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Introduction

Throughout this note, all spaces, maps and homotopies are assumed to be
based, and any map and its homotopy class are written by the same letter.

Let #(X) denote the group of self-equivalences of a topological space X.
The member of #(X) is a homotopy class of homotopy equivalences of X into
itself. The group operation of &(X) is given by the composition of maps.
This group ¢#(X) is a homotopy type invariant of X.

Several examples are known (see [5]-[107]). In particular, for a CW-
complex K=S"Ue""**! k> —1, having two cells, the group £(K) has been
studied in the case k= —1, n =2 and the case k=0, n=>1. The former case
is treated in [9: Example 87, and the latter is due to P.Olum [7] for n=1 and
the recent work of A.J. Sieradski [107] for arbitrary n >1.

The purpose of this note is to determine the group #(K) for a C W-complex
K=58"Uqe"*! k=1, under the condition that the attaching class « is a
double suspension, a=E?«’”, and both « and E«”’ have the same order. Our
main result is stated as follows:

TureoreM 3.2. Let K=S"U e"**! k>1, n=>2. Suppose that there exists
an element o’ € Ty, r_2(S" %) such that E’a’’=a, and both Ea/’ and o have the
same order m. Let i: S">K and p: K—S"***1 be the inclusion and the projec-
tion, respectively, and set

G= i*P*nn+k+l(sn)a

which is a subgroup of the group [ K, K] with the track addition.
Define a two-sided action of the multiplicative group Z,={—1, 1} on G by

(—Dg=ixp*(—t)r, g(—1)=—g for g=iwp*re€G,
where ¢, € ©,(S") 18 the class of the identity map of S”.
Then, the group &(K) of self-equivalences of K s 1somorphic to the multi-

plicative group whose entries are matrices
(6” §) %, y€Zy g€G for m=1, 2,
<g 5), X €2y, gE€G, Jor m>2,

where the matrix multiplication is given as usual.
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The procedure of the computation is as follows. We first calculate, in
§1, the homotopy set [ K, K], which is an abelian group with respect to the
track addition +, since K is a double suspension. The result is summarized
in Thm. 1.3. We study secondly, in §2, the multiplicative structure of [ K, K]
defined by the composition of maps. As is well known, the left distributive
law B(r+0)=RB7+ B0 holds, but the right one does not in general. Introducing
the homomorphisms ¢,: [K, K ]—[ K, K] defined by ¢,(0)=(a¢)6 for arbitrary
integer a(¢ denotes the class of the identity map of K), the multiplicative
structure of [K, K] is determined in Thm. 2.2. In §3, the group &(K) is
determined by making use of Thm. 2.2, where £#(K) is regarded as the subset
of [K, K] of all invertible elements with respect to the multiplication. The
result is, first, summarized in Thm. 3.2. by use of certain matrices. Next, we
paraphrase the result as the form of certain semi-direct products of groups
(Thm. 8.3). Finally, in Thm. 3.5, we treat especially the case when a=0 or
K is a wedge of two spheres. In §4, several examples are given.

The author would like to thank Professor M. Sugawara who read the
manuscript and gave him useful su ggestions.

§1. Additive structure of [ K, K]

Let K denote a CW-complex
(1.1) K=8"Uqe" ", n=2,k=>1,
such that the attaching class a € 7,.,(S") satisfies the following condition:

(1.2) There is an element o'’ € m,.;_2(S™ %) such that ¢ is the double suspension
of ’: a=E%", and both o’ =Eca’ and o have the same order m.

Obviously, by (1.2), n=4 if «=0, and m is finite.
Set K'=S5""1U,e"** the mapping cone of o’. Then, there is a sequence

of cofibrations
Sn—l __,_’_) K/ _L Sn+k _a, Sn _J_}K__p_’ S”+k+1.
We identify canonically K and the suspension EK’ of K’: EK'=K, and so
(1.3) Ei’'=i, Ep'=—p, Ed/=c¢,

where (¢’ resp. ¢) stands for the class of the identity map of K’ (resp. K). Also
we denote by ¢, € 7,(S”) the identity class of S”.

Since «’ is a suspension and of order m, we have (m¢,_;)&’'=a’(mty+5-1)=0,
hence there are elements &’ € 7, ,(K’) and 7’ € [K’, "] satisfying pi&' =mc,. s
and i"*y'=mc¢,_;. The element ¢’ is a coextension (for the definition, see e.g.
[11:p.18)) of me, -1 and determined up to i4m,,(S"" ). Also % is an exten-
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sion of me¢,_; and determined up to p'*r,,,(S"'). We put
A=p*e and U =iky in [K, K"].

These are determined up to i4p*m,.,(S"""). Since K’ is a suspension, the set
[K’, K] becomes a group by the track addition +. We shall show the rela-
tion 4+ 4'=m¢ in [K', K"].

Since i’ is a suspension, we have i"*(X'+ 4 —m¢)=i"*V +i"*y' —mi’™*¢' =0,
and so X' +4'—md=p*r, v € 1, . ,(K’), by the exactness of 7,,,(K)—>[K’, K]
—>7,_1(K). We have also p™*pir=pi(A'+4 —me)=0 and pir=0 since
P (ST [K, S"+#7] is isomorphic. The homomorphism pj: 7;(K’, S*°1)
—m;(S"**) is isomorphic for j <2n+%k—3 and n >3 by Thm. Il of [2], hence
if n>>8 we have 7 € i,m,. ,(S"!) from the exact sequence 7, ,(S* 1>, (K')
-y 1(Ky S*Y). Thus, '+ 4 —md € i p*n,, ,(S" 1), and by a suitable choice
of 2 up to ifp*m, x(S"'), we obtain '+ 4 —mc'=0 if n=>8. If n=2, then
a’=0 by (1.2), K’ is a wedge of S* and S**2: K=S'\Vv S**? and ¢ and 7  are
unique since 7;,:(S)=0. So we can choose ¢’ (resp. 7") as the inclusion (resp.
retraction). Thus, &'p'+i'y'=¢ and so '+ 4'=".

We have proved the following

Lemma 1.1.  There exist elements ' and u' of [K', K] satisfying
N=p*&,  pié'=mey.,  Sfor some & € m, 1 (K),
u =iy, iy =met,_, Sfor some 7 € (K, S" 1],
Atu'=md.

The track addition + defines a group structure on [K, K], which is
abelian since K is a double suspension. We define two elements 2 and # of
[K, K] by

1.4 A=EX, u=Ey.
By (1.3) and Lemma 1.1, these elements satisfy
A=p*¢,  pyE=mlpips1,
(1.5) u=iyy,  P*g=mey,
A+ u=me,
where é= —E¢’ and y=Ey’.
Lemma 1.2. The images of the following two homomorphisms are equal.
(Ea)*: 1y 41(S™) = 7y 241(S™),

et Tarr1(S"HF) = Ty i1 (S™).
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Proor. If a=0, the lemma is obviously true. So, we prove the lemma
assuming =0 and n >4.

As is well known, the group =,.,(S"), I =2, is cyclic and the generator 7,
satisfies Ey;_1=7; and 2y¢,=0 for />3.

Applying the theorem of M.G. Barratt and P.J. Hilton [1: Thm. 3.2] to
the reduced join p, Aa”’ € 7,.2.1(S”) for an element a” satisfying E’a”’ =«,
we obtain the commutativity

Ak = 77nEaf-
This proves the lemma. q.e.d.
Now, we calculate the group [K, K.

Tueorem 1.8. Let K be a complex of (1.1) such that the attaching class «
of K satisfies (1.2). Then, the group [ K, K] is the direct sum

[K,K]=ZBZDBC, G=ixp*nss:1(S),

where the elements ¢ of (1.83) and A of (1.4) generate the first and the second
infinite cyclic factors, and G 1is isomorphic to m,.p1(S™)/Imay=m,. 1.1(S")/
Im(Ea)*.

Proor. By Thm. II of [2], the homomorphism py: 7;(K, S")—m;(S*+**1)
is isomorphic for j=n+%+1 and epimorphic for j=n+k+2. The boundary
homomorphism @: z;.,(K, S*)— 7;(S") of the homotopy sequence of the pair
(K, S™) coincides with ayxE 'py: m; 1(K, S")— m; 1(S" )z m,(S"**) > m;(S™)
for j=n+k+1, n+k+2. Thus, we obtain an exact sequence

Tuipsi1(SHF) 22, Tasne1(S™) -2 Ty p 1 (K) 22 ﬂn+k+1(S”+k“)

247 Tars(S™),

from which the group 7,.;.:(K) is calculated: 7,, s 1(K)=Z@D isxmyir+1(S”"),
the first factor is generated by & of (1.5).

By the cellular approximation theorem, iy: m,.1(S”)— 7,,.1(K) is epimor-
phic. Hence, by Lemma 1.2, the homomorphism (Ea)*: 7,.1(K)— 7pyz:1(K)
is trivial. Also it follows that #,(K) is isomorphic to Z with the generator
i and a*: 7,(K)—> 7w, ,(K) is trivial.

We have, therefore, the following split exact sequence

(1.6) 07y p1(K) - LK, K] S m(K)—0.

A splitting homomorphism s: 7,(K)—[K, K] is given by s(i)=¢, and so
[K, K] is the direct sum of Imp* and Ims, since [ K, K] is abelian. Thus, the
theorem is established. q.e.d.

Remark. The above discussion can be done for K’ instead of K. Conse-
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quently, the group [K’, K] is a semi-direct product of Imp’* and Ims’ for a
splitting s": w,_,(K)—>[K’, K"].

§2. Multiplicative structure of [ K, K|

The composition of maps defines an associative multiplication of [ K, K]
with the unit ¢. Concerning with the addition +, the left distributive law
B(y+0)=RBr+ B0 holds, but the right one does not hold in general. Asis well
known,

21) (r+0)EB=yER+0ER  for Be[X, Y], 71,0€[EY,Z],
and in particular
(2.2) ar=7v(at), aEy'=(a)Ey’ forye[K,Y ], v €[ X, K] and any integer a.
For any integer a, we define a homomorphism
¢a: [K, K]>[K, K] by ¢.0)=(ac)f.

Similarly we define ¢,: 7,.2,1(S") > 7,,2,1(S™) as the left translation by ac¢,
instead of a¢c. Then, the following is obtained immediately.

LEMMA 2.1, @uigp*=iyxp*da, 0(0)=al if 0=E0 and ¢ .(g)=agif g=Eg’.
Especially we have
(2.3) pa(A)=al, pl)=ap  for Land uof (1.4).

By Lemma 2.1, the subgroup G of [K, K] defined in Thm. 1.8 is closed
with respect to ¢,, and ¢,|G is determined by ¢,.

RemArk. According to the theorem of P.J. Hilton [ 87, the homomorphism
¢, is described by use of the (iterated) Whitehead products and the (higher)
Hopf invariants.

(2.4) (Hilton [3: Thms. 6.7 and 6.9]) For any integer a and any g€ m,,1+1(S™),

Vol @=ag+ XD [l g+ @D r 1 i),

where Hy: n(S") — n,(S*~1) and Hy: m(S"*)— m,(S*~?) are the Hopf invariants
being generalized by P.J. Hilton [3: p. 1657].

Now we consider the multiplication of [K, K7]. Since pi=0, for the ele-
ments 4 and « of (1.4) and (1.5), we have easily

(2.5) Au=(&p)(in)=0, mad—2A2=A(me—2)=Ap=0.

Since 1 and y are suspensions, we have
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mu—p=(me—w)u=2u=0, ul=(me—A)A=mi—2A2=0,

by (2.1) and (2.2). For any elements g=i,p*r and h=iyp*d of GC[K, K,
7, 0 € myir1(S™), we have also

(2.6) 1g=(Ep)Grp)=0,  gu=(irp)(in=0,
gh=glme—u)=mg—gu=mg,
ug=(in)(irp)=i(me,)rp=(me)irp=m(g),
gh=(irp)(i0p)=0.

TueoreM 2.2. Let K be a complex of Thm. 1.3 and G be the subgroup of
[K, K] defined in Thm.1.8. Then, the multiplication in [K, K] is given by
the formula :

(ac+bi+ g)(a’'c+ b2+ g)=aa’t+(ab’+a’b+mbb)A+ (a’+mb) g+ ¢.(g"),
where a, b, a’, b’ € Zand g, g’ €6.

Proor. Put 0=ac+b2+g and 0'=a’¢+b'2+g’. Then, by use of the
right distributive law and (2.1-2.2), we have

00'=06(a’c)+6(b'2)+0g",

0(a’c) =a'0=ad’¢+a’bl+d' g,

(') =0b"0A=ab’'2+bb'2*+b' gA=(ab’+mbb")A+mb’ g by (2.5-2.6).
Set g'=irp. Then, since i is a suspension and 1i= gi=0, we have also

0g'=0irp=((ac)i+(bA)i+ gi)rp=(at)irp=(ac)g'=9a(g").

Thus, the theorem is established. q.e.d.

§8. The group ¢(K)

The group &(K) consists of the elements 6 of [K, K] having two-sided
inverses ¢’, that is to say

3.1 060'=0'0=c.

Put 6=ac+bi+ g and 0'=a'¢+b'2+g',a,b,d/,b'€Z, g, g €G. Then,
by Thm. 2.2, we have

aa’=1, ab’ +a’b+mbb’'=0,
(@' +mb)g+9.(g)=0, (a+mb)g'+¢a.(g=0.

From the first two equations, it follows that
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a=ad'=+15b=056'=0 for arbitrary m,
a=ad==+10=b'=F(2/m) for m=1, 2.

Therefore the solutions of (8.1) are the following elements.

0=c¢+ g 0=c—g for arbitrary m,
0=—c+ g 0'=—c+(—0)g for arbitrary m,
0=0'=c—2+g for m=2,

0=—c+i+g 0'=—c+2—(—0)g for m=2,
0=0'=c¢—21+g for m=1,
0=—c+21+g 0=—c+21—(—0)g for m=1.
In the above, g runs over the whole of G.
Summarizing the above, we have proved the following

ProrosiTion 3.1. As a subset of [ K, K] the group &(K) is as follows:

{+c+glgeG} Jfor m>2,
EK)=1{ {*xc+g x(—D+glgeGCG} for m=2,
{tct+g +(c—20)+glgeG} for m=1.

When m=1,2, we define an element ¢ € £(K) by
—¢+2 for m=2,
0=
—¢+22 for m=1.
Then, from Prop. 3.1, any entry of #(K) is written as
06(—0)* + g, g, &=0or1, g€G for m=1, 2,
(=o)f+g e=0orl, g€G for m>2.
By Thm.2.2, we have easily
(0°(—0)* + g)(a"(—0)” +h)
=0*1(—0) " +(=1)" g+(— )R for m=1, 2,
(=0 + Q= +h)=(— )" 1+ (—1)yg+(—c)'h  for m>2.

This suggests us to describe the group #(K) as a matrix form.

291

TueoreM 3.2. Let K be the complex of (1.1) satisfying (1.2), and G be the
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(additive) subgroup ixp*m,.s:1(S™) of [K, K]. Define a two-sided action of
the multiplicative group Z,={—1, 1} on G by

(=Dg=(—0g, g(—)=—g  for geG.

Then the group &(K) of self-equivalences of K s isomorphic to the
multiplicative group whose members are matrices

x &
) %, y € Zs, geG for m=1, 2,
0 ¥

x &
, x € Zy, g€G Jfor m>2,
0 =«
where the matrixz multiplication is given as usual:

0y 0 v 0 vy

and the elements x g and gy’ are given by the above action.

Proor. The isomorphism is given by the following correspondence:

) (=1° g
of(—0) +g— , g, e=0o0r1l for m=1, 2,
0 (=D
(=1 g
(—o)f+g — , e=0orl for m>2.
0 (=1
g.e.d.
Now we set
3.2) 6o(K)={c+ gl g€ G}.

We see easily that

(8.3) €o(K) 18 a mormal subgroup of &(K), and is isomorphic to the (additive)
group G by corresponding ¢+ ge &y(K) and geG.

Consider the quotient group I"'=¢(K)/6,(K). Then, we see easily
_ Zyx Z; with the generators <¢> and < —0> for m=1, 2,
r= Z, with the generator < —¢> for m>2,
where <6> stands for the coset 0&(K).

Set
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{*¢, +0} for m=1, 2,
I'=
{£¢} for m>2.

Then, 7 is a subgroup of #(K) and isomorphic to 7", and so, by (3.3), we
have a split exact sequence

{e} > G— &¢(K)—>T — {e}.
Thus, we obtain the following

Tueorem 3.3. Let K and G be as above Thm. 3.2. Then, if m=1, 2, the
group &(K) 1is the split extension

{e} > G- &(K) > Zy X Z — {e},

where the generators of Z; x Z, act on G by the following two automorphisms of
G:

G3g—>(—0)geQG, Grg—> —geG.
If m>2, the group &(K) 1s the split extension
{e} > G- 6(K) > Z, > {e},

where the operation of Z, on G is given by the automorphism of G sending g€ G
to —(—¢)geG.

Proor. It suffices to investigate the operation of I/ on &,(K). This is
checked by virtue of the following equalities in &(K).

0 e+ go=c+(—0)g, (=) M+ g(—0)=¢c—g  for m=1,2,
(=) e+ @(—0)=t—(—0)g for arbitrary m.
Then the theorem follows. qg.e.d.

CoroLLARY 3.4. Suppose that (—c¢,)y=—71 holds for arbitrary element
7 € Tpips1(S®). Then, the group &(K) is isomorphic to D(G) X Z, for m=1, 2
and to G x Z, for m>2, and the second factor Z, is generated by —c¢. The group
D(G) 1is the split extension

{e} > G —> D(6G) > Z, > {e},
where the operation of Z, on G is given by the automorphism
Grg—> —geG.
Remark. The assumption of Cor.3.4 is satisfied in the following each case.

(1) E: 7pp(S* 1) = 1y 4,1(S™) 18 epimorphic.
Gi) n=3or".
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Proor or CoroLLARrRY 3.4. By Lemma 2.1, the assumption of Cor. 3.4
implies (—¢)g= — g for any g€ G. So, the corollary is an easy consequence of
Thm.3.3. q.e.d.

The group D(G) of the above is a generalization of the dihedral group.
Indeed, D(Z,) is the usual dihedral group, written as D,, of order 2:. In
general, we define the group D(A) for any abelian group A4, written multipli-
catively, by the split extension

{e} > 4> D(4) —> Z, > {e},
where the generator of Z, acts on A as the automorphism
A3a—alte A
The following isomorphism is verified easily.
34) D(Ax Z;)~D(A) X Z,.

From Thms. 1.3 and 3.3, we see that the group &(K) depends on the
compositions ay,.; and (—¢,)r for v € 7,,,.1(S") as well as the isomorphism
class of the group 7,,:,1(S"). We give, however, a particular case that £(K)
does not depend on the compositions in 7, ;. 1(S").

Tueorem 8.5. Let K=S"\/ S"***! k>0, n=>k+8. Then, the group &(K)
18 1somorphic to

D(7Z',,+k+1(S")) X ZZa
and the second factor Z, is generated by — .

Proor. The homomorphism E: 7, (5" 1) = 7,.:.1(S") is epimorphic by
the suspension theorem of Freudenthal, and the subgroup G of [K, K] is
isomorphic to 7,.,:1(S") since «=0. So, the theorem for =1 follows from
Cor. 3.4.

For the case k=0 and a=0, the discussions in §§1-3 are done quite
similarly. Let K=S"\VvS"! i: §" - K and &: $"*! - K be inclusions, and
p: K— S"! and 7: K — S” be retractions. Then, similarly as Thm. 1.3, we
have

[K, K1=2DZDz,

where the generators of each factor are A=¢p, =iy and g=in.p, 7, € Tn+1(S"),
which are suspensions. We have also 1+x=¢, and so the multiplication of
[K, K] is given by 2°=2, #*=u, du=p1=0, lg=gu=0, gh=pg=g, g°=0
and by the two-sided distributive law. Hence, from the similar discussions
as in Prop. 8.1 and Thm. 3.3, we have the desired result
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E(S"N S" N =Z,x Z,x Z, (generators oc=21—py, —0, ¢+g),
where D(7,.1(S8"))=D(Zy)=2Z, % Z, by (3.4). g.e.d.

§4. Examples

In the following examples, the group operation of [ K, K] (resp. £(K)) is
written additively (resp. multiplicatively). And so, the group G is written
additively as a subgroup iyp*m,.s:1(S") of [K, K7, and multiplicatively as a
subgroup £o(K) of £(K) as in (8.2). Indexing K, we write K, instead of K,
when K is (n —1)-connected.

We refer the notations and the relations of 7;(S*) to Toda’s book [117].

ExampLE 1. a=1v, € 7,,1(S"), K,=S"\U,je"">2
E(K,)=2Z3x Zs, n=3.
Generators g, —0.
E(K)=2,.
Generator a,
Ea=o0.

Since 7,,2(S8")/9nmn.2(S" 1)=0, the above holds for n—=>4 by Thm. 3.3.
The element 7; is not a double suspension. But E: [K;, K5 ] — [K4, K4 is
isomorphic, and the above holds for n=3. For n=2, K, is the complex projec-
tive plane CP(2), hence we have [K,, K, |=[CP(2), CP(c)|=H*CP(2))=2Z,
and the above is established.

EXAMPLE 2. @=7u%ps1 € Tpr2(S™), K,=S"U e"*3.
é”(Kn):.DlzXZz, n~2_5

Generators of D, a=c¢+iwp*(vut+ai(n)), o.

Relations in Dy, a'’=¢, 0%=¢, ca=a"l0.
Generator of Z, —c.
(K4)

Generators b=c+ixp*vy, c=c¢+iyp*(Ev'+a:(4)), 0, —o0.

Relations S=02=(—0)’=¢, cb=bec, oc=c'0,
(=0)c=c"(—0), o(—0)=(—0)d(=—0),
ocb=bc 30, (—0)b=>b"'(—0).
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Eb=d°, Ec=a".
&(K3)=Dgsx Z,.
Generators of Ds d=t+iwp*(v'+ai(8)), 0.
Relations in Ds d’=0t=¢, od=d 0.
Generator of Z, —.
Ed=c.

We have G=Z;, (generator i,p*(v,+ai(n))) for n=5 and G=ZDZs
(generators ixp*vs and iy p*(Ev'+a.1(4))) for n=4. All elements of G are
supensions for n>5 and the above follows from Cor. 3.4. For n=4, the
element Ey’+a;,(4) is a suspension but v, is not. In 7,(S*), we have

(—e)vs=—vy+[ts, ts JH(vy) (H is the Hopf invariant, cf. (2.4))
=—p,;+Qvys—Ey)
by Lemma 5.4 and (5.8) of [117] and (6.1) of [4]
=y, —Ey.

So, the relation cb=bc % in £(K,) is proved, and the above follows for n=4.
For n=38, [ K3, K3] is abelian since E:[K;, K5 ] — [K,, K4 ] is monomorphic.
Similar discussions of Thm. 2.2 and Prop. 3.1 can be done for Kj; and the
above follows from Cor. 8.4 for n=38 since (—¢3)r= —r for any 7 € 7,(S*) (see
the remark after Cor. 3.4).

ExampLE 8. a=v, € 7,,3(5"), K,=S"U_je""".
&(K)=2Z,, n=5.
Generator —-¢.

For n>6, 7,.4(S")=0 and the above follows from Cor. 3.4. For n=>5,
E:[Ks, K5 ]—[ K, K¢ ] is isomorphic, and the above follows.

As is well known, K, is the quaternion projective plane. So, according
to P.J. Kahn [57,

E(Ky)=2;
and the generator a of #(K,) satisfies Ea=c¢.
ExampLE 4. a=0¢€ 7,,4(S"), K,=S"VS"*5,
E(K,)=2Z,%X Z;, n=>1.

Generators g, —0.
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g(KG):Dm X Zz.

Generators of D..  a=c+ixp*[te, ts], —O.

Relations in D.. (—0)=¢, (—0)a=a'(—0).
Generator of Z, a.
Ea=c.

é”(K5)=Z2 X Zz X Zz.
Generators b=c+iyp*vsnsne, 0, —0,
é’(K4)=D4 X Zz.

We put c=c+iwp*vimms and d=c+ i p*(Ev)y77s.

Generators of D, c'=co, 0.

Relations in D, c*=0%=¢, oc’=c"lo(=cd).
Generator of Z; —0.

Ec=b, Ed=c.

E(K3)=2Z2X Zsx Z,.
Generators S=t+iwp*v'yen:, o0, —o0.
Ef=d,=c¢".

E(Ky)=2Zy %X Zy % Z,.
Generators g=t+ixp*nw'ne, 0, —0.
Eg=c.

For n=>17, n,,5(S")=0 and the above follows from Thm. 3.5. For n=6,
71.(8%)=Z is generated by [ ¢s, ¢s ], and we have (—¢g)[ ¢s, ¢s]=[¢s, ¢ts]. So, the
above follows. For n=5, m,o(S°)=En,(S*)=Z, (generator vsys7,), hence the
above follows from Cor. 3.4. For n=4, we have 74(S*)=2,HZ, with the
generators v s and (Ev)yqs=E(® pey;) and vuy:7s ¢ InE. By the com-
putation in Example 2, (—c¢)vinms=vanrys+ (Ev )ys. So, €(K,) has four
generators c, d, g, —o with the relations ¢?=(—0)2=c?=d*=¢, 6(—0)=(—0)0,
c(—0)=(—0)c, d(—0)=(—0)d, cd=dc, do=0d, 6c=cdo. Then the above
result is an easy consequence. For n=3, 75(S®)=2, with the generator v'ys77,
and (—¢3)v'pen7=v"7677. So, the above follows. For n=2, 7,(S8*)=2, with
the generator 7,v'7s satisfying E(7:0'76)=0 and (—¢2)y:2v'76=72v"76 since
(—¢2)p2=72. Hence, the desired result follows.
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