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Let 2{t) be an Nx N matrix of pseudo-differential operators of order <J
which depend on a parameter ί. Here the term "pseudo-differential operator
will be understood as described in the preceding paper CIO], which has been
designed to be the introductory part of the present paper. Certain pseudo-
commutativity relations are assumed for l(t). Let us write L = Dt £

"

Dt=—^-^—. Here we study the Cauchy problem which consists in finding a
i at

solution ύ = (uu u2,-, uN\ uj e @f(Rt)(SJ&Ί*)x\ to the equation

Lύ=f inRϊ+1 = Rtx(Rn)x

with initial condition

tio

when f=(fi9f2,-',fN),fje®XRϊX(®ί>)χ) and ά = (au α2,..., aN\ as e {β'jt)x

are arbitrarily given. It was shown in CIO] that if a solution ύ exists, then
/ must admit the ^£2-canonical extension. The energy inequalities of
Friedrichs-Lewy type are assumed for L. Even if L is a system of differential
operators, our treatments will give rise to some simplification and refinement
to our related paper C9].

In Section 1 we shall show the approximation theorems, which are the
analogues of the results C9] established for a system of differential operators.
Sections 2 and 3 are devoted to the studies of the uniqueness and existence
theorems for the Cauchy problem. In Section 4 we consider the pseudo-
differential system with constant coefficients. The discussions are made here
about the well-posedness in the L2 norm and its connection with the energy
inequalities. In Section 5 a characterization of regular hyperbolicity of a
pseudo-differential operator is given. This is an analogue of our recent result
established in C9] for a differential operator. Section 6 is concerned with
generalization of S. Kaplan's result CH] about the Cauchy problem for para-
bolic equation. The method developed in Sections 2 and 3 will much simplify
his treatments. In the final section the Cauchy problem for ordinary differ-
ential operators is considered. It is shown that the method developed in
Sections 2, 3 and 4 also lead to generalization of basic theorem in
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1. Approximation theorem

Let Rn+ι = RxRn be an (7i + l)-dimensional Euclidean space with generic
points (ί, x), χ = (χi9~ 9 %n) and Ξn+ι = ΞxΞn be its dual with point (r, ξ\ ξ

= (£i, - , £.). We write \χ\=(Σ xj)1'2 and for an /i-tuple p = (pu...,pn) of

non-negative integers we write \p\=pι-\ \-pn, x
p = x{l---x%n, Dξ = D^ Dpn

with Dj = —^--^—. By Dt we mean — — — . The Fourier transform, </>, φ €

Sf(Rn), is defined by <j>(ξ)=\φ(x)e~i<xj>dx, which is extended by continuity

to a temperate distribution u eSf'(Rn) by the formula <ύy φ> = <u, φ>,
n

where <x, ζ>= Σ x&
j=ι

We shall continue to employ the notations in our preceding paper
We have considered there the spaces @'t((@'L2)x)=@'tε(@'L2)x, (@f

t)+((@'L2)x) and
&t((&L2)χ)(Rn+ι) and have shown that these spaces are reflexive, ultraborno-
logical and Souslin. Let A(t) be an OPr-valued C° function of t e Ru that is,
A(t) 6 Kĵ ) in the notation used in [1(Γ]. For any u e &(R\\(β'L2)x} (resp.

) \ A(t)u is well defined, belongs to the space ^'(Λ^XC^iO*) (resp.
)) and the map u-+Λ(t)u is continuous. If l(t) is an NxN matrix

of operators Aij(t) e ©fr), then we shall also write l(t) e Sfr). If, for a vector
distribution ύ = (ui9 9 uN), each component uj belongs to the same space
@t((@L2)χ)> then we shall write ύ e ^{((^iθ*) When confusion appears
impossible, we shall use a similar abbreviation.

Let A and S be operators with symbols \ξ\ and (1+ \ξ|2)1/2 respectively.
We shall denote by λ(Dx) the operator with symbol λ(ξ). Let us consider
l(t) eSfr). In what follows, we assume that for any Γ > 0 and any real λ
there exists a constant CλtT such that

iV

where we mean by | | ί | | ( r ) the norm defined by ||j?||?r)= Σ W^jWh) a n d llχyll(r) =

1 } I iy(f) 12(1 + I f 1 2) rJίJ . As shown in Section 4 in [10], a singular

integral operator in the sense of A. P. Calderόn [3] has the pseudo-commuta-
tivity (*). For a differential operator with constant coefficients, the com-
mutativity in question is trivially satisfied. For any real 5 we can find a
constant Q*]? such that \\(S-λl(t)Sx-l(t))$\\ω^C{s,)

τ\\Jt\\(S+r-i) and the adjoint
operator l*(t) has also the property (*). In fact, for any i u f2 e Co(Rn) the
inequalities
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imply

To prove the approximation theorem below (Theorem 1) we shall need

the following two lemmas. For any ε>0 we put S€ = l + εΛ. Then we have

LEMMA 1. For any x e j4?(s)(Rn), Sελx belongs to the space Jίf(s+i)(Rn) and
it converges in j^(s^(Rn) to x as ε j 0.

PROOF. For a fixed ε, ., ,' — is bounded and we can write
l + ε|f I

and therefore Si 1x € je(s+1)(Rn). If we write

(1+ I?|2)s/2(^1x-%r

then 0 < ., ε^ ,'-, ^ 1 and i , ,L converges to 0 for any fixed f as ε j 0.
l + ε|f| l + e|f|

Thus we see that \\Sjιx — %||(s) converges to 0 as ε I 0.

REMARK. Evidently HS^xllc-oSSIMI^) and we see from the Banach-
Steinhaus theorem that Sjιx converges to x in Jίf(s)(Rn) uniformly when x
varies in a compact subset of jf

LEMMA 2. Let A(t) e (£(r). Then we have
( i ) For any T> 0 and e with 0 < ε<J 1, there exists a constant C^s) such

that

(ii) For any 1 e Jίr(s+r_1)(Rn), ||(Sj1^4>(ί)5£ — l(t))$\\ω converges to 0 as
e|0.

PROOF. We may assume 1 e CJ(Λn), for Q(J?W) is dense in 3tf(s+r_i)(i?w)
and f-HKSj^COSe —-<ί(ί))ί||(o is semi-continuous from below.

( i ) For each ί, 0<[ί<ί ^5 the operator B(t) = Sl(t) — l(t)S is of order

. Putting Λ = A — 5, we have | R(ξ) \ ̂  2NI/2
 a n ( * therefore the oper-

ator Rl(t) — l(t)R is of order <Jr — 1. Thus the operator 2?i(ί) =
is of order ^ r and we can write S£l(t) — l(t)S€ = εBι(t). Putting fε(t) =

—Si1 lit)Se, for any t e jίrω(Rn) we have
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1 + eΛ S

where ε^\+ ^ [ ) ' ^ 1 and S^B^t) is of o r d e r < > - l . Thus we obtain
i + ε l f l

where C^s) is a constant.
g d i I £ I 2\l/2

(ii) v j^~ 'g.' j 7 — converges pointwise to 0 as ε j 0. If we let ε I 0 in

(i), we see by the Banach-Steinhaus theorem that limlKSe1 Jt(t)S£ —

= 0 for any f € jr(s)(Rn).

For any real numbers σ, 5 we shall denote by jF(σ,*)(^ί+i) the space of
u e ^(ΛJ+i) such that φu belongs to the space «^(σ,s)(.ff++1)[5,p. 51] when φ is
taken arbitrarily in CQ(R). The topology in j^(σ>s)(R^+1) is defined by the
semi-norms «#(σ>s)(j?++1) B U -> ||0u||(σ.,5). By J?* f S)(Λί+ 1) we mean the adjoint
space of j? (_σ f_ s )(Λί+ 1), which consists of all v 6 j r ( σ , 5 ) ( ^ + 1 ) with support
C[0, T~]xRn for some Γ>0. It is to be noticed that e#(σ.,5)(2?ί+1) and

^(σ,S)(Rn+i) may be identified for | σ | < - ^ - (cf. Proposition 7 in [8, p. 416U)

and that in the space jf(σ>s)(R++1) the following conditions are equivalent (cf.
Theorem 1 in [8, p. 410]):

(i) σ>-f .
(ii) For any u e jf(<TfS)(R++ί), u has the ^£2-boundary value &'L2-limu

[10, p. 375].
(iii) For any u e Jί*(σ>s)(Rj;+1), u has the distributional boundary value

lim u [7, p. 12].
tio

and similarly the following conditions are equivalent (cf. Theorem 2 in [8,
p. 413]):

( i i ) ' For any u e jr ( σ, s )(J?++ 1)5 ̂  has the ^£2-canonical extension over
ί = 0[10, p. 379].

(iii)' For any u e &{σ s)(R++1), u has the canonical extension over t = 0
[7, p. 12].

Let ύ e #%,S)C^ί+i) a n d assume that l(t) 6 dZfr) with Z ^ |σ \. Then l(t)u
e J?(σfS_r)(ΛJ+1) and ύ-+l(t)ύ is a continuous map of J?(σ,β)(Λί+1) into
jf ( σ, s_ r )(Λί+ 1) (cf. Proposition 14 in [10, p. 385]). From the equality Sjfε(t)%

for any z <• Cζ(Rn+1) we have
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s+r-i+y). In the same way as in the proof of Proposition 14 in Q10,

p. 385], we have immediately the following

COROLLARY 1. Let l(t) e Q£[r) with Ẑ > \<τ\. Then

( i ) For any Γ > 0 and e with 0 < ε < : i , there exists a constant C{f>s) such

that

^i^r, ί 6

(ii) For any t e j?(σ, s+r_i)(Λί+1), I K S j 1 / ^ ) ^ - ^ ( ί ) ) f | | ( σ , s ) converges to 0

as ε 4 0.

Let l{t) e ε(r) with any fixed real r. With the aid of Lemmas 1 and 2 we

can show the following

THEOREM 1 (Approximation theorem). Let ύ e j? (OfS+r-i)(Λί+1) and assume

that

t io

Then there exists a sequence {^}, ^ 6 C%(Rn+ι) such that

( ΐ ) φj~> U in JF(0,s + r-l)(Ri+l),

(ii) Lfj-+f in #to,s)(Ri+i),

(iii) ^y(05 -)->άin ^{s)(Rn)

as /->oo.

PROOF. Put u^^Sj 1 ^, / f i = 5 j 1 / and α . ^ S a 1 ^ for ε>0. Then

^(o>s+r)(Rn+i),fε e jr ( o > ί +i)(Λί+ 1), a,, e ^( 5 + i)(£ w ) and we can write

where Γ6(we) = ̂ Γ(ί)^£ — S^JttySeue e j r ( 0 s+i)(Λί+1) and Iimu6 = α£. Further-

more, we see from Lemmas 1 and 2 that

(1) u£-^u in e# (o, s +,-i)(#:+ 1),

(2) fe-+f in *to.s)(Ri+i),

(3) f£(U£)->0 in ^ ( O f,)(Λί+i),

(4) α £ -^α in ^ω(Rn)
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as ε I 0. We note here Dtύ£=f€ + f€(ύ€)-l(t)ύ€ e j^iQ>s)(R^+ί).
For sufficiently small εo>O if we put v1 = ύ€o e 3f(0,s+r)(Rϊ+ι), f1=fε0 +

f€o(ύ€o) e je(0,s+i)(Rn+i) and ά1 = ά€(j e j^(s+l)(Rn), then Lvλ=f\ lim vι = d1 and
110

we have

(5) vl-^v1 in ^(o..+r)(JKί+i),

(6) fi + fε(v\)-+f1 in JT ( M +i)(Λί+ 1),

(7) αl->α x in jf(

as ε j 0 and moreover D , ^ e je(0>s+1)(R^+ί).
Determine v*, A = 2, 3, , successively, by vk = t^" 1, / * ^ / i " 1 + /%/δ*"1) and

ώ* = 5ί0-
1. Then β*ej? ( O f β +r-i+*)(Λί+i), £»*=/* ejr ( O f,+*)(Sί+ i) and limβ* =

^ e jr(f+*)(/?») C-ίf(,)(ΛΛ) and we have Aί)Λ €_j?(Of,+*-i)(JRί+i). Thus vk e
^a,s+r+k-2)(Rn+i) for r ^ l and β* 6 jr( l f j r+Jk_i)(Λ;+1) for r > l .

Let us take k so that &>2—r (resp. k^>r) in the case where r < ί l (resp.
r > l ) . There exists a sequence {$,•}, ̂  e CQ(RH+1\ such that ^ converges in
-#(i i f +r+*-2)(£ί+i) (resp. in ^(i^+^DC^i+O^to »* for r ^ l (resp. for r > l ) .
Then φh Lfij and ^ y(0, •) converge in jr ( O f S +r-i)(^ί+i), ^ (o f o( Λ ί+i ) a n d

jP(8)(Rn) to i;̂ , Zi;̂  and i)*(0, •) respectively as y->oo.

Let σ> —-^- and suppose ^(ί) e K/,,, with Z ^ |σ | . In the same way as

in the proof of the theorem we can prove the following

COROLLARY 2. Let ύ e $(σ.>s+r_i)(ί£+1) α^d assume that

{ L ω ( n )
tio

for any real v. Then there exists a sequence {-fij}, Vv

( i ) ^y-> ύ in jr ( σ f,+ r_i)(Λί+ 1),

( i i) X ^ ->/ in ^ ( σ , s ) GR: + 1 ) ,

(iii) ^ y(0, )->^ iw Jfiv)(Rn)

as j r — > o o .

Let (T, 5 be any real numbers and r a fixed positive real number. Accord-
ing to S. Kaplan [11] we shall use the notation jΓ ( σ > s ) to denote the space &2,k
[5, p. 361 where h = K>S = (r 2 + λ2r(ζ)yl2rλ*(ξ\ λ(ξ) = (1 + | ζ \ 2 ) 1 / 2 . JΓ^S\R:+1)9

jf(σ>s)(RΪ+1), jr(σ's\Rϊ+1) and the like will have obvious meanings. We shall
denote the norm in j Γ ( σ s ) by || ||σ,s Then we see from Proposition 5 in [8,
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p. 413] that the canonical extension u^ exists for every u e j f ( σ f S )(Λί+ 1) if and

only if σ> — -£- and from Corollary 1 in [8, p. 412] that lim u exists for
4140

every u e jf((r's)(R£+1) if and only if σ>-^- and lim u e .af (<r+e_r/2)(S,,). In this
Δ 140

case the trace map tt-n*(0, •) of jΓiσ>8) into e#%+s_r/2)CRw) is an epimorphism
(cf. Theorem 1 in [6, p. 21]). It is also to be noticed that jr ( σ s )CR++ 1) and

jf (σ β)CRί+1) may be identified for |σ | < - £ - (cf. Proposition 7 in [8, p. 416]).

In the same way as in the proof of Proposition 14 in []105 p. 385] we can prove
that (A(t)€&lrh lr^>\<r\, is a continuous linear map of jr(σ's)(R%+1) into
jf(σ's~r\R++1) for any real numbers σ, s. Similarly we have the following

COROLLARY V. Let Λ(t) e K|r) with lr^> \ΰ\. Then

( i ) For any Γ > 0 and ε with 0<ε<J l , there exists a constant C(χ>s) such
that

(ii) .For any jp € jf(σ β + r- 1 )(2ίί+ 1), I K S ? 1 ^ ) ^ —^Γ(O)ίlU. converges to 0
as ε I 0.

COROLLARY 2'. Lei σ > — -~- and l ^ e S / , ) wiίΛ Z r ^ | σ | . Let ύe

Lύ=f

t 40

/or a^2/ reaί v. ΓΛβn ί^ere eίcisίs a sequence {^y}, V̂  6 Cy(Λ,,+i),

( i ) ^y->2 m

(ii) ZvW in

(iii) ^y(0, •)-"•£ in

as j

2. Uniqueness and existence theorems for the Cauchy problem (I)

For the sake of simplicity we assume A(i) e (££, in this and next sections.
Let Hbe a slab [0, T~]xRn, T>0, and denote by ^ ί ( ( ^ ί 2 ) * ) ( # ) the set of
distributions e @'(fϊ) which can be extended to distributions e ^ ί (
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The quotient topology is induced in @'t(Sβ'Lt)x)(H). Similarly for ®'(H) and

Consider the Cauchy problem:

f Lύ = f in # ,
(8)

[ uo = @L2-lim ύ = ά
no

for given fe @'t((@'L2)x)(H) and δ 6 ( ^ ) x . If a solution ύ e
exists, then / must have the ^2-canonical extension f^ over z = 0 and
satisfies the equation

Conversely, if δ e ^ ( ( - o o , TJ)((&'L2)X) vanishing for t<0 is a solution of
Lv=f^ — ίδt(g)ά, that is,

(9) ((β, i*a)) = ((/., δ))-i(5, fS0), ?5 6 Q((-oo, Γ)xΛΛ),

where (( , )) means the scalar product between ^ ( ( - o o , TJ)((@'L2)X) and
^((—oo3 Γ))<§)4(^£2),, then the restriction ύ \ίϊe ^r

t(i^r

L2)x){H) is a solution
of the Cauchy problem (8) (cf. Corollary 3 in [10, p. 393]). The equation (9)
implies Green's formula:

Let / e @f

t((@'L2)x)(H), ά, β e (^£0* a n d assume that / has a two-sided
^£2-canonical extension f\ The problem to find a solution ϋ 6 @'t((@L*)χ)(H)
of the equation Lύ = f in ,& with the conditions ύo = ά, ύτ=Q}'LιΛm\ ύ = β is

reduced to the problem of finding v e ^r

t{{^r

L2)x) with supp#C# such that

(10) ((», £*«;)) = ((/I, iδ)) - i(5, So) + i(/?, ̂ r), W 6

where (( , )) means the scalar product between ^ί((^ί2)*) and
The equation (10) implies Green's formula:

In Sections 2 and 3, Z will be assumed to admit the inequality:

where Cτ is a constant. We shall agree to write (J?(

2

0) t ) if (£(2o) t )r holds
true for every 77> 0.

We shall often need the following lemma (cf. Lemma 4 in [9, p. 78]).



Energy Inequalities and the Cauchy Problem for a Pseudo-Differential System 405

LEMMA 3. Let r(t) and p{t) be two real-valued functions defined in the
interval 0<Jί<! Γ and suppose that r is continuous and p is non-decreasing.
Then the inequality

r(t) < C(p(t)+[ r(tf)dt')(C>0 is a constant)
Jo

implies
r(t)<,Cectp(t).

Let s be arbitrarily chosen. If we apply the inequality (Ef0) f ) τ to Ss<j>
instead of $, then the pseudo-commutativity (*) and Lemma 3 yield the
following inequality:

where C^s) is a constant. We can also apply Lemma 3 to conclude that if
CEfo) t ) τ holds for L and B(t) 6 (£«», then so does for L1 = L + B(t).

Let us denote by *f?(̂ f (s)) the space of «pf7

(s)(JRw)-valued continuous func-
tions of t defined on Q0, oo). Then we have

PROPOSITION 1. Suppose (EfQ) | ) holds for L. If, for a given ύ e
j?(o,S)(Λί+1), Lύ=f e je(OfS)(R++1) and \\mύ = ά e je{s){Rn) hold, then ύe

110

and ύ satisfies the inequality (Efs) f), that is,

/(t', 011(0*0.

/n particular, if f=0 and ά = 0, then ύ = 0.

PROOF. In virtue of Theorem 1 there exists a sequence {$k}, $k 6
with properties mentioned there and we have

θ, )-0V, (0, )ll(2

S)+

which means that {$k(t, •)} is a Cauchy sequence in <f?(jr(s)). Let v be the
limit of {$k} Clearly v coincides with ύ as a distribution and ύ satisfies
(Efs) t ) and the proposition is proved.

Let u e je(0,s)(Rn+i)> Then u may be considered as an jί?(s)(Rn)-valued
measurable function u(t, •) defined for almost everywhere t e (0, oo) and
rT

\ IkC ĵ m)\\ts)dt< + oo for any Γ>0. Thus almost all points t0 e (0, oo) are
Jo

Lebesgue points of u(t, •):
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lim-A-f°+*||u(f', )-u(t0,
hϊQ Δtl Jto-h

Let t0 be a Lebesgue point of u(t, •)• For any φ e Q(i?,) such that

\φ(t)dt = l and supp^CC— 1, 1], we have for any small ε>0

(s)

(ω(ί> )~u(ίo' (s)

Thus we see that u(t0, •) is the section of u for ί = ί0.
If ύ e jft(0>s)(RZ+ι) and Lύ=f e 3&(0,s)(Rn+ι)> then ϋ may be considered as

an ^(s)-valued continuous function of t e (0, oo). In fact, let to>O be a
sufficiently small Lebesgue point of ύ(t, •)• Then limϊl exists in jt{s){Rn) and

/ i to

therefore ύ is an ̂ (5)(i?w)-valued continuous function of t e [_t0, oo)5 where t0

can be chosen arbitrarily small.
For any σ, s we denote by jίr(σ>s)(H) the space of all distributions u e 2\ti)

such that there exists a distribution Ue jf(<T)S)(Rn+1) with U=u in ίί. The
norm of u is defined by ||u||(σ.>s) = inf||C/||(σ)5)j the infimum being taken over all
such U.

In the following Propositions 2 through 7 we assume that (Ef0) | )τ holds
for L.

PROPOSITION 2. If ύ e 3>f

t((@r

L2)x)(H), Lύ = 0 in tl and g>f

L2-\\mύ = §, then
MO

u = 0 in Ά.

PROOF. Since ύ e @'t((&'L2)x)(H) there exist integers ky I such that
ύ c Jt?(kJ)(H). Suppose that k<0. From the relation Dtύ = —2(t)ύ e jfik,ι-i){H)
it follows that ύ e J^^+U^I^H). Repeating this procedure, we see that ύ 6

), and applying Proposition 1 we can conclude that ύ = 0 in ti.

PROPOSITION 3. For any given ge jf(0>s)(H) and 0 e jf(S)(Rn), s being a
real number, the Cauchy problem:

ί l T

a solution v e J^(0 S)(H) such that f = limi; exists in Jf(S)(Rn) and such that
tio

the inequality
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holds, where CT is a constant.

PROOF. Consider the space H (_ s )=jr (_ s )(i?») x jf(Oi.s)(H) and its subspace
A = {(uφ, •), Lύ):ύe Q{H)}. Then the map

Z: Λ3 (δ(0, •), Lu)^\u(t, •), git, ))dt-iiύτ, 0)

is continuous. In fact, from the energy inequality (Ef-s) | )τ for L we have

s(ί, ), git, y)dt-ϋύτ, 0

max

(115(0, .)llf-s,

which implies the inequality

Thus there exists (if, ϊ) e H ( s ) such that

(12) \(Lu(t, -), v(t, >))dt-i(ϊίo, f) = Γ(S(ί, •),
Jo Jo

and

From Green's formula (12) we see that \\v\\ is a solution of the Cauchy problem
(11), which completes the proof.

We shall say that (CP) ( s ) holds for L if the Cauchy problem:

f Lύ = f in #,

[ hm u = ά

no

has a solution ύ e ̂ ^>S){H) for any given / e 3^^t8)(JT) and ά e
Then we have the following

PROPOSITION 4. // (CP) ( 5 ) ΛoίeZs /or L, then so does it for Lι =
B(t) e <E(0).
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PROOF. Let (CP) ( s ) hold for L and consider the Cauchy problem:

f Lxύ=h in A,

( lim ύ = f
tio

for any given h e je(0>s)(H) and f e jf(s)(Rn).

Let v° e je(0>s)(H) be chosen so that

ί Lv°=h i n # ,

(
no

I f t h e r e e x i s t s awe jί?(0>s)(H) s u c h t h a t

ί Lϊv=-B(t)w-B(t)v°,

{ lim ϊυ = 0,
tio

then ύ = v° + w will be the solution to be found. The method of successive
approximation will be successful to this end.

Put ϊυ° = 0 and determine id1 e je{Q)S){H) successively by

ί Lϊvι+1=-B(t)wι-B(t)v°,

tio

Then L(wι+1-ϊvι)= -B(t)(wι-wι~ι) and we have from (Efs) t )τ for L

and therefore ||(w/+/' —wOfo Ollcs)^^,^? where C^Γ is a constant independent
of Z, /'. Thus {w1} is a Cauchy sequence in «f?Of(5))5 ί e [0, Γ). If we put
ί^limw^, then w will be the solution as desired.

PROPOSITION 5. // (CP)(5) holds for some s, then it does also for any s.

PROOF. Let (CP) ( O hold for L. This means that the set A = {(<?(0, ) ,
$€CQ(H)} is dense in H ( s ) =jf ( o χj f ( 0 f β )(-f f) . Let 5' be any real number.
Then the map ES*'~*H: ( α , / ) ^ ( 5 s ' " s α , Ss'~sf) is an isomorphism of Hω onto
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H (O and tSs'~sJ(Λ) is also dense in H(sy If we put φ = Ss'~s$, $e CQ
then we have

where 8(t) = S8'-8LS*-8'-L = S8'-I(t)S-8'-l(t) is of order ^ 0 . Thus
^ holds for L1 = L + B(t) and therefore so does it for L.

PROPOSITION 6. // for any f e JP(OIS)(H) and ά e Jί?(s)(Rn) the Cauchy
problem (8) has a solution ύ e @f

t((@r

L2)x)(H), then ύ e ά?^

PROOF. There exist integers k, I such that ύ e ^^kΛ){H). Suppose that
k<0. Then from the equation Dtύ=f—l(t)ύ we see that Dtύ e jf(k}Sl)(H),
sι = min(s — k, I — 1) and therefore ύ e Jί?(k+ιtS2)(H), s2 = min(Z — 1, si). Repeating
this procedure, we can find s' such that ύ e je(0>s^(H), For any (α, /) e H(s)

= Jίf(s)(Rn)χje(o,s)(H) a solution of the Cauchy problem (13) belongs to the
oo

space \J Jί?(0)m)(H). Since a solution is unique in 9f

t((@r

L2)x)(H) for / and α,
m= — °°

we see from the closed graph theorem that (#,/)-•# is a continuous map of
H ( s ) into @f

t((@r

L2)x)(H). The space Jίf(s)(Rn) and Jf ( o , 5 ) (^) are both of type
(F). Thus by Theorem A in A. Grothendieck Q4, p. 16] there exists a fixed
m such that the corresponding solution ύ belonging to the space je^>m){H) for
every (α, /) e H ( s ) .

Suppose that m<s. For any g e je(0}m)(H) and 0 e 2?(w)(i?w) there exist
sequences {£,}, {&}, gj e Q(i7), βj e Q(i?w) such that gh 0j converge to g, β
in Jί?(0>m)(H), Jί?(m)(Rn) as / = c>o respectively. Denote by vj a unique solution
e Jf(o,m)(H) of the Cauchy problem (13) associated with gj and 4y. Owing to

CEfm) t )r5 {̂ y} is a Cauchy sequence in <f?G#%))5 ί ^ E0, T), and therefore vy
has the limit v e Jίf^^iH) and v is a solution of the Cauchy problem (13)
associated with g and β. In virtue of Proposition 5, it follows that ύ e

), which was to be proved.

PROPOSITION 7. (CP) (5) holds for L if and only if the conditions that
w e Jf(o s)(H), L*ϊv = 0 in fl and lim w = 0 imply ϊv = 0 in Ά.

PROOF. Let (CP) ( s ) hold for L and w e je(Q^s)(H) and assume that L*ϊΰ = 0

in ΐ[ with limΐ£ = 0. For any f e CQΦ) let ύ e ^r ( 0 S){H) be a solution of

Lύ=f. Since (Efs) f )τ holds for Z, there exists a sequence {<£/}, ίy e

vanishing near ί = 0 and we havel (L$j(t, •)> iδ(ί, ) ) ^ = 0. Thus ^ = 0 in

To prove the converse, it suffices to show that A = {(ί(0, )? ^ ) ί e CQ(H)}

is dense in H(s)=je(s)(Rn)χje(Q>s)(H). Let (ί^, w) e H(_S) such that
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$:Jo

which implies L*ϊυ = O in fl and limw = O. Thus we see that w = 0 in ίί and

/? = 0, completing the proof.

PROPOSITION 8. Let (CP) ( s ) hold for L. Then the energy inequality
(E(0) t )τ implies the following:

PROOF. From the fact that (CP)(S) holds for L in any slab Hλ = [0, T{]
xRn,0<Tι<;T, we see by the preceding proposition that the conditions
w e Jf(o _s)(£Γi), L*ϊυ = 0 in 5χ and l i m ^ ^ O imply ϊυ = 0. in £Γχ, and therefore

tίTi

by Proposition 3 we can conclude that (E}8) f )r holds for i . In virtue of the
pseudo-commutativity (*) and Lemma 3 we see that (E}s) t )τ implies (E}8') f )τ
for any s\ completing the proof.

We shall say that (CP)fs) holds for L if the Cauchy problem:

( Lύ=f in Ri+U

(14)
[ limϋ = α

tio

has a solution ύ e ^ ( 0 , s ) ( ^ ί + 1 ) for any given g e jeiOfS)(Ri+1) and d e j^is)(Rn).

Consider the Cauchy problem:

f Lύ=f inϋί + 1 ,
(15)

1 ^2-l imϋ = α
tio

for given a 6 (βr

L*)χ a n ( i / ^ ^f(^-ΐ)((^L2)χ)^ which has the ^^-canonical
extension / _ For the Cauchy problem (15) we can prove with necessary
modifications the analogues of Propositions 2 through 8, which were obtained
for the slab H.

THEOREM 2. Suppose (Ef0) | ) holds for L. Then

(1) A solution of the Cauchy problem (15) is unique in @'(Rt)(.(&L2)χ)'

(2) For any given ge jffOιS)(R++1), the equation L*ϊυ = g in R£+ι has a
solution w e JF*o,8)(RΪ+ι) such that f = limw exists in j^ω(Rn) and

tio
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with a constant Cs.

(3) The following conditions are equivalent:
( i ) (CP);~s) holds for some real s.
( i i) (CP)£) holds for every real s.
(iii) (CP)Γβ) holds for L1 = L+B(t) with B(t) e (£«».
(iv) If w € 3f?0tS)(R++1) and Lϊυ = 0 in Rn+i, then ϊυ = 0.
If each of these conditions is satisfied, then the energy inequality (E}s) f )

holds true for any s.

Let A; be a non-negative integer and s a real number. Along the same
line as in the proofs of Proposition 5 and Corollary 3 in Q9, p. 89, p. 90] we
can obtain

PROPOSITION 9. Suppose (Ef0) t ) and (CP)(~0) hold for L. Then for any
f e jf(k}S)(R++1) and ά e je(k+S)(Rn) the Cauchy problem (14) has a unique solu-
tion ύ € Jf(k+its-i)(R%+i) and ύ has the following properties:

( i ) (Uy .,Dk

tU)e<?o

t(jf(k+s))x --x<?°t(jfω),

(π) Σ WDtύO, 0ll?*+.-y)^Cr(||a||?4+t)+ Σ ^ | / ί M l l ?
y=o j=o

for any 7>0.

Applying the interpolation theorem for the Hubert scales and proceeding
along the same lines as in the proof of Corollary 4 in Q9, p. 96] we can obtain

PROPOSITION 10. Suppose (Ef0) | ) and (CP)Γ0) hold for L. Then for any
f £ Jf(σ,s)(Rn+i) and ά 6 je(σ+S)(Rn), G being a non-negative number, the Cauchy
problem (14) has a unique solution ύ e J^^σ+ιtS_ι)(R^+1) and (α, f)~>ϋ is a
continuous map of j^(σ+S)(Rn) x / ( σ ) S ) ( ^ +

+ 1 ) into jf(σ+ιtS-i)(R++1).

Next we show the following

THEOREM 3. Suppose (Ef0) | ) and (CP)^"0) hold for L. Let G=k-\-Gr with

non-negative integer k and — - = - <0"'<ί-o-. Then for any f e jf(σiS)(R++1) and
Lt Li

ά e 3f(σ+s)(Rn) the Cauchy problem (15) has a unique solution ύ e jF ( σ + i f s_i)(ff ί+i)
and ύ has the following properties:

( i ) (a,..., D*&) e *?(.*%+,))x •

(ii) (α,/)->ϋ is a continuous map of jfiσ+s)(Rn) x jr(σ.)S)(ΛJ+1) into
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PROOF. AS shown in Theorem 2 a solution of the Cauchy problem (15)
is unique in &'(RΪX(&L*)X). We shall first consider the case <τ^>0. Owing
to Proposition 9 and Corollary 35 there exists a solution ύ e ^(σ+i,s-i)(Rn+i)
and ύ has the property (ii). We have only to show that (ύ, •-, Dk

tύ) e
+*)) x ' x ^?( #%)) Clearly ύ e £o

t(jf(σ+s)) and / e ̂ ?(^ ( σ + s _i / 2 ) ) for

-^-and therefore Dtύ=f—l(t)ύ e<f$(e^(σ+s_i)). Repeating this process,

we see that (i) holds true.

Next, consider the case — - = - < σ < 0 . The canonical extension /_ belongs

to the space je(σ>s)(R++1). If we put

where *(£) = (1 + |£ 12)1/2 and A(Z),) e (EΓD, then g e j r ( σ + l f 0 ( Λ ί + 1 ) , - ^

From Corollary 3 in []8, p. 419] we see that lim g exists and equals 0. The
f 10

Cauchy problem (15) can be written in the form

ί Dt(U-g) + l(t)(ύ-g)=-ίλ(Dx)g-l(t)g in Λ++1,

tio

where -ίλ{Dx)g-A{t)g e J^iσ+ιfS-i){R^+1), σ+l>—. Thus there exists a

unique solution v = ύ — ge jr ( σ .+ 2, 5-2)(^+i)Π^?(jf ( σ + s )) and therefore ύ = v + g
e J?(σ+i,s_i)(Λί+i)Γ\^?(jf7(σ+S)). In view of the closed graph theorem it

follows that (ά,f)->ύ is a continuous map of je{σ+s){Rn) x j?(σ,β)(ΛJ+1) into
^?(σ+i,s-i)( βj + 1 ) . This completes the proof of the theorem.

We shall close this section with some remarks on energy inequalities.

PROPOSITION 11. // the following inequality for L:

(£f0) t )τ' \\$(tl9 ) l l?o)^

holds for any t0, ίi, O ^ ί o ^ ί i ^ ϊ7 wiίfe α constant Cτ, then the condition that
w e je(OfS)(H), L*w = 0 in ίί and limw = 0 imply w = 0 in ΪI is equivalent to

ttT

saying that the inequality for Z,*:

(E}}0)

holds for any t0, tu O^to^tx^ T, where Cr

τ is a constant.
If this is the case, then (E}0) f ) holds true for L.
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PROOF. We may take 5 = 0. Suppose a solution of the Cauchy problem
for Z* is unique in j f (O,o)Cff) . Then it is unique in j f (O,o)Cffi), #1 = 110, * J x Rn
We shall first show that it is also unique in 3^^t^{H\ ff = \jθ9 ί J x i?«. Let
w e Jίfm 0)(#0 5 Z*w = 0 in ff and lim w = 0. Let t'o be a Lebesgue point of the

f t f l

«^(0)(i?w)-valued function w(t9 •) defined on (ί0, ίi). Then w has the section
w(t'θ9 ) = f$ €2f(0)(Rn) for ί = ίo. The Cauchy problem Z,*wχ = 0 in (0, tf

Q)xRn

with initial condition lim wx = β has a unique solution wx e ^ (o,o)([O, ίoll x Rn)-

If we put t=w in \j'θ9tι)xRn and ί^=iδi in (0, tf

Q~]xRn, then L * ί ^ = 0 i n
(0, tι)xRn and lim JF=0. Our assumption implies # = 0 and therefore it) = 0.

Thus, replacing 0, T by ί0, ίi in the proof of Proposition 3, and repeating
the same procedure as given there, we see that for given g e jf(O,o)(#0 and
/? e Jf (o)(Λ») the Cauchy problem L*v = g in fi7 with initial condition limί; = /3

ί ί / l

has a unique solution £ e ^ ( 0 ,o)(#0 and v satisfies the following:

Λ ^ CKII/ί 11(0)+J^

where f = l i m ^ and C'τ is a constant. As a result, we can conclude that
t\ to

(E}0) i ) τ holds true for any $ e C%(Rn+ι).
The converse is trivial, since the approximation theorem holds for i * .

PROPOSITION 12. Suppose (J?f0) f ) Γ ΛΌMS /or Z and ZΛ

( i ) (^ ( 0) t )τ holds for L and Z*.

(ii) (CP)(o) ΛoMs /or L if and only if (E}0) I ) τ holds for i * .

PROOF, (i) Let ίθ5 *i be any two points such that O ^ ί o ^ ^ i ^ T. Then
Proposition 3 implies that for any given 0 e j^(0)(Rn) the Cauchy problem

ί L*v = 0 mSl9

ί ί ί l

where Hι = [09 t{}xRn, has a solution v c ^r(O,o)(^i) such that p(0, )ll(θ)^
Ci||4||(0) with a constant CΊ independent of ίlβ From the fact that (2?f0) t )r
holds for Z* it follows that

From Green's formula

-i{(fi(ii, 0, £)-(δ(fo, 0,
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for any ύ e C~(Rn+ι), we have

l(2(ίi, 0, 4)1 ^C s{ | |S(to, )ll(θ)||β(to, 011(0) +

where C2, C3 and C4 are constants independent of t0 and t\. This implies
that we have with a constant Cτ

Combining (i) with Proposition 11 leads to (ii), which completes the proof.

3. Uniqueness and existence theorems for the Cauchy problem (II)

Let σ, s be any real numbers and write σ=k + σf with integer k and

-^-. Then we have the following

PROPOSITION 13. Suppose (2??0) f ) and (CP)~0) hold for L. Then

( i ) For any a e 3^{σ+S){Rn) and f e «^P(σ.,s)(^ί+1), where f is assumed to
have the 3>^-canonical extension f^ e jp(σ.)S)(ΛJ+1), the Cauchy problem (15) has
a unique solution ύ e J P ( O . + I Ϊ S _ I ) ( Λ J + 1 ) .

(ii) Let ύ € &'(RΪX(@'L2)X) and assume that @'L2-\\mύ exists, Lύ=f

e j#?(σ>S)(R++1) and the @r

Lϊ-canonical extension f^ exists in j^(σ>S)(R^+1) for
some real tf, s. Then ύ e «#(σ+i,s_i)(Λ^+1). In particular, if ά = 0 then ύ 6

PROOF. Consider the case k j> 0. In Theorem 2 we have shown that
there exists a solution ύ e e#(σ+M_i)(jR++1) for the Cauchy problem (15).
Since a solution of the Cauchy problem (15) is unique in @XRϊ)((@'Lt)x) we
have only to show that if a=0 then ύ^ e Jf(σ+ιtS-i)(RZ+1). Suppose α = 0.
Then lim(δ,..., Dk

tύ) = 0. In fact, if k = 0 then lim u = ̂ f

L2-\im ύ = 0. Let

k>0. Then the condition f^ e jr(h+σ' *)C^ί+i) ™pϋes lim(/, ? Dk

t~
1f) =

tio

^i-l im(/,. . . , Z)*-1/) = 0 (cf. Theorem 3 in [8, p. 419]). Since limi*(*)£ =

lim l ' ( i)ύ = • = 0, it follows from the equation Dtύ =f— l(t)ύ that lim Dtύ = 0.
tio _^ tio

Then from the equation D2

tύ=Dtf+ίlf(t)ύ + A(t)Dtύ we obtain UmD2

tύ=0.
tio
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Repeating this procedure, we see that lim(u, ., Dk

tύ) = 0. In the case where
tio

<τf<-^-, by Theorem 3 in [8, p. 419] we have ύ^ e ^ ( σ + M _i) i?£ + 1 ) . Let ff' = - i -

Then ύ^e J^(<τ+1s,s-i+s)(Ri+i)C^(σ,s)(Rn+i), 0 < ε < l , and therefore
l ύ^ 6 e#(σ>s_i)(/?ί+1). Consequently ύ^ e

Consider the case where k <j 0. We shall reason by descending induction
over k. Assume that the results are valid for any k +1. Let / e J?(<ΓfS) (Rn+ι)
with yL e jr(σ,s)(RΪ+ι), σ=k + σf and α e j?{σ+s)(Rn). Let # 6 ^ ( f f + 1 > s ) (Λί + 1 ) be
such that

Dtg-ίλ(Dx)g=f^.

Then it follows from Corollary 3 in [10, p. 393] that ϋ^-lim if=0. The
t 10

Cauchy problem (15) can be written in the form

J Dt(ύ- g) + l(t)(ύ- g)= -ίλ(Dx)g- l(t)g ini?: + 1 ,

1 L ( g ) ,
tio

where —ίλ(Dx)g—Jt(t)g£j#ί

itr+it8-i)(Kϊ+ι). Then there exists a solution
v = ύ-ge j^(σ+2,s-2)(Rn+i) and therefore ύ = v + ge ^ ( σ + 1 , s _ i ) ( i ^ + 1 ) . In par-
ticular, if ά = 0 then v e J^(<τ+ι)S-i)(R^+1). Thus the proof is complete.

PROPOSITION 14. Suppose (Ef0) | ) and (CP)Γ0) hold for L. For any given
Ϊ 6 / ( σ ) ί ) ( S ί + 1 ) there exists a unique solution v e ^P(σ+i>s_i)(JR^+1) o/ Lv—h.

PROOF. First we let σ> — -»-. The problem to find a solution D e ( ^ 0 + ε

)χ) f ° r ^ ^ = ^ is equivalent to the one to find a solution £ e ̂ ' ( .
of the Cauchy problem Lύ=f, f=h\R^+1 e jf(σ.,s)(R++ι), with initial condition

2-limE=0. Thus we see that there exists a solution ύ e / ( σ + i s _i } (^^ + 1 )
t i o o

and ϋ^ 6^ ( σ + i, s _i)(.βί + 1 ). Moreover we can conclude that v is unique in

Let σ ^ — -^- . We can then show the existence of a solution ve

Jf(σ+i>s-i)(Rn+i) by proceeding along the same line as in the proof of Proposi-
tion 13. And the proof is now complete.

THEOREM 4. Suppose (Ef0) f )~ α^cί (CP)(0) hold for L. Then for any
h e (^ί)+((^ί2)^) there exists a unique solution v e (@f

t)+((@'L2)x) of Lv=h and
h->v is a continuous map of {β'^^iβ'jj)^ onto itself.

PROOF. Let {tj} be a sequence of real numbers such that t0 < 0 < tx < 12 < •

and limί ; = oo and put Uj = (tjy tj+2). Then {f//}y=o,i,- ^s a n ° P e n covering
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of (ί0, °°). We can choose a partition of unity {φj} subordinate to the cover-
oo

ing. Then h = Σ φjh. Consider the equations
j = 0

where φjh e ^{σ.>Sj){Rn+ι) for some real numbers βh sj. In virtue of Proposi-
tion 14 it follows that there exists a solution vj e (^)+((^£ 2)*) From our
assumption that (Ef0) | ) holds for L we see that vj vanishes for t < tj. Thus

oo

υ= Σ vj is well defined in the space ( ^ ) + ( ( ^ 2 ) Λ ) and v is unique in

Let us consider the map

which is linear, continuous and onto. Since the space {β^^iβΊβ)^) is ultra-
bornological and Souslin (Corollary 1 in Q10, p. 374]]), we see from Corollary
in Q16, p. 604] that I is an epimorphism. Thus the proof is complete.

Now we can state the following theorem which is an immediate conse-
quence of Theorem 4 and the discussions given just before Lemma 3.

THEOREM 5. Suppose (J5Γf0) t ) and (CP)Γ0) hold for L. Then for any
a e (3>L2)X and f e &(R~£)((@i2)x), where f is assumed to have the Q)r

L2-canonical
extension f^ e (^ί)+((^χ2)JC)5 the Cauchy problem (15) has a unique solution
ύ 6 @XRΪ)((@L2)X) and (α, f^)^>ύ is a continuous map under the topology of

x (#{)+((#£»)*) and the topology o

4. Pseudo-diflFerential operators with constant coeflBlcients

Let Aij 6 0 P r , /, / = 1, 2, , TV, such that ^{Aijφ) = Aij[J^φy Jfc = l, 2, . , TV,

hold for any ^ e C%(Rn). Then there exist distributions Γ .̂y e @'(Rn\ with
which we can write AijU= TA..*'u, u e {β'Li)X9 where by *' we mean the partial
convolution with respect to the variable x. By taking δ as u we see that
TA.. e (β'L*)x. We shall denote by 1 (resp. fA) the iVx N matrix with entries

Ajj(resp. TA..). Then we can write Aύ = fΛ*Z2. The map Z: i ->(1 + | ? 12)""2" x
TA(ξ)U is a bounded operator of L2(Ξn) into itself and its norm is given by

the formula

||Z||=ess. sup

where we mean by \X\ the operator norm of a matrix X. Thus fA..(ξ) is a
locally summable function for ί, / = 1, 2, ••, iV and
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with a constant C=||Z||.
In this section we shall deal with the operator L = Dt + l, where 2e 0P r

is a convolution operator given above.

PROPOSITION 15. // ύ e @'(Rt)((@L2)x) satisfies Lίί = 0 in R++1 and
^2-lim ύ = 0, then u=0 in Λί+i

ί 40

PROOF. By Proposition 9 we see that u may be considered as a ^2-valued
C°° function of t. If we write 2u=TA*'ύ with a ΊAe{βr

L^)x such that
I ΐA(ξ)\ ^ C ( l + \ί\2Y'\ then the Fourier transformation of Dtu + 2(t)ύ with
respect to x is written in the form

Since e^A{ξ)t is a locally summable function of ξ, e^A(ξ)tά is well defined as
^/(S l l)-valued C°° function of t and Dt(eifA(ξ)tά) = 0 and therefore U(ζ) =
eiίAωtU{t, ξ) e @'(Ξn). On the other hand, from ^£2-limu = 0 we see that

tio
lim it=lim ά = 0. Thus U(ξ) = 0 as a distribution. Thus we can conclude
t i o t i o

that u=0 as a distribution.
We shall say the Cauchy problem for L is well posed in the L2 norm if

for any ά e C^{Rn) the Cauchy problem:

ί Lu=0 in (0, T)xRm

[ lim w=α
ί 10

has a unique solution w 6 <̂ ?(̂ (0))> O ^ ί ^ Γ, and

θ, 011(0),

where Γ>0 is arbitrary.
Then the Cauchy problem for L is well posed in the L2 norm if and only if

If we put & = (log Cτ)/T, then

and therefore

In []17, p. 411] G. Strang gave a necessary and sufficient condition in
order that a Kowalewski system may be strongly hyperbolic. In connection
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with his studies we shall show the following

PROPOSITION 16. The following conditions are equivalent:
(1) The Cauchy problem for L is well posed in the L2 norm.
(2) (E}0) f ) holds for L and (E}0) j ) holds for L*.
(3) (E2

0) t ) holds for L and (E2

0) j ) holds for I * .
(4) (Ef0) t ) holds for L.

PROOF Since the implications (2)=»(3), (3)=K4) are trivial, we have
only to show the implications (1)=Φ(2) and (4)=Φ(1).

(1)=K2). For any ύ e Co(Rn+1) if we put f=LU, then we have

and therefore

ά f \[ e-if^χt-fY(t\ ξ)dt',

which implies that (E}0) t ) holds for L and similarly (E}0) I) holds for Z*.
(4)=»(1). Consider the set A = {($(0, •), £ ί ) : ί e C%(n+1)}. Then the set

y4 is dense in ^(θ)(Λ»)x^(o fo)(Λί+1). In fact, let ( —i^, w) be any element
of je(O)(Rn)x^To,o)(R^i) such that

This means that L*ϊv = 0 in Λί+1, and therefore the preceding proposition
implies ϊu = 0 and β = 0. Thus there exists a sequence {$}}, $j e C%(Rn+i), such
that L$j->0 in J?(ofo)(^ί+i) and ^(0, •)-*#• In virtue of (£"f0) t ) we see that
{$i(f> *)} is a Cauchy sequence in <f ?Of (0)). If we put w = lim ίy, then

and for any Γ > 0 we have ||w(ί, )llo»^CV||a||(<», O ^ ί ^ Γ.

Let g be a family of iVx TV matrices Λt(ξ) of measurable functions of ξ.
As an analogue of a result of H.-O. Kreiss [12, p. 71; 13, p. 113], we can show
the following

PROPOSITION 17. The following conditions are equivalent:
(1) \e^nt\<;C forall t^O and i t eg a.e. on Ξn.
(I)7 For any complex number s with Re s>0 there exists a constant C

such that for all M eg

(Mφ-siy^C/Res 2L.e.onΞn.

(2) There exist a constant C and a matrix S, whose entries are measur-

able functions of ξ> such that for all M e g
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and

SMS~ι =
0 %2

l o

a.e. on ΞH,

where 0 ^ R e % i ^ R e % 2 ^ * -^>RexN and |6, y| ^C |Re%, |.
(3) There exist a constant C and a positive definite Hermitian matrix

ff(ξ) such that for all M e g

IH(ξ)I, \ϊi-\ξ)\<;Cand Hβ+ M*H<,0 a.e. on Ξn.

The proposition with jϋ(ξ) replaced by — ίΐA(ξ) — kI yields the following

COROLLARY 3. The following conditions are equivalent:

(1) | e - ( ^ ( » + * / ) / | ^c for t^O and a.e. on Ξn.
(2) There exist a constant C and a matrix S such that

and

5Γ.5-χ =
0 %2

l o OxN)

where ^
(3) TΛβre

H(ζ) such that

a.e. on Ξn9

N and | 6 ί y | ^
α constant C and a positive definite Hermitian matrix

and -i a.e. on Ξn.

PROPOSITION 18^ Suppose fA(i) is positive homogeneous of degree r > 0 ,
that is, fA(λζ) = λrfA($) for λ>0. For the operator L=Dt + l(t), the energy
inequality (E^0) t 1 ) holds if and only if the eigenvalues Xj of the matrix fA(£)
are real and fA(ζ) is symmetrizable.

PROOF. Suppose (Ef0) f ) holds for L. Let Xj(ξ), y = l, 2, , N, be the

eigenvalues of TA(ξ). From that (Ef0) f ) holds for L it follows by Corollary 3

(2) that k^lmxj(ξ) and Xj(λζ) = λrXj(ξ\ and therefore - £ - ̂ I m % ; (f). On the

other hand, that (£(

2

0) I ) holds for L means that (Ef0) | ) holds for Lι = Dt — l .
In the same way as above, we can conclude that 0 ^ — Im%y(ί), and therefore

) = 0 for ; = l, 2, .., iV.
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From the relation | e~ifAξ)t | <: Cτ, 0<: t <: Γ, together with the fact that
TA(ί) is positive homogeneous of degree r, we may take k = 0, and by Corollary
3 (2) we can conclude that δ/y = 0 for any ί,j. Taking ϊi(ξ) = S*(ξ)S(ζ), we
see that S(ξ) is a positive definite Hermitian matrix, H(ξ), H~λ(ζ) are bounded
and H(ξ) ΐA{ξ) is Hermitian.

The converse is well known [β9 p. 111].

Let 1 eOP r, r>0 and %/?),/ = 1, 2,..., iV, be the characteristic roots of
the matrix Ϊ*A(£) If there exist constants C>0 and Co such that

then the Cauchy problem for the operator L = Dt + 2 is well posed in the L2

norm. In fact, we have for any Γ>0

H

For example, the Cauchy problem for the operator Dt — iλr(Dx), λ(ξ) =
(1+ \ξ|2)1/2 is well posed in the L2 norm.

Let us consider a pseudo-differential operator with the form:

ψ Σ j ψ ,
j=ι

where Aj are convolution operators such that Aj e OP .̂. For any given
ά = (a0,- , αm_i), αy e O^)* and / e ^'(Λ^CC^iO*)* where / is assumed to have
the ^2-canonical extension f^ e (@t)+((βί2)χ\ ^ e problem to find a solution
u e @\BX)((β'j*),) of the Cauchy problem

ί P(D)u=f mR++1,
(16)

II £ ( , t , 9 f ^
tio

is reduced to the problem to find w e (^ί)+((^i2)*) such that

w - l

Pw=Λ+ Σ βJίΘr*.
k = 0

where r»=-i(α»-*-i + " Σ ^-»-»α,-i) (C9, P 82]) and tt = («;|l?i+1)>. We
v = 1

shall use the notation Γ(ά) = (rΌ, -9 Tm-ι)>

On the other hand, by the Calderόn transformation
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the Cauchy problem (16) can be written in the form

421

t 40

where/=(0,.. , 0,/), $=(Sm-1a0,---,

0

0

s A

-S

ς>-m+l A C

o...

. o

0

-sA =

and 2e OP r, r=max( l , τy+(l— ;))•
Let us denote by Q2??0) \ ] the following energy inequality:

Σ1

y=o
ΣI
y=o

with a constant Cr. We shall use the notations [_E?0) j ] , Q£J0) | II, DE?o) ΐ H
and the like with obvious meanings. If [_E^0) f ] holds for P, then QEM) I H
holds for P* = Dψ+Σ7=oΛjDf-j. In fact, if we put φ(t)=φ(-t) for any
φ e Co(Rn+i\ then P*(D)φ = P(D)ψ and

Σ \\D{φ{t, ')\\2

m-i-j^cτ(Σ \\Dίφ(fi,

'j\P(D)φ(t', ')\\2

0)dt'),

which implies

CΣ\
j=0

"Σ\\DiΦ(-t,
j=0

Similarly if [E}0) t ] holds for P, then £E}0) | ] holds for P*.

a

PROPOSITION 19. Suppose QE?0) f ] fcoϊds ίr^e /or P. For
x ••• χje(0)(Rn) the Cauchy problem (16)
)x) and u has the properties

/

a
unique solution u 6

( i ) 2 ) ^
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(ii) Σ 1 \\Dίu(t,

a constant C^\

PROOF. Uniqueness of a solution is trivial by Proposition 15. It is
sufficient to show that the set A={(Γ($0), P$): Φ ε CZ(Rn+i)}9 $o = (Φ(Q, •),•••>
Z>f~V(05 •))> is dense in ( e^ ( s + w_i )(i?w)x ••• x Jf(β)(Λ»))x J?(ofs)(J?ί+i) Let
ŷ  e je(0)(Rn) x x j f (_„+!)(/?„) and w e e#fo,_5)(J^+i) such that

Then P * ^ = 0 in ΛJ+1, and therefore ^ = 0 and iff = 0.

If for any α e C%(Rn+ι) the Cauchy problem:

= 0 in (0, T)xRn,

I lim(u, Dtu9 9 Dy~lu)=a,
no

where Γ > 0 is arbitrary, has a unique solution u e £%jf ( W - D ) such that

D{u e *%&&-!-»), j = 0, 1,..., 7Λ-1, and

ΣQ\\{(, ) \ \ L I J ^ T C Σ \ { ( , O I I L i y ) ) , ^

with a constant Cτ, then we shall say that P satisfies the property (W).
Let L be the operator associated with P by the Calderόn transformation.

Then we have the following

THEOREM 6. The following conditions are equivalent:

(1) P satisfies the property (W).
(2) DE7o) t U ̂ oίds /or P and [_E}0) j ] λcάb for P*.
(3) lE2

{0)^holdsfor P.
(4) T%e Cauchy problem for L is well posed in the L2 norm.
(5) CEJo) t ) holds for L and (E}0) | ) holds for L*.
(6) (E2

0) t ) holds for L.

PROOF. The conditions (4), (5) and (6) are equivalent by Proposition 16
and the equivalences of (2) and (5), (3) and (6) are trivial by the definition.
The implication (3) => (1) is an immediate consequence of the preceding
proposition. We have only to show the implication (1)=»(4). Let a = (αo, >
am^) e Q(Rn). Then (S~m+1a0, S~m+2aw , αm_x) e {9L*)X, where G;(RH) is
dense in (@L2)X Since the property (W) holds also true of the initial data
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(5"w + 1α0, , αm_0 e (βiS)χ* the Cauchy problem for L is well posed in the L2

norm.

Now let us consider the case where Aj can be written in the form

where tA°.(ξ) are positive homogeneous of degree 0, TA°.(ζ) continuous on
I ξ I = 1 and Bj of order <^j -1. We put

m

P0(D)=Df+ Σ

Then we have the following
PROPOSITION 20. C^foΐlH holds for P(D) if and only if the roots of the

polynomial P0(r, ζ) of x are real and distinct.

PROOF. Suppose [•£?<>>ΐ4H holds for P(D). Then CEfolt) holds for Z,.
L can be written in the form L = 2°Λ + B, where fAo(ξ) is positive homogeneous
of degree 0, ΪA°(S) continuous on |f | = 1 and B of order<Ξ0. Thus we see by
Lemma 3 that (2??o)tj) holds also for L0 = Λ°Λ. Observe that P0(r, ξ) is the
minimal polynomial of the matrix fAo(ζ). In virtue of Proposition 18 we see
that the roots are real and distinct.

Conversely, suppose the roots of P0(r, f) = 0 are real and distinct. Then
by necessary modifications of the proofs of Theorems 24 and 25 in A. P.
Calderόn [3, p. 109, p. 110] there exists a positive definite Hermitian matrix
ff(ξ) such that H(ζ)fAo(ζ)=ΐAΌ(ξ)H(ξ). Applying Corollary 3 and Lemma
3 we see that [£?0>lt] holds for P.

COROLLARY 4. In the case where the coefficients of the operators A), j =
1, 2,. , 7π, are real, t_E^0) | ] holds for P if and only if the roots of Po(r, f) = 0
are real and distinct.

5. A characterization of regular hyperbolicity

In our previous paper [9, p. 101] it is shown that a differential operator
m-l

P(D)=Df+ Σ Σ aJ>p(t, x)DJ

tDζ, aj.pt &, is regularly hyperbolic if and

only if, for any fixed Γ>0, P(D) satisfies the energy inequality:

LE\Q) | ] : mΣ\\ m



424 Mitsuyuki ITANO and Kiyoshi YOSHIDA

where Cτ is a constant.

The aim of this section is to generalize this result to a pseudo-differential
operator.

T. Batabon [1] has investigated the Cauchy problem for a pseudo-differen-
tial operators with the form:

? Σ

where Aj(t) = Λj(t, x, Dx) is a pseudo-diffenertial operator of order j in the
sense of J. J. Kohn and L. Nirenberg, which depends smoothly on t and its
asymptotic expansion has only operators of integral order.

Let 33 be the space of all B^ singular integral operators in the sense of
A.P. Calderόn Q3, 14] with semi-norms {pm}m = 0, 1, :

Pm: K->\\K\\m= max {sup | ( - | - W t f χ * , ς) 1,

where ||Jf ||m is the norm of Bm singular integral operator K.

Consider a pseudo-differential operator with the form

where A%t) = A%t9 x, Dx) are 33-valued continuous functions of t e Rt and
Bj(t) e K(y-i). We shall give a characterization of the regular hyperbolicity
of P(D) by making use of the energy inequalities.

We shall denote by P\D) the principal part of P(D):

and we put

m

po (' TY\ = Dm-4- J~* Λ^ it x D

where the point (ί0, ^o) is fixed. Let T be any fixed positive number.

PROPOSITION 21. Suppose the following energy inequality \iE}0) | H holds
forP(D):

m-l m m-1

j = 0 t ' m J = J = Q

\h\\(Pφ)(t',')\\mdtf,
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where Cτ is a constant. Then [E^ | H holds for P?to>xo)(D) with a constant
independent of (t0, x0) e Q), Tj x Rn.

PROOF. Let (ί0, χo) e [0, T) x i?w. For any fixed I e (0, Γ] we take λ so

large that ί o <ίi = h + -y~ ^ r - L e t φλ(t, χ) = u(λ(t — t0), λ(x — χ0)) for any
A

a e CJ(iin+i). Then we have

m—1

(18)

where

II n*rh (t Λ l l 2

\\u iΨ\\y^') )\\(m-ι-j)'

Moreover, we can write

where

and therefore

w—1

Σ \
w 1

«-W)^CΓ( Σ \\Diφλ(t0, )\\(m-i-j)y=o

Σ

Σ

OH22
(0)

Oll?o

i=\

-to), λ(x-x0)),

- ί o ) , 011(0)

011(0),

where CΊ is a constant independent of u but depends on Bj. Thus we have

[h\\(P(D)φλ)(t\

y = l . / o
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In the case where n^>2 we can expand the operator A^(—γ-+to9 -̂ —

Dx )f in the form

~ dim)

Σ Σ aJ

l

m=l / = 1

where {G/w} be a system of Giraud operators associated with a complete ortho
normal system of spherical harmonics of degree m and d(m) = g(m) — g(m — 2)

^ ( t f i ) ^ 7 7 ^ " 1 ) , and we set g(-l) = g(-2) = 0. Since sup

r*ll/ll(θ) with r m = - ί * ( 2 > ^ ) - « Γ ( ι ι ι ) ( r ( 5 ^ - ) ) " 1 and d(m)<,Cmn-\ where C

is a constant independent of (ί0, xo) [3, 14], we obtain with a constant C"
independent of (ί0, Λ;0)

(19) jDT-'u(t'9 0
(0)

Σ ro-3)|μj||o||z>rW,
l

In the case where re = 1 we can write

where αj(ί, •) and o{(ί, •) are .βoo-valued continuous function of t. Thus the
estimate (19) remains valid.

Dividing both sides of (18) by λm~ι-{nl2\ letting Λ-*oo and applying
Lebesgue's convergence theorem we obtain the estimate

(20) Σ \
j=0

m—1

j=0

where CΓ is a constant independent of (ί0, χo) and ιz.
If we take u(t, x)ei<xjo>

9 fo = (l, 0,. , 0), instead of i*(f, Λ;), then we get
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u(t, ζ — ξo) as the partial Fourier transform and we have

(21) mΣ\\{Λφx + ξQ)T-ι-jD{u{ΐ, OII(o,^CΓ( Σ W * + £ o ) r - w W ' , 011(0) +

o\u.where Λ(Dx + ξ0) is defined by
It is evident that

m

Dfΰ(t, ξ-ξo)+ Σ
/-I

x0, ξ- ύ(t, ξ-ζ0).

From the following estimates:

and

^c3

ξ ξ-ξo t —A,!'

we obtain

and therefore
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(22)
JO

Γϊ m-lΓΐ

" J O °'*° ' y=iJo

where C2, C3, C4 and C^ are constants independent of (ί0,
There exists a constant C5 such that

1 -α+
Cl

Thus we obtain the following estimate from (20), (21) and (22)

^5 J=0 j=0

cτ m-ir

+ 2 \mtlXll>(.D)uXϊ, )\ko)dt' + C°τ Σ
JO .7 = 0 J

By Lemma 3 we see that \ΊE\0) f J holds for P°/o Λo)(Z)) with a constant inde-
pendent of (ί0, χo) e [0, T) x i?w and ^. By letting t01 ^, we see that \ΊE^ t H
holds for P°{TfXQ)(D) with the same constant. Thus the proof is complete.

Let λj(t, x, ξ), y ^ l j 2, . , m, be the roots of the algebraic equation
P°(ί, Λ;, r5 ξ) = 0 with respect to r. If (i) λj(t, x, ξ) are real for y = l, 2, , zrc
and (ii) there exists a positive constant dj depending on T such that
I λj(t, x, ξ) — λk(t, x, ξ) I ̂  Jr 5 / =̂ ifc, hold for t a [0, Γ ] , x e Rn and f e S Λ with
|f I = 1 , then P is said to be regularly hyperbolic.

THEOREM 7. P is regularly hyperbolic if [E}O)Π1 holds for P(D). The
converse holds true when there exists a constant Cτ such that

PROOF. Suppose E^ω)ίlH hold for P(D). Then, it follows from the
preceding proposition that pP(b>tlH holds for P?to$XQ)(D), (ί0, χo) € [0, Γ ] x Rn,
with a constant independent of (ί0? ^o) Owing to Theorem 6, (£70)t j) holds
for L°itQ)XQ)(D), the system of linear operators corresponding to P°ίθ)Λro)(Z>) under
the Calderόn transformation, and therefore from Proposition 18 we see that
for any fixed (ί0, χo) the roots λj(tθ9 χ0, ξ), 7 = 1, 2,. , m, are real and distinct.

For any f', ίx/ e Ξn on | ί | = 1 we denote by I the spherical distance
between ξ\ ξ" and ξ(s), O^s^l^π, a point on an arc of a great circle with
end points ξr, ξf/. Writing σ(Aj)=Λj(t, x, ί ) , we have
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t, x, n-M*, x, £01 = \\'o t^Mt, *, £W)-̂ -

Γl / n ft Λ 2\ l/2

^ ( Σ j^-Ajit, x, ξ(s)) ) ds^
J0\k=l Oζk '

where M is a constant and l<Lπ\ξf —
Let us consider the set

*, •)): ί e [0, Γ], . 6 ί λ

where -<ly(ί, *> 0 a r e continuous functions of ξ e Ξn on |f | = 1 with parameter
(ί, Λ;), and equip @ with the uniform convergence topology. Since the set ©

is equicontinuous and uniformly bounded, its closure @ is compact. For any

(Ai, ..., Am)c@the polynomial <?(r? ?) = r w + Σ 6j(ξ)vm-J in r have simple

zeros only. Let JG be its discriminant. Since it is a continuous function of

(£1,..., £ w ) e © and f e ^ with | f | = l , it follows that J Q ( ί ) ^ d Γ > 0 for a
constant G?T depending on T.

Conversely, suppose P is regularly hyperbolic. By means of the Calderόn
transformation vj = Sm~jD{~1u, y = l, 2,..., TH, we are reduced to consider the
system of linear operators

where the eigenvalues of the matrix A°{t^ x, ξ) are λj(t, x, f), y = l, 2, ••, zτι.
Owing to Theorem 25 in [Ί5, p. 110], we see that there exists an Nx N matrix
N(t) whose elements are continuous linear operators of the space jί?(0)(Rn)
into itself for every t and which satisfies the following properties:

(i) fi(t) is a positive definite Hermitian matrix and t-+$(t) is con-
tinuous.

(ii) ||(iV(O^o(O-S—-S^°*(0^(0)^llco)^Λf||jp||<0), O ^ ί ^ Γ, ̂  e qrCΛ,) with
a constant ikf.

By Proposition 22 below (which will be proved in the next section) we
see that (E}0)U) holds for L and therefore [_E}0)UJ holds for P(D). Thus the
proof is complete.

COROLLARY 5. Assume that A^t, x, £),/ = l, 2,..., m, are real. If [_E}0) | ]
holds for P(Z>), then P is regularly hyperbolic.

If A%t) is 93-valued Cm~j function of t and B3(t) e K ^ , for each /, then
we can consider the formal adjoint operator P*(D). Suppose [jE?0) f H holds
for P(D) and P*(/)). Then in the same way as in the proof of Proposition 8
in [9, p. 100] we can show that £S}0) t ] holds for P(D) and [E}0) I ] for
P*OfJPO)CD). Thus we have the following
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COROLLARY 6. / / [_E2

{Q) f U holds for P(D) and P*(D), then P is regularly
hyperbolic.

6. A generalization of Kaplan's treatment on parabolic operators

Let l(t) 6 E(r). We shall first give a sufficient condition in order that
(E}0)H) may hold for L = Dt

PROPOSITION 22. Let H(t)9 0<[£ <ί °o, 6e an Nx N positive definite matrix
whose elements are continuous linear operators of the space j^(0)(Rn) into itself
for each t and suppose that for any T>0

( i ) There exists a constant γτ such that

(ii) H(t) is locally Lipsitzian:

(iii) There exists a constant CT such that

Then (E}0)U) holds for L.

PROOF. For any u e C%(Rn+i) we put J—Lu, h2(t) = (H(t)ύ(t, •), ύ(t, •))
and consider Dini's derivates D±(h2(t)). Then we have

^Cτ\\u(t, )||fo,+ \(H(t)Dtu(t, •), u(t, ))-(H(t)U(t, •), Dt

|a(t, .)ll?o>+ \((H(t)l(t)-l*(t)H(t))u(t, •), ύ(t, 0)1

, .)\\m\\H(t)U(t, .)||(o,

|/(ί, )ll(0)A(t)

with a constant Cf. Put 2C=rΓ(CΓ + CΌ. From the fact that D-h2=2hDΛ
for h(t)>0 and ί>_A2^0 for Λ(ί) = 0 we obtain

τ l l / ( ί , 011(0),

and therefore
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On the other hand, from the inequality

we obtain

l|s(ίo, )ll(θ)^rΓe
c«'-' Ί|a(t, OIU+rΛV'- ' 'Ufa, )\\mdt,

JtQ

which completes the proof.

PROPOSITION 23. // we assume in Proposition 22 that

&-\tX(9Lύ)C^(r)(Rn) for each t, 0<,t < oo,

then (£}0)Π) holds for i*.

PROOF. From the condition (i), it follows that St~\t) exists and has the
property (i). For any t, tr with 0<!ί, t' <, Γ, we obtain

If we put 0(ί, ) = 3-1(t)ϊ e je{r){Rn) for any f e C^{Rn), then we have

<*rτcτ\\${t, 011(0)

Applying the preceding proposition, we see that (E}0)^l) holds for i*.

Let l(t) be an element of K(r), r>0, satisfying the pseudo-commutativity
(*) and assume there exists an NxN positive definite matrix H(t), 0<;t<L oo,
whose elements are continuous linear operators of jj?(_r/2)(/i») into itself for
each ί, and assume #(ί) has the following properties: (i) There exists a con-

stant ϊτ such that ^- | | j f | |? 0 ) ^(#(ί)ί, ί)^rΓ | | jf | |?0,, O ^ ί ^ Γ , for ί

( i i ) T h e r e e x i s t s a c o n s t a n t Cτ s u c h t h a t \ \ { S { t ) - S { t r ) ) ί \ \ { Q ) ^ C τ \ \ ί \ \ { θ ) \ t — tf\,
0<*t9t'<LT9 for f e Ĉ CRW) and (iii)' (ίϊ(t)l(t)2, ί) is coercive in the sense:

Im (H(t)l(t)?, Λ^/£O||ί||?o)-Λllί||?r/2), O ^ ί ^ Γ, ί e Q(i?w)
with constants Ui = Ui(T) and jU0 = ju0(T)>0.

S. Kaplan [11] has investigated the Cauchy problem for the parabolic
operator with the form:

A_j|f(ί) = - ^ — Σ aa(t,x)DΪ, aa
Ot Ot \cL\ίk2m

and M(t) is assumed to be uniformly strongly elliptic, where m is a positive
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integer. The operator M(t) satisfies the condition (iii/ with JV=1, H(t) = l
and r = 2m.

We shall first note that the following energy inequality holds true for

THEOREM 8. For any ύ e 3^^)S+r){H)^ H=[0, TJxRn, there exists a con-
stant CT such that

(23) \\U(tU )llf.

+ \'1\\Lu(t,

PROOF. For any u e Co(Rni.ι), if we p u t / = i ΰ , then we have

u(t, '), ύ(t, .))-(H(t)u(t, •), Dtύ(t,

= K\\u(t, .)||fo, + 2Im(S(ί, ), H(t)f(t> ')) + 2I

^2|Cff(t)/(ί, •), &(β, '))\-2βl\\U(t, )\\l

with a constant K. Putting h2(t) = (H(t)ύ(t, •), u(t, •)), we obtain

and therefore if we put v = 5"s"r/2i25 then we can write

\1\\v(t, )\\l+rl2)dt,
Jh Jh

where

I (H(t)LSs+rl2v, Ss+rl2v) I

rl2Lv, Ss+rl2v)\ + \(H(t)(l(t)Ss+rl2-Ss+rl2l(t))v, Ss+rl2v)\

, )ll(.)llδ(*, 0 ll(.+r)+c2||ί>(ί, )ll(.+r-i)ll»(ί, )ll(.+r).

For any given ε>0 there exists a constant C(ε) such that
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Applying the Schwarz inequality, we have the estimate with a constant C"(ε)

" 2β, S'+''2ίί)|Λ^3eΓΊ|β(f, )\\l+r)dt +

+ C'(e)\>1\\Lv(t, OWlydt + C^Mt,
JtQ Jt0

Taking ε =-~-jUι and applying Lemma 3 in Section 2, we obtain the inequality

with a constant CT such that

which will yield the estimate (23) since CJ(fl) is dense in jj?(Ot8+r)(H). Thus
the proof is complete.

By modifying the method developed in Sections 2 and 3 we shall show
the uniqueness and existence theorems for the Cauchy problem:

ί Lύ=f in #,
(24)

[[ L

for any preassigned ά e {βr

L^)x and / e ^r

t{{^r

L2)x){H), where / is assumed to
have the ^2-canonical extension /^.

From now on, we assume that l(t) e &χr).

THEOREM 9. Ifύe @'t((@L2)χ)(H) and u is a solution of the Cauchy

problem Lύ = 0 in ίl with initial condition 3)r

Li-X\m ϋ = 0, then ύ = 0.
tio

PROOF. There exists real numbers σ, 5 such that ύ e X*(σ>s)(H). From
the equation Dtύ = -l(t)ύ e X^'s~r\H) we see that ύ € X°(σ+r's-r\H). Thus
we may assume that σ^O. From the energy inequality in the preceding
theorem we can conclude that ύ = 0.

We shall say that (CP)^, holds for L if the Cauchy problem (24) has a
solution ύ e Jί?(0>s+r)(H) for any given / e jf(o,oCfiΓ) and α6«5f(S+r/2)(i?«).
Then, in the same way as in the proof of Propositions 4 and 5 we have

PROPOSITION 4'. If (CP)(S) holds for L, then it also holds for L1 = L+B(t),

PROPOSITION 5;. // (CP)('S, holds for some s, then it does for any s.

Next we shall show an analogue of Proposition 7.
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PROPOSITION 7'. (CP)£ holds for L if and only if the conditions that
w e Jf ( 0 -s){H), L*ϊυ = 0 in ΪI and g>f

L2-\\m w = 0 imply ϊv=0 in Ά.
ttT

PROOF. Let (CP)^, hold for L and w e Jί?(Ot-s)(H) and assume that L*w = 0
in ti with ^£2-lim ϊυ = 0. For any / e C%(H), let ύ e Jf(0 8+r)(H) be a solution

of Lύ=f. From the fact that the energy inequality (23) holds true, there
exists a sequence {<£/}, $j e CJ(fΓ) vanishing near ί = 0 and we have

•), w(ί, 0 ) ^ = 0. Thus ^ = 0 in β.

To prove the converse, we first show that A = {($(09 •), L$): $ e C%(H)}
is dense in «^ ( 5 + r / 2 )(i?w)x^(o, s )(iy). Let (ίβ, w) 6^ ( _ s _
such that

f
o

which implies Z,*ΐ2 = 0 in ,&, and 3)'L2-\\m ϊv = 0. Thus we see that ϊu = 0 in ΪI

and /5 = 0. For any / e je(OtS)(H) and α e ^f is+rl2)(Rn) there exists a sequence
{<£,}, ίy e Q(/Γ), such that <£,((), •), ̂ ίy converge in e^ ( s + r / 2 )(i?w)5 Jf(0>s)(H) to α,

/ respectively as /-> oo. From the energy inequality (23) we see that {<£,} is
a Cauchy sequence in jf{Q>s+r){H). Let ύ be the limit of the sequence {<£/}.
Then ύ satisfies the equation Lύ = f in ίϊ with &'L2-\\m ύ = ά. From the fact

t i o

that £ e jf(OtS+r)(H) and A # e jfiOtS)(H) we see that ϋ 6 jT(r's)(H).

PROPOSITION 24. Suppose (CP)(Ό> fcoZds /or Z. For an?/ / e ^{kr's\H), h
being any non-negative integer, and ά e ^^k+ιi2)r+s){Rn) there exists a unique
solution ύ 6 jf ( (*+ 1 ) r' s )(/Γ) of the Cauchy problem (24). Furthermore ύ satisfies
the inequality

(25) Σ \\Dί&(t, )llf. + (*-> + l/2)r)+ Σ
y=o y=o

k-ι

y=o

a constant Cτ.

PROOF. If k = 0 this result is already shown in Theorem 8 and Proposi-
tion 7'. Let / e JΓ(r's)(H) and ά e jr(β+(3/2)r)(Λ»). Then the Cauchy problem (24)
has a unique solution ύ 6 ^ri2r>s\H). Furthermore ύ satisfies the inequality:

(26) ||S(f, OH
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Put v = Dtύ. Then ve^T{r's\H) and we have Lv = Dtf+ίl'(t)ύ e jf(0>s)(H),
and therefore

where C2 is a constant. Applying Lemma 3 in Section 2, we obtain with a
constant C3

(27) ||β(ί, Ollf-H-r/^

From (26) and (27) we have with a constant

Repeating this procedure, we obtain the inequality (25).

We note here that jf(kr's)(H)9 h being non-negetive integer, has the
equivalent norm

y=o

With the aid of the interpolation theorem for the Hubert scales, we can
show

COROLLARY 7, Suppose (CP)f0) holds for L. For any f e Jf ( σ s ) ( # ) , σ :> 0
and ά e 3tif (o.+s+r/2)(i?») there exists a unique solution of the Cauchy problem (24)
and (α,/)->£ is a continuous map of 3e(σ+s+rl2)(Rn) x jΓ(σ>s\H) into j>Γ(σ+r's

We shall denote by jΓ(σ>5)(jϊ_) the space which is a restriction of the
space jr(σ'β)(.Rί+1) to (-oo, Γ]x.Rw and similarly for ^;((^£ 2),χ#_). By

Proposition 7 in [β, p. 416] we see that for every ύ e jf ( σ s ) ( # ) with |σ| < - ί -
Li

its canonical extension u^ over ί = 0 belongs to the space jt{σ>s)(HJ).



436 Mitsuyuki ITANO and Kiyoshi YOSHIDA

PROPOSITION 25. Suppose (CP)('0> holds for L. For any f e jΓiσ'8\H)9

— ^ - < σ < 0 and a e Jί?(σ+s+r/2)CR,,) ίAβre eccisίs α unique solution ύ e jr(σ+r's)(H)

of the Cauchy problem (24).

PROOF. For any given / e X{σ<s\H) we shall consider £ satisfying the
equation

Then £ e JΓ ( σ + r '5 )(#_) and therefore ^£2-lim^=0. The Cauchy problem (24)

can be written in the form

ί Dt(U-g) + l(t)(U-g)=-iλr(Dx)g-l(t)g in 5,
(28)

[
tio

where -ίλr(Dx)g-l(t)ge jf(σ+r>s-rXH_),-^-<σ+r<r. Thus there exists a

unique solution v = ύ-g e £^+2r's~r\H) and therefore i2 = i;

Let (T, 5 be any real numbers and write σ=kr + σ' with integer k and

—-4-<tf 5Ϊ-^-. We are now prepared to show the following theorem, a

generalization of a result of S. Kaplan [11, p. 180].

THEOREM 10. Suppose (GP)'0) holds for L. For any a € Jif{*+s+rm(Rfd and
f e X*(σ>sXH) with f^ e jΓ ( σ s ) (#_), there exists a unique solution ύ e jΓ(σ+r's\H)
of the Cauchy problem (24). In particular, if ά = 0 then ύ^ejf{σ+r's)(H_).

PROOF. Consider the case k^>0. In Corollary 7 we have shown that
there exists a solution ύ e jf(σ+ΓfS)(ff). Since a solution of the Cauchy problem
is unique in ^ί((^£0*)CS")> we have only to show that if <2 = 0 then ύ^e
j r ( σ + r β)CffL). Suppose ά = 0. Then lim(S,.. , 2)}δ) = 0. In fact, if k = 0 then

ί 4 0
Iimi2 = ̂ £2-limϋ = θ. Let A>0. Then the condition f^etf(kr+σ'>sXHJ)
tio tio_

implies lim(/,..., Dk

t~
1f)=®'L2-\im(/,..., /)*"1/) = 0 (cf. Theorem 3 in [8,

p. 419]). In the same way as in the proof of Proposition 13 we can prove
that lim(£,..., Dk

tύ) = 0. In the case cf<^-9 Theorem 3 in [8, p. 419] implies
io Ztio

immediately ύ e jt^+r>s\HJ). Let σ'=-£-. Then ύ^ e

_\ 0 < ε ^ r . Combining with the relation Dt(ύ^)=
jΓ(σ's)(#_) shows that ύ^ e j^^+r's\H_).

Consider the case where k<0. We shall reason by descending induction
over k. Assume that the results hold true of any & + 1. Let f^ e
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\ and ά e jew+s+rl2){RH\ Let g e jf{σ+r's\HJ) be a solution of the
equation

Then Q}f

L2-\\m g = 0. The Cauchy problem (24) can be written in the form (28)
no _^

and — iλr(Dx)g — A(t)ge ^{σ+r>s-r\HJ), and therefore there exists a solution
v = U-geX{σ+2r's-r\H) and ύ=v+ge jr{σ+r's\H). Especially, if ά = Q then
ϊ ^ e j r ( σ + r ' s ) ( # _ ) .

Along the same line as in the proof of the preceding theorem we can
prove the following

PROPOSITION 26. Suppose (CP)('0) holds for L. For any h e cf^>s\HS)
there exists a unique solution υ e jΓ(σ+r's)(ϋΓ_) of Lυ = h.

The following theorems are the analogues of Theorems 4 and 5 and can
be proved in a similar way, so the proofs are omitted.

THEOREM 11. Suppose (CP)'0) holds for L. Then for any h e (^ί
there exists a unique solution v e (^ί)+((^z2)*) of Lv = h and h^v is a continu-
ous map of (^ί)+((^£2)j) onto itself.

THEOREM 12. Suppose (CP)^ holds for L. Then for any a e (βr

Lϊ)x and
f e 3>XR~£)((@i2)x), which has the &12-canonical extension f^ e (^ί)+((^ί2)*)? the
Cauchy problem (24) has a unique solution u e @r(R^)((@'L2)x) and (α, f~)-+ u^
is a continuous map under the topology of (@L2)X

 χ (&i)+((@L2)χ) and the topology

7. Notes on a system of ordinary differential operators

Let I be a system of ordinary differential operators of the form
L = Dt + l(t), where Z(t) is an NxN matrix of C°° functions on Rt and
consider the Cauchy problem:

( LU=f in R+,
(29)

[ lim ύ — ά
t lo

f o r a n y p r e a s s i g n e d / e &(R+) a n d d e CN. Hue &(R+) e x i s t s , t h e n / h a s
t h e c a n o n i c a l e x t e n s i o n f^ e @+ a n d

(30) L(&J)=f~-iάδ.

Conversely, if v e @+ satisfies the equation (30), then the restriction
ϊί = v\R+ is a solution of the Cauchy problem (29) and v = ΐί^ whereby ^ + we
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mean the closed subspace of @'(R) with support CR+>
Now we shall show that our considerations in the present paper can also

be applied to the Cauchy problem for ordinary differential system as a special
case.

For any $ a Q(R)

whence for any Γ>0

t0 0

By Lemma 3 in Section 2, we can find a constant Cτ such that

(31) \Kti)\^Cτ(\φ(t0)\^[h\mt)\dtX

Similarly, for the formal adjoint L* of L we have

(32)

We shall first show the following

THEOREM 12. // ύ e &(R+) satisfies Lύ = 0 in t>0 and limα = 0, then
tio

2=0.

PROOF. In the same way as in the proof of Proposition 8 in [7, p. 22] we
see that ύ e £~(R+). By the energy inequality (31) we have immediately ύ = 0
in R+.

In what follows we shall show the existence theorems for the Cauchy
problem (29).

PROPOSITION 27. Let σ> — -=- . For any ά eCN and f e ̂ ( σ ) ( j? + ) there

exists a unique solution ύ e j?(cr+i)(JR
+) of the Cauchy problem (29).

PROOF. (1) Let ΰ — k be a non-negative integer. First consider the
case k = 0. The set A = {(£(0), L$):$e Q(R+)} is dense in CNx^w{R+). In
fact, let (iβ, id) e CNx jefO)(R+) such that

(Lφ, ΰ)-i($(0\ 4) = 0, $ e Co(R+).

Then we see that L*ϊv = 0 in R+. By the energy inequality (32) we conclude
that w = 0 in R+ and therefore β = 0.

For any ά e CN and / e je(k)(R+) there exists a sequence {<£/}, $j e
such that ίy(0), L$j converge in CN and 3&{k)(R+) to α, / respectively as /
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By the energy inequality (31) we see that $j is a Cauchy sequence in <?°t(R+).
Let ύ be the limit of $h Then ύ e £°t(R+) is a solution of the Cauchy problem
(24). From the equation Dtύ=f—A(t)ύ e Jίf(0)(R+) we see that ύ e JίTa)(R+).

Let k = l and / e Jίf(1)(R+). Then v = Dtύ e je(0)(R+) and Lv = Dtf+iA'(t)ύ
e je(0)(R+), and therefore £ 6 JF ( D(JR + ), which implies £ e e# (2)(JR

+).
In the case where (T = k^>2, repeating this procedure, we see t h a t

(2) Let 6 be a non-negative real number. For any άe CN and / e
jf(σ)(R+) there exists a solution α e j f (ik+i)(Λ+) of the Cauchy problem (29),
where k = \jΓ\. Since Dtύ=f—A(t)ύe2f(iσ)(R+) we see that u e e # ( £ Γ + i ) ( ^ + ) .

(3) Let σ be such that — 1 _ < < Γ < 0 . For any / e jf(σ)(R+) if we define

g by the equation (D+ — i)g=f^, then g e je(σ+1)(R+) and l i m £ = 0 . The

Cauchy problem (29) can be written in the form

I lim ( ϋ - £ ) = #,

where —ίg—J[(t)g£Jf(σ+i)(R+). Thus there exists a solution v = ύ — g€
jf(σ+2)(R+) and therefore ύ = v-\- g e ^{σ+1)(R+). Thus the proof is complete.

In the same way as in the proof of Proposition 13 we can prove the
following

PROPOSITION 28. Let β be any real number. For any ά e CN and f e.
jf(σ)(R+) with f^ e jf(σ)(R+) there exists a unique solution ύ € je(σ+ί)(R+). In
particular, if ά = 0 then u e j^(σ+i)(R+).

As an extension of Theorem 37 in E. Berz [2, p. 32] we have

PROPOSITION 29. Let 6 be any real number. For any h e j^(σ)(R+) there
exists a unique solution v e j^(σ+i)(R+).

The following two theorems are the analogues of Theorems 4 and 5 and
these can be proved in a similar way.

THEOREM 13. For any Λe^+, there exists a unique solution v e ^ + of the
equation Lύ = h and h-^v is a continuous map of @'+ onto itself.

THEOREM 14. For any ά e CN and f e @f(R+) with the canonical extension
f^ there exists a unique solution ύ e &(R+) of the Cauchy problem (29) and
(a, fj)->ύ^ is a continuous map under the topology CNx@+ and the topology

Let us consider an ordinary differential operator
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m

PiP) = Df + Σ aj(t)DΓJ, o, e C(R).
3 = 1

Substituting uj = D{~1u, y = l, 2,.., ra, then we obtain the equivalent system:

tUj — Uj+ι = Q for ; = 1, 2,..., rn, — 1,

3 = 1

Thus we have

COROLLARY 8. For any h e @+, there exists a unique solution v e &+ of
the equation Pv=h.

COROLLARY 9. For any (αo, , am-ι) e Cm and f e @\R+) with the can-
onical extension /^, there exists a unique solution u e @f(R+) of the Cauchy
problem:

f Pu=f in R+,

tio

We can prove an analogue of Theorem 37 in E. Berz [_2, p. 32].

PROPOSITION 30. Let I be a non-negative integer such that l<^m and let
h e &'+. Then the unique solution v e &'+ of Pv = h is a canonical distribution
and \im(v\R+)=-=limDt?~1~ι(v\R+) = 0 when Km, if and only ifhcanbe

tio tio

written in the form h = Dι

tg, where ge @+ is a canonical distribution.

PROOE. Let h be written in the form h=D\g, ge@+ being canonical.
Suppose 1 = 0. Then, in virtue of Corollary 1 in [7, p. 19], the restriction
u = v\R+ is a solution of the Cauchy problem:

f Pu=h in R+

y

lim (u, Dtu, ..9
tio

and v = u^.

By the induction on I we shall prove the v is a canonical distribution and
(tf, , Dψ~1~ιu) = 0. Let Z>0 and suppose the assertion is true for I — 1,

tio

0<l<m. Consider the equation Pw=Dι

t~
1g. Then w e @+ is canonical and

\im(w\R+) = -=\imDψ~ι(w\R+) = 0, and therefore w, . , Dψ'1'1™ are canon-
no tio

ical. If we put v=Dtw + x, then

Pχ=~i Σ\
3 = 1
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Thus %e^i is canonical and \im(x\R
+
) = '-=\imD™-

ι
(χ\R

+
) = 0 and there-

ί 4 0 *4θ

fore v = Dtw + x is canonical and lim(u,. , Dψ~1~lu) = 0 for Km.
ί l O

Conversely, let v be canonical and lim(^5 , Dψ~1~ιύ) = 0 when Km.
no

Put Yk=-—^--—tk

+-1. Owing to the relation (16) in [10, p. 392], we have

(~i)ιDΓιv+ Σ Σ (-ί)

Since v is canonical and lim(u,.. , Dt?~1~lu) = 0, Km, we see that v, Dtv,- >
* 40

Df?~1v are canonical and therefore the left hand side of the equation is canon-
ical. Thus Γ/*Λ is a canonical distribution, which implies that we can write
h = DI

tg, with a canonical g. The proof is thus complete.

PROPOSITION 31. Let {u}ιeI be a directed set in £°t(R+) and put fι = Lύt in
$'(R+). If fι can be written in the form fι = Dtgι in R+, where gL e <?°t(R+)
and gX0) = 0, and if #t(0), gt converge in CN, £°t(R+) to α, g respectively, then
ύt converges in &%R+) to ύ and it satisfies the equation Lύ—f in R+ and
w(0) = α, where f=Dtg.

PROOF. Consider the Cauchy problem:

ί Lv=gL mR\

[ lim vt = 0.
ί 40

There exists a unique solution vt e £)(R+) and vt converges in £}(R+) to v
when c run through /. Then v is a solution of the Cauchy problem Lv = g in
R+ with ϊ5(0) = 0. On the other hand, from the equation Dtvι = gι — l(t)vι we
have DtvX0) = 0. If we put aΛ=Dtv + wt9 then

ί Lwt = il'(t)vt in R+,

ί 40

where lf(t)v e £)(R+). Thus there exists a unique solution wt e g](R+). Since
tf,(0), l(t)υb converge in CN, £)(R+) to α, 2{t)v respectively, wt converges in
<?2

t(R+) to w. Consequently uι=Dtvt + ϊυι converges in <?%R+) to ύ = Dtv + w
and it satisfies Lu=f in R+ and tf(0) = α, completing the proof.

Consider the Cauchy problem

I Lv=h in R,
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for any preasigned άeCN and h e ®'(JR\ where v(0) is the value of υ in the
sense of S. Lojasiewicz. By Theorem 5 in [10, p. 392] and Theorem 14, if
h e @'(R) has no mass on ί = 0 and the restrictions hι=h\R+ and h2 = h\R~
have the canonical extensions hλ^ and h^ over ί = 0, then, owing to Theorem 5
in [10, p. 392] and Theorem 14, there exists a unique solution v e &(R) of
the Cauchy problem (33), and υι = υ\R+, v2 = v\R~ satisfy the equations

Thus we have the following

THEOREM 15. Let {υ}ίeI be a directed set in &°t(R) and put hι = Lvι in
&'(R). If hι can be written in the form ht = Dtgt, where gt e #°t(R) and #t(0) = 0,
and if 2,(0), gt converge in CN, £%R) to ά, g respectively, then vt converges in

to v and υ satisfies the equation Lv=h and v(0) = ά, where h = Dtg.

Let us again consider the differential operator P(D). The discussions
made for a system will allow to show the following

THEOREM 16. Let {v}ιeI be a directed set in £°t(R) and put hι = Pvι in
@'(R). If the values Ot(0), A^(0), , Dψ-1vι(0)) = άι exist and if ht can be
written in the form hι = Dι

tgι, O^l^m, where gt 6 #°t(R) and (#(0), Dtg£0),
..., Dl

t~
1gl(0)) = 0, then vL belongs to the space ̂ ψ~ι(R). If αt, gL converge in

Cm, £°t(R) to α, g respectively, then vL converges in i^~ι{K) to υ and υ satisfies
the equation Pv=h and O(0), Z>/t;(O), , D?~1v(θ)) = ά.

PROOF. Since the values (#,(0),..., Dl

t~
1g£0)) exist, D{gL has no mass on

ί = 0 and the restrictions (D{gv)\R+, (D{gι)\R~ have the canonical extensions
over t = 0 for each;, O^ ^Z. Put vΐ = vt\R+, v7 = vt\R~9 hΐ=ht\R+ and A; =
ht\R~ and consider the Cauchy problems

( Pvt=ht iniT, ί Pv~ = h7 in R~,

1 K,, γ) ι, 1
t10 / T O

The reasonings made in the proofs of Propositions 30, 31 will show that vt =
vt-\-v7 eS^~l{R) and that vt converges in £"?~ι(R) to v, which satisfies Pυ=h
and (t (O), Dtv(0\ . , D™~lv(0)) = 0. This completes the proof.

In closing this paper let us add a comment on the coerciveness considered
in Section 6. Let us consider the operator L = Dt + 2, where 1 is an NxN
matrix of convolution operators and AeOVr, r>0, and assume that L is
parabolic in the sense of I.G. Petrowski. If we let %,(?) be the characteristic
roots of fA(ξ), where lu= TA*u with u e {βr

L^)x, then there exist constants
C>0 and Co such that
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(34)

We shall show that L satisfies the energy inequality (23) in Section 6.
The inequality (34) is equivalent to the inequality

(35) Im χy(£) ̂  - C(l + I ξ Γ)W 2 + d

with constants C">0 and d . Let us consider an iVx jV matrix B = f^-C

with an JVxiV unit matrix 2?. Then the operator L = L + B = Dt + A is also
parabolic. As noted in Section 4, £ is well posed in the L2 norm. Owing
to Corollary 3 in Section 4 it follows that there exists a positive definite
Hermitian matrix ίt(ξ) such that

2 a. e. on £„

with a constant C2. Since f^(f)= ti(£) + *-^-0-+ I?Γ)W2> we have

Im(HLu, u)=--^-{(HLu, u)-(ύ, HLu)}
Δ

± l l , u)

<,C2\\u\\2-CXHu, Sru)

= c2\\u\\2-C(HSrl2it, srl2a)

with a constant C". In virtue of Proposition 22 we see that L satisfies the
energy inequality (23).
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