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Introduction.

One of the primary objectives of an axiomatic potential theory, or a
theory of harmonic spaces, is a unified treatment of potential theoretic parts
in the theories of various second order elliptic (and some parabolic) partial
differential equations (see [ 27, [3]). Differential equations are considered on
a space with differentiable structure and in the theory of such equations the
notion of Dirichlet integrals or that of energy plays an important role. If
the equation is, for example, given by Lu=4u— Pu=0 on a domain £ in the
Euclidean space R”, then the Dirichlet integral of a function f is D[ f =

gQZ(af/ﬁxi)zdx and the energy of f is E[f]=D[f]+SQf2de. These values

appear, for instance, in Green’s formula, which is a basic tool in the theory of
such an equation.

A harmonic space, however, is defined on a locally compact Hausdorft
space on which we do not, in general, require any differentiable structure.
Thus, on an abstract harmonic space, we cannot define the notion of Dirichlet
integral or energy by means of differentiation of functions as above. Never-
theless, it is expected that the structure of harmonic space might yield a
certain notion, which is reduced to the ordinary Dirichlet integral or energy
in the special case where the structure is given by a differential equation on
a differentiable manifold.

The purpose of the present and the subsequent papers is to introduce
such a notion on a self-adjoint harmonic space. Here, a self-adjoint harmonic
space means a harmonic space with a symmetric Green function G(x, ).
Recall that the canonical form of a self-adjoint second order partial differen-
tial equation is given by Lu=4u— Pu=0. Suppose this equation is consider-
ed on a domain £ C R” and suppose there is the corresponding Green function
G(x, y) such that L,G(x, y)=—0, (6,: the Dirac measure). Then, for a

positive measure x# on £ such that U"(x)zg G(x, y)du(y) belongs to C?, we

have LU*= —u. Thus, if a C?-function f on 2 is expressed in the form

(%) f=u+U*—0U"  (u: asolution of Lu=0),
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then Lf=—x+y. On the other hand, L(f%)=2f(Lf)+2{X(0f/0x:)*+f*P}
—f%P, so that

B 1=—( fLpdn+ 3| LrHde+ L ( rpas.

Therefore, expressing f*=u'+ U*—U*(Lu’=0) we have
ELfI={du—an— L (aw - ay+ 5 £pas,

which shows that E[ 7] can be “calculated” without differentiation, once we
have a Green function. This is the basic idea of our definition of energy.

In the present paper, we define the notion of energy for functions of the
form () with bounded u, U* and U® (Chapter II) and then for general
harmonic functions (Chapter III), on a self-adjont harmonic space. In the
subsequent paper(s), we shall extend the definition to more general functions.

The most interesting feature of the present theory may be found in the
fact that many results (e. g., Theorems in Chapters II and III), whose known
proofs in the classical case essentially depend on differentiation, remain valid
in our general case where the notion of differentiation loses its meaning.

Notation. Given a non-compact locally compact Hausdorff space 2 and a
subset 4 of 2, we use the following notation:

A : the closure of 4 in 2; 0A4: the boundary of 4 in 2.

£¢: the one point (Alexandroff) compactification of £2.

A?: the closure of 4 in 2%; 9°4: the boundary of 4 in 2°.

&, : the point at infinity, i.e., 2°— 2={¢&,}.

Every function considered is extended real valued. The space of all
finite continuous functions on A4 is denoted by C(4). By a measure on £2, we
mean a non-negative Radon measure on 2. The support of a measure x is
denoted by S(«). For a function f on £ and a set 4, the restriction of f to 4
is denoted by f| 4; for a measure # on 2 and a Borel set A4, the restriction of
# to A is denoted by x| A4.

CHAPTER 1. Self-adjoint Harmonic Space

§1.1. Brelot’s harmonic space.

Let £ be a connected, locally connected, non-compact, locally compact
Hausdorff space with a countable base and let D= {#()}..openc o be a structure
of harmonic space on £ satisfying Axioms 1, 2 and 8 of M.Brelot [ 2. Functions
in s#(w) are called harmonic on w. The notions of superharmonic functions
on an open set » and of potentials on 2 are defined with respect to this
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harmonic structure (see [27], [3],[5]). For a superharmonic function s on
2, let

0(s)=82—\J{w: open, s|w € #(w)},
which is called the (harmonic) support of s.

In this paper, we shall assume the following additional axioms:

Axiom 4. The constant function 1 is superharmonic.

Axiom 5. There exists a positive potential on £2.

Axiom 6. For each ye &, if p,, p, are positive potentials on £ such that
0(p1)=0(p:)=1y}, then they are proportional (cf. [57]).

By Axiom 4, we have the following minimum principle ((2; Part IV,
Theorem 3 (ii) ): Let w be an open set in £ and s be a superharmonic func-
tion on w. If liminf, ., sc, s(x)=0 for any ¢ € 6°w, then s=0 on .

Given an open set wC £, the Dirichlet problem with respect to $ can be
discussed by Perron-Brelot’s method (see, e.g.,[1],[2]): For an extended
real valued function ¢ on 9°w, we set

{ _ superharmonic, bounded below on o,

Fo=
*“ 1% liminf,.; e, s(x)=0(&) for all £ € 9

b e

and yo=—9°,. We denote: Hy=inf #; and Hi=sup ;.

Lemma 1.1.  Any open set v 18 resolutive, i.e., for any ¢ € C(0°w), Ho=H,
and is harmonic on w.

This is a consequence of [ 1; Corollary 3 and Theorem 8.

We denote the function A= HS by HS for resolutive ¢. For each x € o,
there exists the harmonic measure 4 on #°w such that

(1.1) (odn=rz )

for all ¢ € C(0°w). By Axiom 4, #3(0°0)<1. Since w* is metrizable, a x3-
summable function ¢ on 98°w is resolutive and satisfies (1.1) (ef.[2; Part IV,
Proposition 217).

If w, is a domain in 2, then |wo={#(®)}u:0penca, 1S @ harmonic structure
on w, and satisfies Axioms 1~6. Thus we have notions of potentials on w,, etc.

§1.2. Self-adjoint harmonic space.

DerFiniTION. A harmonic structure  on £ satisfying Axioms 1,2, 3,5
and 6 is called self-adjoint if there exists a function G(x, y): 2 x 2 — (0, + o]
such that

(i) G(x, y)=G6(y, x) for all x, ye 2;
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(ii) For each ye€ 2, G,(x)=G(x, y) is a potential on £ and d(G,)={y}.
If © is self-adjoint, then (£, ) is called a self-adjoint harmonic space.

By Axiom 6, we can easily show:

Prorosition 1.1, If © s self-adjoint, then the function G(x, y): 2% 2 —
0, + oo satisfying (i) and (ii) above is uniquely determined up to @ multipli-
cative constant.

We call G(x, y) a Green function for . By [5; Proposition 18.1], we see
that G(x, y) is lower semi-continuous on 2 x 2.

Remark. R.-M. Hervé showed that, under Axioms 1,2,3,5 and 6, there is
a function p(x, y): £ x 2 — (0, 4+ o] such that x — p(x, y) is a potential with
support {y} for each ye £ and y — p(x, y) is continuous on 2 —{x} for each
x € 2 ((5; Théoréme 18.17]). The above definition simply means that o is
self-adjoint if we can choose p(x, y) to be symmetric.

Hereafter, we assume that (2, ) is a self-adjoint harmonic space satisfy-
ing Axioms 1~6 and G(x, y) is a fixed Green function. For ye 2, we shall
often use the notation G,: G,(x)=G(x,y).

LemMa 1.2, For any ye€ 2 and any open set » containing y,

sup G(x,y)<+ oo,
Z€EQ—w

Proor. Let w, be a relatively compact open set such that ye€ wo C@oC 0.
Then a=sup;es., G(x, y)< + oo, since y—G(x, y) is finite continuous on dw,.
By [5; Lemme 3.1], we have « =G(x, y) for all x € 2—w,D 2—ow.

Lemma 1.3.  For each ye€ 2, there is a non-negative superharmonic func-
tion s on 2 such that whenever x,—¢, and liminf, . G(x,, ) >0, we have

lim  s¥(x,)=+oco.
This is a special case of [1; Lemma 17.

Lemma 1.4. Let v be an open set in 2. Then

(i) Saw GE, Y)du&)<GC(x, y)  foralxco, ye 2;

(i) [ 6 pam@={ 6 odn@  fordlzyeo.

Proor. For each ye 2, let ¢,(£)=G,(¢) if § € 0w, =0 if £=¢,.
(i) Since G, is a positive superharmonic function on 2, G,|w € £, for
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any ye€ 2. It follows that ¢, is #;-summable and Gy(x)gH$”(x)=Saw G(&, ¥)
duy(&) for any x € v and ye 2.

(i) Let x € v be fixed. Since y— G(&, y) is harmonic on w for each
&€ dw, w( y)ESawG(f, y)dua(£) is harmonic on w. By (i) above, Lemma 1.2 and

the minimum principle, we see that w is bounded on w. Then, it follows from
(i) that w—e(s¥ | w) € &5, for any ¢>0, where s} is the superharmonic function

given in the above lemma. Hence, w<H, , i.e., ga G(&, y)duy(&) = Sa G(x, &)
duy(¢) for any x, y€ w. By symmetry, we obtain the equality.

ProrositioN 1.2. For any domain o in 2, O|w is also self-adjoint and
there exists a Green function G*(x, y) for O|w such that

1.2) G(x, y)=G(x, y)+h,(x) (%, y€w)
with hy € #(w). In fact h, is given by

13) b= 68, e,

Proor. Let G*(x, y) be defined by (1.2) and (1.3). By (ii) of the above
lemma, we have h,(x)=h.(y), so that G°(x, y)=G"(y, x) for x, ye . If we
fix y € o, then, by (i) of the above lemma, 4,<<G, on w. On the other hand, if
u is harmonic on » and u <G, on o, then u—e(s¥|w) € #;, for any ¢>0 as in
the proof of (ii) of the above lemma. Thus, u<Hg =h,, which shows that &,
is the greatest harmonic minorant of G, on w. Hence, G;=G,—h, is a poten-
tial on w. Obviously, G; is harmonic on w—{y}. Therefore, G*(x, y) is a
Green function for |w and $|w is self-adjoint.

§1.8. Potentials on a self-adjoint harmonic space.

For a measure # on £, let

v)={ _6(x, pauty).

Then, U* is a potential on £ unless it is constantly infinite ((5; Théoréme
18.37). Since G(x, y) is symmetric, we haveS Uf‘dv=SU” du for any measures
Uy V.

Lemma 1.5. If u(2)< 4 oo, then U* is a potential.

This is proved using Lemma 1.2 by a standard method in the classical
theory (cf. [5; Corollaire de la Proposition 17.17).
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Now, by [5; Théoréme 18.2, 2)], we know

Lemma 1.6.  Any potential on 2 is expressed as U* by a uniquely determin-
ed measure /.

Note that the uniqueness follows from Axiom 6. By this lemma we see
that any superharmoniec function s having a harmonic minorant on £ can be
uniquely expressed as s=u + U* with u € 5#(2) and a measure # on 2. This
measure y is called the associated measure of s.

The associated measure of the constant function 1 will be denoted by 7;
thus 1=h,+ U~ with &, € 5#(2). Obviously, U"<<1. Note that #=0 if and
only if 1 € s#(82).

Lesma 17, If 4(2)< + oo, then SQ Urdr < + co.

Proor. Sa U"dn=gg Urduu(2)< + oo.
For a domain » and a measure x on w, we use the notation
Vi) ={ 6°(x, panty)  (wew).

In case x« is a measure on 2, we shall write U instead of U%°.

Lemma 1.8. Let u, v be measures on 2 such that U, U* are potentials and
let w be an open set in 2. If U*|lo=U"|w+u with u € #(0), then u|lo=y|o.

Proor. By considering each component of w, we may assume that o is a
domain. Then U% and U are potentials on w and, by Proposition 2.1, we see
that U*=U4+u; and U’=U,+v; on v with u;, v, € #(v). Hence, by the
assumption of the lemma, U4=U.+h with h € #(»). It follows that Us=U:..
Then, applying Lemma 1.6 on w, we have y#|o=y|o.

By this lemma, we see that, given any superharmonic function s on £,
there corresponds a unique measure # on £ such that s|w=U%+u, with
u, € #(w) for any relatively compact domain . This measure x is again
called the associated measure of s. In this case, we have ¢(s)=S(x); in parti-
cular, o(U*)=S(x). Also, note that 1=H$+ UZ on » for any domain w.

LemMma 1.9.  For any relatively compact open set o in 2, p,=inf {s; non-
negative superharmonic on 2, s=1 on v} is a potential on 2. The associated
measure 2, of p, has the following properties:

(i) U»Z1lon 2and U=1on w;
(ii) S(,)C @, and hence 2,(2)< + oo}
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(iii) A.lo=7]|o.

Proor. By [2; Part IV, Proposition 10 and a result in p.1247), we see
that p, is a potential. Then, property (i) is obvious. By [2;Part IV, Theorem
87, p. is harmonic on 2 —a. Hence, S(2,)C®. Since U*|w=1=U"|o+hi|o,
we obtain (iii) by Lemma 1.8.

Lemma 1.10. U* < U* implies p(2) < y(2).
Proor. For any relatively compact open set v in 2, ,a(w)gggU Modpu=

Sg U”d/lmgsg Urda, =Sg Uredy <y(Q). Hence u(2)<y(2).

CHAPTER II. Energy of Bounded Functions

§2.1. The spaces Hpr and Bp.
Lemma 21, If u e #(2) and =1, then — |u|® ts superharmonic on 2.

Proor. |u]|“ is a continuous function and for any regular domain v and
x € o,

= ((ruteam ) ((am ) "< ul<am,

Hence, — |u | is superharmoniec.

lu]“(x)=

Sudﬂﬁ

The associated measure of —u? will be denoted by «, for u € #(2). If u
is bounded, i.e., |u| < M, then we have u?=h— U with h € #(2) and 0 < U+«
<h<M? We consider the class

HBE=HBE(!2)E{u € #(82); bounded, #,(2) <+ o and Sg widn < + oo}.
From (u+0v)*+(u—v)?=2(u?+v?), it follows that s, ,+ 2tu_»=2u+ 1»)
for u, v € #(2). Therefore, we see that Hpz is a linear space. Let

Mp=Mz(2)={u; measure on £ such that U* is bounded and x#(2)< + oo},
BE=BE(Q)E{ZL+ U+ — U“; u€ HBE, Uy VY E MB}.

By is a linear space of bounded functions on £ and Hjpr is a linear subspace
of Bz. We shall define the notion of energy for functions in Bz. For this we
need some preparations.

For u, v e 5#(82), let u\/v (resp. u Av) be the least harmonic majorant of
max(u, v) (resp. the greatest harmonic minorant of min(u, »)) on £ whenever
it exists. If u, v are bounded, then » Vv and u Av exist.
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Lemma 2.2 If u € Hpg, then u\V0, u A0 € Hpg.

Proor. Since uVO0={uV(—u)+u}/2 and u AO={u—uV (—u)}/2, it is
enough to show that u\/(—u) € Hgz. Let u?=h—U*», Then h*’?*= |u|. For

any regular domain v and x € o, Sh”zd,azg(ghd,a;)m:h(x)”z. Hence A'/? is

superharmonic on £2. It follows that 22 > uV (—u) >|u|,i.e., A=[uV (—u)]?
=u®  Obviously, uV(—u) is bounded. A—[uV(—u)]?* is non-negative
superharmonic and majorized by h—u?= U*+. Hence, it is a potential, so that
[uV(—uw)]*=h—U", where y=f,y. Since U*< U*+, Lemma 1.10 implies

that v(2) < 4, (2)<+ . Finally, since Sguzdn< + oo and SQU"udn' <+ oo

(Lemma 1.7), an hdn < 4o, and hence, Sg [uV(—u)]?dnr < +oo. Therefore
uV(—u) € Hpg.

Lemma 23 If f, g€ Bg, then fg is expressed as fg=u+U*—U" with
ue€H(R)and u, v € Mp.

Proor. Let B={u+U*—U"; ue€ #(R2), #,v € Mg}. Then B is a linear
space of real valued functionson 2. Since fg={(f+g)*—f’—g’}/2, it is
enough to prove that f e Bz implies f2¢B. If f=u+U*—U® with u € Hpg
and 4, v € Mg, then f=f,—f; with fi=uV0+U* and fo=(—u)Vv0+U”. By
the above lemma, f1, f» € Bg. Since f2=2(f}+f3)—(fi1+f2)% we may assume
that f=u+ U* with © =0 (u € Hpg, 1 € Mp).

Let M=sup,ecof(x). Then 0<M< +oo. Let s=M*—(M—f)% Then
f?=2Mf—s. Obviously, 2Mf ¢ B. We shall show that s ¢ B. First we remark
that 0<s<M%?. Since M—f is non-negative upper semi-continuous, s is lower
semi-continuous. For any regular domain w and x € w,

s duz=2m( £ = rran
<om( s aue— ([ 7 am)

== (M= (f du) < MP—[M—f () P=s5(),

where we used the superharmonicity of f for the last inequality. Therefore,
s is non-negative superharmonic on 2. Let s=k+ U* with ke s#(2). Since
s is bounded, U*" is bounded. Let u?=h— U** with h € #(£2). Then, from

(w4 U")=f2=2Mf—s=2M(u+ U*)—k— U"
it follows that
h—Ure=u? = —2uU*—(U*)*+2Mu+2MU*—k— U*
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or
h—2Mu + k= Ut«+2MU* —[2uU*+ (U*)* 4 U*"].
Thus, noting that U* < M, we have
—@BMU*+ U*)<h—2Mu + k< Ure+2MU".
It follows that Ah—2Mu + k=0, i.e., k=2Mu —h. Hence,
U¥ =s—k=2M(u+ U*)—(u+ U*)*—2Mu +h
< 2MU*—u?+h=2MU*+ U«
Hence, by Lemma 1.10, we have #'(2)<2Mu(2)+ 1.(2)< + o, since x € Mg
and u € Hgy. Therefore, ' € M, and hence s € B.
Lemma 2.4. If f € Bg, then ngzdn'< + oo,
Proor. As in the proof of the previous lemma, we may assume that
f=u+U*with u € Hgg, u >0 and u € Mgz. Let f<M. Then f*<u?+2fU*
<u?4+2MU*. By definition, Sguzdn< too. By Lemma 1.7, SQ Urdr < +co.

Hence ngszL'< + oo,

§2.2. Definition of energy for functions in Bp.

If a function f is expressed as f=u-+ U*—U® with u € #(2) and 4, v
being measures such that x(2), v(2) are finite, then the signed measure xz—vy
is determined by the function f (Lemma 1.6). Thus this signed measure is
denoted by ;. In this case, |0/|(£2) < #(2)+v(2)< + oo, so that g,(2)(=u(L2)
—v(2)) is well-defined. Obviously, the mapping f—0; is linear.

DeriniTiON.  For f, g€ By, we define
@1 E[f gjzl{g fdo +S do;—0 (g)+§ fgdn}
) 2 1. g 2 ga0y fe o s

which is called the mutual energy of f and g. The energy of f € By is defined
by

(2.2) E[f]=E[f, f].

E[f, gl for f, ge Bz is well-defined by virtue of Lemmas 2.3 and 2.4.
The mapping (f, g — E[f, g] is obviously a symmetric bilinear form on
Br X Bg.

The above definition is based on the observation made in the introduction.
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In fact, if 2 is a domain in a Euclidean space R" (n=3), then the solutions of
du=Pu (P=0; locally Holder continuous) form a self-adjoint harmonic struc-
ture on £ which satisfies Axioms 1~6 (cf. [5; Chap. VII]). In this case, if
f, g are bounded C?-functions with finite Dirichlet integrals on £ such that

SQ f%P dx and Sg g°P dx are finite, then the right hand side of (2.1) is equal

to the ordinary mutual energy

S = of %¢ dx+nggde.

2~ 0x; 0x;
Remark that the measure 7 in this case is Pdx.

ProrosiTion 2.1. If u € Hpg, then
_1 2
E[u]——z—{ 2(2) + Sg u dn},

so that E[u]=0.

Proor. Since 6,=0 and ¢,:= — #,, this proposition immediately follows
from (2.1) and (2.2).

Tueorem 2.1. If u € Mg, then U* € Br and
E[U]= SQU"d/t.

Proor. Obviously, U* € Br for 1€ Mg and 6y.=x. Hence it is enough
to prove that

2.3) a(m)z(g)=gg(m)2dn.

For any a>0, min(U*/«, 1) is a potential. Let x«, be its associated measure.
Then 0<U*«<1 and U*11as a|0. By Lemma 2.3, (U¥)?=U*—U* with
Uiy, U2 € M3z, Since O(yuyr= U1 — U,

G(Un)Z(.Q)z lim gg UF“dO'(U/A)Z
a0

=lim {SgU"ad,al —Sg Utedy, }

a—()

= lim S (UM —U*)dpu, =1im§ (U»2du,.
a-0 JQ a-0 J2

Let w,={x € 2; U*(x)>a}. Then v, is an open set and U*=1on w,. Hence,

by Lemma 1.8, y4,|w,=n|w,. Therefore,

Sa (U")Zd,aa=gg N (U")Zd,aa—l-g% (U*)*dr.
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Since w, t 2 as a | 0, S (U"*dn — SQ (U"*dr as a—0. On the other hand,

since U*<a on £ —w,,

o= Wyin<al vdn,

-

gaSgU"d,anFagg Uredp < au(2) - 0 (a— 0).

Therefore, lim,.,, SQ (U"?*du, =0, and hence we obtain (2.3).

—wg

CoRrROLLARY. If fi=Ur—U", i=1, 2, with ui, ts, v1, vz € Mp, then fi, f»
€ By and

BLf, £3=, frdog,= | fado;,  @r=m—vs, i=1,).

§2.8. Orthogonality.

In this section, we shall prove
THeOREM 2.2. If u € Hpr and u € Mg, then
E[u, U¥]=0.

The proof of this theorem will be given by a series of lemmas. For each
y€ 2and a>0,let w,,={x € 2; G(x, y)>a}. We see that v, , is a domain
whenever a<G(y, y) (cf. [4; n°17).

Lemma 2.5. 7r(a)¢,£,y)§ai and lim an(w,,,)=0.
a0

Proor.

eSOl pan(N= - V(S5

Suppose go=limsup,_, an(w,,,)>0. Fix a;>0. We choose {a,} by induction
as follows: Suppose a;, .-, «, are already chosen. Then we can find ;.1 >0
such that a,.1 <au, dp17(0q,,y) <eo/3 and ay.17(0a,,,,y) >260/3. Let w,=w,,,,
for simplicity. Then

Ms

1= U ()=

il

n=1

[ 6 pan)

= nZ=]1an+1{7r(wn+1)— m(w,)} = E1£?f—= + oo,
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a contradiction. Hence we have the lemma.
Lemma 2.6.  up=v({£,})=0 for any x € w, 4.

Proor. Let w=ow,,, for fixed y and a. Let ¢ be the characteristic func-
tion of {£,} on 0“w. For the superharmonic function s} in Lemma 1.3, we see
that e(s¥|w) € #; for any ¢>0. Hence 0 < H; <es¥ on o for any ¢>0, so that
Hy;=0,1.e., £2({&,})=0 for all x € w.

Now we consider the mapping ¢ € C(0%w,,,) —»S Hg«vdrn. By Lemma
Og,y

2.5, the integral exists and is finite for each ¢. It is easy to see that this
mapping is a non-negative linear functional on €(0“w,,,). Hence there is a
measure vy, , on 0°w,,, such that

(24) S @AYy y= S Hyev dr
a“wm” Og,y

for all ¢ € C(0°w,,,). We can show that (2.4) holds for any bounded s5=v-
measurable function ¢ on 9%v, ,.

Lemma 27. If u is a bounded harmonic function on 2, then

S udy, ,= S u dm.
a“’my Dg,

Y

Proor. Let w=w, , and let p(&)=u(¢) if £ € 0w and =0 if £é=&,. Then
¢ is a bounded x2-measurble function on #°w. Hence, by (2.4),

da:S da:SH‘” .
Samu y’y a%qﬂ v’y ® ? dT[

Now, by Lemma 2.6, we see that Hy=u, since u is harmonic. Hence we have
the lemma.

For each ye¢ 2 and a>0, let x4, ,=u;~v. By Lemma 2.6, x4, ,({£.})=0
and v, ,({£,})=0. Therefore, #, , and v, , can be regarded as measures on £2.

Lemma 2.8. Let
J— 1 v 7w
Wy, y=—— Ukev—U*ov4 0wy,
a

Then, 0 =w, , =2 o0n 2 and w, y=1 on v, ,.
Proor. Fix yand cand let u=u,,y, v=v4,, 0=0q,and w=w,, By
Lemma 1.4, U“(x) < G(x, y) for all x € 2 and U*(x)= Sa G(&, y) d/.zj;(é)=acga

dul for x € . Hence 0 U* < on £ and, by Lemma 2.6 we see that U*=aH?
on w. For any x € 2, let ¢,.(6)=G(x, &) if £¢€ 0w and =0 if é=¢,. Then ¢,
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is non-negative lower semi-continuous on 0°w. Choose ¢, € C(0°w) such that
¢,=0and ¢, 1 ¢, on 0°0. Then

U”(x)=gg Gx, &)dy(&)= Saw(p, dy

=lim S @n dy
)

n—roc0

=lim Sw H;, dr=lim Sm<g¢nd,a‘§ ) drn(z).

n—>oo n—ro0

Since ¢, < ¢s, S ondp® < G(x, z) (cf. Lemma 1.4, (i)). Hence U"(x)< S G(x, 7)

dn(z)=U""(x). Thus, 0 U"*—U*<U"<1on 2. It follows that 0 <w = 2.
Furthermore, for each x € w, ¢, is a bounded function on 9w, and hence

U”(x)=g He2 dn. By Proposition 1.2, H2 (z)=G(x, z2)—G*(x, z). Hence,
U'=U"*—Uzon w. On the other hand, since Uz=1—H¢%, we have U™'*—U”
=1—H{on w. Thus w=1/a)U*—U"+U"""=H;+(1—H})=1 on o.

Lemma 2.9. If p is a measure with u(2)< + oo, then

A(Q)=lim{%gg Urdpg, ,— SgU"dva,y }+Sg Urdn

a-g
Sfor any ye 2.
Proor. In the notation of the previous lemma, we have #(2)=lim,.,

ggwa,yd/z, since {wq,y} , is uniformly bounded, w,,,=1 on w,,, and v, , 1 £ as
a | 0. Now

S wa,ydﬂzig U/‘a;?/d’a—g UVa,ydﬂ_{_g Uﬂlmmydﬂ
2 a Jae 2 2

1
64

- SQ U"d,aa,y—gg U"dva,y-i—g U*dz.

Vg, y
The last integral tends to ggUf‘dn as a—0. Hence we obtain the lemma.

Lemma 2.10. Let {2,} be an exhaustion of 2, i.e., a sequence of relatively

compact open sets in 2 such that 2,C 2,.1, n=1,2,..,and \ J;-12,= 2. Then,
Sfor any u € Hpp and y € 2,

(25) w(y)= }‘illlgg_g G(x, Yu(x)dig (x).

Proor. Fix ye £ and choose m such that ye 2,. Let f=sUDico-o,
G(x, y). Then, 0<B< +eco (Lemma 1.2). Put p=min(G,, B). Since p=G,
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and p is bounded, p € Bz. Since u is bounded, |up| < Mp for some M. Then,
it follows from Lemma 2.3 that up= U* — U* with x1, 4> € Mp. For simplicity,
let 2,=2¢0,, ta=1ts,yand y,=v,, First we see that

1:1(2)— 12(2) =1£r§{gg Urrdpy —Sg U*"dﬂz}

=1img (U~ — U"z)d/l,,=limggup i,
2 oo

n—oo

Since 1,|2,=7|82, and up is 7-summable (Lemma 1.7), we have

llmgg up dl”:,l,lmgg_g" up d/l,,-i—ggup dar.

n—o0 —> 00

On the other hand, by the previous lemma,
12(2)— 11(2)=lim {ig up dptg— S up dve}+ S up dr.
aso la e “ e “ 2
Hence,

: (1 B
(2.6) ilrf gg__g" up di,= LI_I){)I {_57 Sgup dlg Sgup dva}.

For 0<a<B, p=G,=a on 0v,,, Since S(x,), Sv.) 0w, ,, the right hand
side of (2.6) is equal to lim,._, {S u d,aa——ag u dua}. By Lemmas 2.6 and
2

2}

2.7, we have Sgu duo=u(y) and Sgu dvaZS uwdr. Since u is bounded,

Do,y

lim,_,, as u dn=0 by Lemma 2.5. Therefore, by (2.6)

Dg,y

llmsg_gn up dln: u(y)’

which is the required formula (2.5), since p=G, on 2 — 2, for n=m.
Finally, we prove:
Lemma 2.11. Let {82,} be an exhaustion of 2. For any u e Hgg and

,UEMB,

limg uU“dlgn=S ud,a-f-g vUrdr.
2 2 2 .

n—o0

Proor. For simplicity, let 1,=1,,. Since 1,|2,=7|82, and wU* is =-
summable (Lemma 1.7),

1img uUﬂd/z,,=1im§ uU"d/l,,-i-S wUrdr.
2 2-g, 2

n—soo n—oo
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Hence, it is enough to show that

@7 S u d,a=limg wUrdR,.
e 2-9,

n—>o0

Now, since u U* is bounded and 2,(2)< + oo, Fubini’s theorem can be applied,
so that

S.@-.q,‘ uUﬂdl”:SQ g”u(x){SgG(x, ) d/l(_)’)} d2u(x)

Since u is bounded and U*» is #-summable (note that #(2)< + o), Lebesgue’s
convergence theorem implies

lim SMu wUda,= Sg{lim Sg_,," G(x, y)u(x)dln(x)} du(y),

n—oo n—roo

the right hand side of which is equal to Sgu du by (2.5) of the previous lemma.
Hence we obtain (2.7).

Proor of Theorem 2.2. Since |uU*| < MU* for some M>0, uU*= U — U*
with #;, #; € Mg by Lemma 2.3. Hence, by the above lemma,

Gup(2)= Sgu du+ SguU“dn.

Since ¢,=0 and 6y.= 4,

1

Elu, U"___|=~2—{Sgud,a—o‘uw(.9)+ Sgww;:}:o.

§2.4. An estimate.

As an application of Lemma 2.11, we shall prove

Proposition 2.2.  For any u € s#(2) and any domain o C 2
(2.8) S w2dn < (o).

We need one more lemma to prove this proposition.

Lemma 2.12. For any u € #(82) and any relatively compact domain o C £,
u?|w € Bg(w).

Proor. Since o is relatively compact, u|o is bounded, and hence u?|w is
bounded. By Lemma 2.1, —u? and —u* are superharmonic. The associated
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measure of —u? is x, by definition. Let v by the associated measure of —u*.
Since #, and v are measures on 2, #,(w)<+oo and v(w)< +oo. Let u?lo=
h—U% and u'|o=k—U: with h, k€ #(w). Since u?|w is bounded, Ui is
bounded, so that «,|w € Mz(w). From u?|w < M for some M and

k—h*=u*|o+U,—(u?| o+ Uts)?
it follows that
—3MUt<Ek—h2< U on o.

Since k—h? is superharmonic on o, the above inequalities imply that k—A? is
a potential on w. Let k—h%?=U¥. Then 4’ =y, Since U¥<U., Lemma 1.10
implies uy(0)='(0) <y(w) <+oco. Since 7(w)<+oo and A is bounded,

S h®dn < +oo. Therefore, h € Hzz(»), and hence u?|w € Bz(w).

Proor of Proposition 2.2. First we suppose 7(2)< + o and u? € Bg, and
prove (2.8) for o=2. It is trivial if ©«=0; thus let u=~0. Let u®?=h— U*=
with & € #(2). Then A>0 on £, and hence u?/h is a finite continuous func-

tion on 2. For any regular domain w and for any x € o,
2 uZ u2
sor= (o ) < (1) )=

Therefore —u?/h is superharmonic on 2. Since z?/A<1 on £, we have
uw?’/h<1-U~ ie., u><h—hU". It then follows that U*«=hU". Thus, for
an exhaustion {2,} of £, letting 1,=4,,, we have

(2.9) ,au(.Q):limSBU""d,uu:limg U/‘ud/l,,glimg hU™dA,.
n—00 2 2

n—ro0 n—ro0

By our assumption, 7 € Mz and h € Hprz. Hence, by Lemma 2.11, the last term

of (2.9) is equal to Sgk dr+ SQhU”dn. Therefore

ﬂu(g)gg hdngg widr.
2 2

Next, let w be any domain. For any relatively compact domain »’ contained
in o, n(w)<+ <o and, by the previous lemma, u?|»’ € Bx(»’). Therefore,

applying the above result to H|w’, we have ﬂu(w’)gg ) u?dr. Hence

#,(0)=sup uu(w’);su,ps ,uzdn=g u’dm,

where the suprema are taken over all relatively compact domains »’ contained
in w.
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Remark. Proposition 2.2 implies that (2.8) holds for any Borel set .

CHAPTER III. Energy-finite Harmonic Functions

§8.1. Energy of harmonic functions.

If u € #(82), then there corresponds the measure x,, which is the associat-

ed measure of —u2  Thus we can define the value

Elu)=Folu)=-{n(@+ | utdnl,

which is in [0, +o]. By Proposition 2.1, this value coincides with E[u]
defined in the previous chapter for u € Hzr. Thus, it is also called the energy

of uon 2. If E[u]< + oo, then we call u an energy-finite harmonic function.
Let

H;=Hy(2)={u € H(Q); E[u]< + }.

Obviously, Hzr={u € Hr; bounded}. By virtue of Proposition 2.2, we see
that #,(2)/2<E[u]< #,(2) for any u € s#(82), and hence Hr={u € #(2);
2#,(82) < + oo},

We define ||u|| for u € Hy as follows: In case 1€ s#(2),
llull=4{ECul+ |ulxo) |}
for a fixed x, € 2; in case 1 ¢ #(R2),
lull=E[u]".

ProrositioN 8.1. ||u||=0 if and only if u=0. In casel € #(2), E[u]=0
1f and only if u= const.

Proor. If 1€ s2(2), then 7=0 and x.=0 for any constant c. Hence
E[c¢]=0. Now suppose E[u]=0 (uv € Hg). Then x,=0, so that u?e€ #(2).
Hence [u—u(xo) ?=u?—2u(xo)u+u(x,)? is superharmonic on 2. Since it is
non-negative and vanishes at x,, it must vanish identically, i.e., u=u(x,). In
case 1 € #(2) and ||u||=0, u(x,)=0 by the definition of ||u||;in case 1 ¢ s£(2),
u(xo) must be zero since no non-zero constant is harmonic.

Lemma 8.1. If u€ Hg, then u® has a harmonic majorant on 2, so that
u’=h— U* with h € #(2).

Proor. Since #,(2)<-+ oo, U*» is a potential (Lemma 1.5). It then
follows that u?+ U*» is harmonic.
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Lemma 3.2. Hp is a linear subspace of #(2) and if u, v € Hg, then uv 8
expressed as uv=h+ U*— U’ with he€ #(2), u(2)<+ o and v(2)< + oo.

Proor. From (u+v)*+ (u—v)?=2(u?+v?), it follows that ., + tu-v=
2(uy+ 1) (cf. §2.1). Hence sy ,(2)+ ttu—o(2) =2(u(2) + 11,(2)) < + oo. There-
fore, u+v € He. It is obvious that au € Hz for any u € Hx and a real number
a. Thus Hg is a linear subspace of s#(82). Since uwv={(u+v)*—u®*—2v%}/2,
Lemma 3.1 implies that v=~h+ U*— U” with & € s#(2), v=tt,,,/2 and p=(u,+

1)/ 2.

By the above lemma, ¢,, is defined for any u, v € Hg and ¢,,(2) is a finite
value. We define

E[u, v]=%{——o‘uv(ﬂ)+ Sguv dn}

for u, v € Hz and call it the mutual energy of » and ». It is easy to see that
E[u, v] is a symmetric bilinear form on Hz x Hr and E[ u, u ]J=E[u_]. Hence,
together with Proposition 3.1, we have

ProrosiTioN 8.2. Hjy is a pre-Hilbert space with respect to the imner
product

Elu, v]+u(xo)v(xo), if le #(82)

o ”):{ ECu, o] . iFlea (o),
Jor which (u, u)=|ul|*

We remark here that, in case 1€ .#(82), Proposition 3.1 implies that
E[u, c]=0, and hence E[u+c]=E[u], for any constant ¢ and u € Hg.

§38.2. Lattice structure of Hy.

LemmA 3.3. If u € Hg, then u\/ (—u) exists and belongs to Hg. Furthermore,

EfuVvV(—uw)]<E[u].

Proor. Let u?=h— U* with he #(2) (Lemma 3.1). Then, as in the
proof of Lemma 2.2, we see that A!'? is superharmonic on £ majorizing |u|.
Hence, vV (—u) exists and A=>[uV (—u)]?=u? Then [uV(—u)]*=h—U",
where v= (-4 Thus, U” < U*+, and by Lemma 1.10, »(2) < #,(2) < +oo.
Let {2,} be an exhaustion of £ and let 1,=1,,. Since 1,|2,=7|%2, and
U, U* are m-summable (Lemma 1.7), we have

1(2)— () =1ni32{gg U d gty — Sg U""dv}

=1imSg(U"u— U*da,

n—oo
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=limg (Ur— ) d/l,,+g (Ure— U*)dr
2-9, 2

n—>00

ggg (U — U")dnzgg{[uv(—u)jz—uz}dn.
Hence, Sg [uV(—u)]?dn <+ o and

s @+ [ [V (—w)Pdn < u(@)+( u'dr,

ie,uV(—u)eHgand E[uV(—u) < E[u].
Remark. The above proof also shows that s,y .)(2) = #.(2).

Tueorem 3.1. Hp is a vector lattice with respect to the operations V and
A. For any u, v e Hg,

E[uVv]+E[uNv]<E[u]+E[v].

Proor. Since u=uV0+uA0 and uV(—u)=uV0—uA0, the above
lemma implies that u\/0, u A0 € Hr for any u € Hr and

E[uVO]+E[unNO]<E[u].

For any u,ve Hg, uNVv=v+[(u—v)V0] and u Av=v+[(z—v) A0] exist and
belong to He. Furthermore,

E[uVv]+E[uAv]
=2E[v]+2E[v, (u—v)VO]+2E[v, (u—v)AOJ+E[(x—v)VO]+E[(u—v) 0]
<2E[v]+2E[v, u—v]+E[u—v]=E[u]+E[v].
The following lemma will be used in the next section:

Lemma 34. If ue Hr and o 18 a non-empty relatively compact open set
wn 2, then

3.1) inf min{(uV 0)(x), [(—w)Vv o)) = {4 ™

Proor. Let vy be the associated measure of the superharmonic function
min(u, 0). Then,

(3.2) min(u, 0)=u A0+ U,
and since (zV0)+ (u A0)=u=max(u, 0)+min(z, 0), we have
(3.3) max(u, 0)=u\VO0—U".
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Hence, |u|=uV(—u)—2U". Let u?’=h—U* with h € #(2). We have shown
(see the proof of Lemma 3.3) that

0=[uV(—w)F—u? < U
On the other hand,
W= LuV (—w) = [u| PS4 (luV (—w)P—u}.
Hence
3.4 0y <t om.

Now, by (3.2) and (3.3) we see that min {x\V0, (—uz)VO0}=0*. Thus (8.1) is
equivalent to

. , 24.(8)
inf L0 = gy -

Now, using (3.4) and noting that S(1,) C®, we have

m(@ = du,=( var,
> 459(0@2%24 {inf [U"(2)T% 2,(2).

§38.8. Bounded family in Hp.

The following results are known as consequences of Axioms 1, 2 and 3
(see[3]and [6]):

(A) Harnack’s inequality: For a compact set K in £, there is a(K)=1
such that
sup u(x) <a(K) inf u(x)
x€K €K
for all u € #*(2)={u € #(2); u=0}.

(B) Forafixed xo€ 2, #; (2)={u € #(2); u(x,) <1} is compact with
respect to the locally uniform convergence topology. In particular, this
family is locally uniformly bounded on 2.

Now we consider the family
Hip={u € Hg; ||u||<1}.

Turorem 8.2. HL, {u\VO0; ue H:} and {uA0; ue H}} are locally uni-
Jormly bounded on £.
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Proor. Since |z| <max{uV0, (—u)V0}and uA0O=—[(—u)V0], it is
enough to show that {u\/0; v € HL} is locally uniformly bounded. Since this
is a subfamily of s#7(Q), the above (B) shows that we only have to prove that
{(u\V0)(x0); u € H} is bounded. Suppose it is not bounded. Then there are
u, € H} such that (u,V0)(xo) =>n, n=1, 2,....

Case 1. 1les(2): In this case, since |u(xo)| < ||u|| <1,
L(—u)VO](x0)=(unV0)(x0) —un(x0) =n—1.

Let o be any relatively compact open set containing x,. Then, by (A), inf,co
(2 V0)(%) = n/a(®) and inf, e[ (—u,) VvV 0](x) =(n—1)/a(®), so that

n—1
a(@)

inf min{(u,V0)(«), [(—ux)VO](x)} =

The left hand side is less than {«, (2)/42.(2)}'* by Lemma 3.4. Since
1, (2) < 2||u,||* <2, we have

Zz(—a; g(2/1‘,,1(53))1/2

for all n=1, 2,..., which is a contradiction since 1,(£2)>0.

Case 2. 1¢#(82), ie, n+0: Let v,=w,V0)/(u,V0)(x,). Then
v, € #7(2) and v,(x9)=1. By (B), there is a subsequence {v,,} which conver-
ges to v € () locally uniformly on 2. In particular, v(x,)=1. Now, using
Theorem 3.1, we have

1 1 1 1 2 _1
|lvn|(2§ﬁ—zllun\/0|(z :?E[unvojgﬁ‘zE[unJI ;ﬁ”uri“ é;ﬁ .

Hence gvﬁdng.‘ZanHng/nz. Thus, we may assume that v, —0 r-almost

everywhere on 2. Hence v=0 rw-almost everywhere on £2. Since 7 =~0,
v e #(R) and v =0, it follows that »=0, which contradicts the fact v(x,)=1.

CororrArY. If u, € Hg and ||u,|| — 0 (n— ), then u,—0, u,V0—0 and
u, N0 — 0 locally uniformly on L.

Lemma 3.5. For any u € Hg, let h¥ be the least harmonic magjorant of u®.
Then {h}; u € HL} is locally uniformly bounded on 2.

Proor. Let » be any non-empty relatively compact open set in 2. By
the above theorem, there is M >0 such that |[u(x)| <M forall x € ® and
u€ HL. Since u?=h}— U and £,(2)<2||u||*<2 for each u € H}, we have,
by using (A),
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sup A¥ (x) <a®) inf A}¥(x)
x€O x€0

<a(@®){M*+ iI€1£ Ur(x)}

ga(a){Mz + /l,,,(l oy Sg U"udlw}

—a(w){M2+ (lg)g e d,au}<a(a)){M2+ . Q)}

Hence {h}; u € H}} is locally uniformly bounded.

§8.4. Completeness of the space H.

ProrposiTion 3.3.  Let {u,} be a sequence in Hxg such that {||u,||} is bounded.
If {u,} converges to u locally uniformly on 2, then u € Hz and

|||l < liminf [[u,|l.
oo

Proor. Obviously, u € #(£2). By Lemma 3.5, we see that {4} } is locally
uniformly bounded. Let 4,=4}. By (B) and the definition of liminf, we can
choose a subsequence {u, ,} such that {A, j} converges to A* € s#2(2) locally
uniformly on £ and lim;..||u, || =liminf, .|[u,|. Since u,’?<h,, we have
u®<h*, so that u? has a harmonic majorant. Let u?=h¥— U with &} € s2(R2).
Obviously, Af <h*. Now, for simplicity, let #=pu,,. Since U“=h, —u,?,
{U*} converges to A* —u? locally uniformly on 2. Hejnce, for any relatively
compact open set o,

ﬂ,,(w)<§ Ured, S U"ud,{w=gg(h3‘—u2)d1m
gg —uz)dlmzlimg U"fd/lm:limg Uredp,
e )@ oo
<l mlnf 2 (2).

Hence, x,(2)<liminf,,. #;(2). Also, by Fatou’s lemma, we have Sguzdn

gliminfng u,2dr. Therefore, ||ul| <liminf;.., ||u, || =liminf,.. ||z,|| <+ o,
and this also shows that u ¢ Hg.

CoroLLARY. H} is compact with respect to the locally uniform conver-
gence topology.

Proor. The above proposition implies that H} is closed with respect to
the locally uniform convergence topology. On the other hand, Theorem 3.2
and (B) show that H} is relatively compact with respect to this topology.
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TueOREM 38.3. Hp is complete with respect to the norm ||+||, so that it is a
Hilbert space.

Proor. Let {u,} be a Cauchy sequence in Hy with respect to the norm
[|-]l. Then, it follows from Theorem 3.2 that {u,} converges locally uniformly
on 2. By Proposition 8.8, u=1im,_.. u, belongs to Hz. Furthermore, apply-
ing Proposition 3.3 to u,— u,, for any fixed m, we obtain

|z — uy|| < liminf ||z, — u,||
Himres

for each m. Since ||u,—u,|| — 0 as n, m—oo, it follows that ||u—u.| — 0 as
m — co. Hence Hy is complete.

§8.5. Density of Hgr in H.
Lemma 3.6. Given u € s#(82) and a>0, let
ve=[max(z—a, 00> and w,=a’—[max(a—u, 0)]°.

Then —uv, and w, are superharmonic functions on 2. If u® has a harmonic
majorant, then —v, and w, have harmonic minorants. Furthermore, 1f we
express vo=ko— U’ and wy,=h,+ U= with k., h, € #(82), then v ,~+ o= lta-

Proor. It is easy to see that —wv, is superharmonic (cf. the proof of
Lemma 2.1). Now, w,(x)=a? if u(x)=a and w,(x) =2au (x)—u(x)? if
u(x)<a. Since 2au—u?<a’ and a?, 2acu—u’® are superharmonic on 2, we
see that w, is superharmonic on £. If z? has a harmonic majorant, then
v,<u? implies that v, has a harmonic majorant and w, >2cu—u? implies
that w, has a harmonic minorant. Since v,—w,=u?—2au, we have

ko—ho—Ua— Ure=h—2au— Uk,

where & is the least harmonic majorant of »? This equality implies v, 4+,
=u, by Lemma 1.6.

ProrosiTion 34. If u € Hg, u =0 and a>0, then u A« (= the greatest
harmonic minorant of min(u, «)) belongs to Hr and

E[u ANa]< E[u].

Proor. Let f,=2a(uAc)—(uAx)?. Then f, is superharmonic on £
and its associated measure is g,n.. Since fo=a’—(@a—uAa)’ =0, (uAa)?
has a harmonic majorant. Let f,=~h%+ Ur+r« with h%e#(2). Since
uANa<min(u, @) < a, we have 0 <a—min(u, ) <a—u A«q, so that

fo=a?—(a—uAa)<a’—(a—min(u, @)’ =wa,

or



336 Fumi-Yuki MAEDA

h;I; + U.‘"u/\aéha + U"'a

in the notation of the above lemma. It follows that AX<<h,. On the other
hand,

0<w,—fo=(@—uAa)’—(a—min(u, a))?
=[2a—u Aa—min(u, «) [min(u, o) —u Aa]
<2a[min(u, a)—u Aa].
Since min(u, ) —u A« is a potential, the above inequality implies that A% >#A,.

Thus, h¥=h,, and hence Urur« U=, Therefore u, .(2)<t.(2). By the
above lemma, 7,(2)< u#,(2). Hence uupn.(2)<u,(82). Since 0ZuAa<u,

gg(u /\a)zdnggguzdn. Hence E[u ANaJ<E[u]<+ oo and u A« € Hg.

ProrosiTion 8.5. If u€e Hy and u=0, then lim,,..|lu—uAca||=0 and
u Aa— u locally uniformly on 2 as a— + co.

Proor. First note that u —u Aa=(u—a)Vv0. By Lemma 3.1,
[((u—a)VO PP =kk— Urv-une

with £% € s#(2). Since 0 <max(uz—a, 0) < (zv—a) V0, k¥ — Utv-ur« >y, for the
function v, given in Lemma 3.6. Hence, in the notation of Lemma 3.6, we
have k% > k.. On the other hand, £Y? >max(z —a, 0) and k%2 is superharmonic
(cf. the proof of Lemma 2.2). Hence kY2 >(u—a) V0, ie., ko= [(u—a) VO]
Thus k., =k¥%, and hence k,=Fk%. Therefore, for the measure v, in Lemma 3.6,
we have Urv-uraJ U<, 0 that sty ,no(2)<v.(2). Since v,=0 on {u<a},
S(.)C{u=a}. Therefore

Uuuna() Svo({u=a}).
By Lemma 3.6, v,({u =a}) < #.({u =«a}). Hence
ﬂu—u/\a(‘g)éﬂu({u Za}) >0 (a—+ o0).

Then, by Proposition 2.2, we have
E[lu—uNa]—0 (¢ > + o).

In case 1¢ #(R), it means that |[u—uAcal| > 0, and it follows from the
Corollary to Theorem 3.2 that u A« — u locally uniformly on £. Thus what
remains to show is u=lim,_,.u Aaincase 1l € #(2). Since u A« is monotone
increasing with a and u Aa<<u, v=lim,.,,.u A« exists, v € #7(2) and v < u.
Let c=u(x¢)—v(x,). Then ¢=0. Since E[u—c—uAa]=E[u—uANa]—0
(@— +o0) and (u Aa)(x) —> ulxo)—c, uAa tends to u—c locally uniformly
on 2 by the Corollary to Theorem 3.2. It follows that v=u—c. Now, uA«
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=(uhNo)Na<vAa=uAa, so that uAa=vAa. Hence uANA(a+c)=(@+¢c)
Na+e)=wAa)+c=(uNa)+c. Letting a—+ oo, we have v=v+c=u.

CoroLLARY 1. Hpg is dense in Hp; Hr is a completion of Hpg.

CoroLrarY 2 (Virtanen-Ozawa) If Hy contains a non-constant function,
then it contains a non-constant bounded function.

Proor. Let u € Hg be non-constant. Then either V0 or u A0 is non-
constant. Thus we may assume that »>0. Then E[z]>0. By the above
proposition, there is >0 such that E[u—uAa|]<E[u]. Then E[uNa]>0,
so that u A« is non-constant (cf. Proposition 3.1), while it is bounded.
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