %;(¢) be the characteristic
roots of T4(£), where Ai= T,+i with @ € (2}:),, then there exist constants
C>0 and C, such that
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(34) Imz(8)< —C|&|"+Co, &€ 5,

We shall show that L satisfies the energy inequality (23) in Section 6.

The inequality (84) is equivalent to the inequality
(35) Imx (&)< —C'(1+ |&]|D)72+C,

with constants €’ >0 and C,. Let us consider an Nx N matrix E:(% C’S’)E

with an Nx N unit matrix £ Then the operator L=L+ B =D,+ 4 is also
parabolic. As noted in Section 4, L is well posed in the L? norm. Owing
to Corollary 8 in Section 4 it follows that there exists a positive definite
Hermitian matrix H(&) such that

—i(A(&) TH(6)— THOHE)<C, a.e.on 3,

with a constant C,;. Since ’f‘;({-‘)= fA($)+i%(1+ |&€]2)7'2, we have

Im(AL#, @)= ~—é—{(ﬁLﬁ, @)— (@, HL2)}

=— L (- A*H)a, 1)
< Clla|l*~C'(Ha, Sa)
= C,||a||*—C'(HS "z, S"q)

<Gllal*=Cl|zll%., @€ C5(Ra)

with a constant C”’. In virtue of Proposition 22 we see that L satisfies the
energy inequality (23).
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